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The Pólya f -curvature of plane curves

Mircea Crasmareanu and Gabriel-Teodor Pripoae

Abstract. We introduce and study a new curvature function for plane curves
inspired by the weighted mean curvature of M. Gromov. We call it Pólya, being
the difference between the usual curvature and the inner product of the normal
vector field with the Pólya vector field of a given planar function f . We computed
it for several examples, since the general problem of vanishing or constant values
of this new curvature involves the general expression of f .
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1. Introduction

The last forty years known an intensive research in the area of geometric flows.
The most simple of them is the curve shortening flow and already the excellent survey
[4] is almost twenty years old. Recall that the main geometric tool in this last flow
is the well-known curvature of plane curves. Hence, to give a re-start to this problem
seams to search for variants of the curvature or in terms of [11], deformations of the
usual curvature. The goal of this short note is to propose such a deformation using
a type of planar vector fields introduced by George Pólya (1887-1985). The life and
research of this brilliant mathematician is exposed in the book [1].

The contents of this paper is as follows. In the following section we introduce our
new curvature, using an idea of Mikhael Gromov. This curvature function, denoted
kf , is defined with respect to a given planar function f : Ω ⊆ R2 → R2 through
its associated Pólya vector field. Starting from the given curve C we compute kf in
some examples in order to determine the complexity of computation. At this level,
due to the generality of function f , it is impossible to determine cases when kf is zero
or another real constant. For the examples of this section we choose in particular a
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holomorphic function, namely the square function f(z) = z2 and hence we denote the
corresponding curvature as ksquare. At the end of the section we use the Fermi-Walker
derivative to express kf .

In the third section we start from the given f and define a notion of reverse
potential F which involves the paracomplex structure of R2; hence we change the
notation of our introduced curvature in kF . Now, we can point out cases when kF
is zero or another constant and an interesting example is provided by the harmonic
radial function F (x, y) = 1

2 ln(x2 + y2).

2. The Pólya f -curvature for a plane curve

Fix I ⊆ R an open interval and C ⊂ R2 a regular parametrized curve of equation:

C : r(t) = (x(t), y(t)), ‖r′(t)‖ > 0, t ∈ I. (2.1)

The ambient setting, namely R2, is an Euclidean vector space with respect to
the canonical inner product:

〈u, v〉 = u1v1 + u2v2, u = (u1, u2), v = (v1, v2) ∈ R2, 0 ≤ ‖u‖2 = 〈u, u〉. (2.2)

The infinitesimal generator of the rotations in R2 is the linear vector field, called
angular:

ξ(u) := −u2 ∂

∂u1
+ u1

∂

∂u2
, ξ(u) = i · u = i · (u1 + iu2). (2.3)

It is a complete vector field with integral curves the circles C(O,R):
γξu0

(t) =

(
cos t − sin t
sin t cos t

)
·
(
u10
u20

)
= SO(2) · u0,

R = ‖u0‖ = ‖(u10, u20)‖, t ∈ R, R(t) :=

(
cos t − sin t
sin t cos t

)
∈ SO(2) = S1

(2.4)

and since the rotations are isometries of the Riemannian metric gcan = dx2 + dy2 it
follows that ξ is a Killing vector field of the Riemannian manifold (R2, gcan). The first
integrals of ξ are the Gaussian functions i.e. multiples of the square norm:

fC(x, y) = C(x2 + y2), C ∈ R.

For an arbitrary vector field X = A(x, y) ∂
∂x +B(x, y) ∂∂y its Lie bracket with ξ is:

[X, ξ] = (yAx − xAy −B)
∂

∂x
+ (A+ yBx − xBy)

∂

∂y

where the subscript denotes the variable corresponding to the partial derivative. For
example, ξ commutes with the radial (or Euler) vector field:

E(x, y) = x
∂

∂x
+ y

∂

∂y
,

which is also a complete vector field having as integral curves the homotheties γEu0
(t) =

etu0 for all t ∈ R. The vector field E is the basis of the 1-dimensional annihilator of
the Liouville (or tautological) 1-form λ = 1

2 (−ydx+ xdy) whose exterior derivative is
the area 2-form dx ∧ dy. We point out also that the opposite vector field W = −E is
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exactly the wind in the Zermelo navigation problem corresponding to the Funk metric
in the unit disk of R2, [5]. For an arbitrary Euclidean space Rn with n ≥ 2 the radial
vector field E = xi ∂

∂xi defines the notion of horizontal 1-form ρ as satisfying iEρ = 0
with iE the interior product.

The Frenet apparatus of the curve C is provided by:

T (t) =
r′(t)

‖r′(t)‖
∈ S1,

N(t) = i · T (t) =
1

‖r′(t)‖
(−y′(t), x′(t)) ∈ S1

k(t) =
1

‖r′(t)‖
〈T ′(t), N(t)〉 =

1

‖r′(t)‖3
[x′(t)y′′(t)− y′(t)x′′(t)].

(2.5)

Hence, if C is naturally parametrized (or parametrized by arc-length) i.e. ‖r′(s)‖ = 1
for all s ∈ I then r′′(s) = k(s)ir′(s). In a complex approach based on

z(t) = x(t) + iy(t) ∈ C = R2

we have 2λ = Im(z̄dz) and
k(t) =

1

|z′(t)|3
Im(z̄′(t) · z′′(t)) =

1

|z′(t)|
Im
(
z′′(t)
z′(t)

)
,

Re(z̄′(t) · z′′(t)) =
1

2

d

dt
‖r′(t)‖2, fC(z) = C|z|2.

(2.6)

This note defines a new curvature function for C inspired by a notion introduced
by M. Gromov in [8, p. 213] and concerning with hypersurfaces Mn in a weighted Rie-

mannian manifold (M̃, g, f ∈ C∞+ (M̃)). More precisely, the weighted mean curvature
of M is the difference:

Hf := H − 〈Ñ , ∇̃f〉g (2.7)

where H is the usual mean curvature of M and Ñ is the unit normal to M . This
curvature was studied in several papers; for example if Hf is the constant λ ∈ R
then M is called λ-hypersurface and the influence of a shrinking Ricci soliton on the
geometry of such a hypersurface is studied in [2].

Suppose that the geometric image of the given curve is contained in a domain
Ω ⊆ R2 and we have also a given function f : Ω → R2 = C, f = (u, v) = u + iv for
u, v ∈ C∞(Ω). This function has an associated vector field, called Pólya:

Vf := u
∂

∂x
− v ∂

∂y
(2.8)

whose Lie bracket with ξ and E is:
[Vf , ξ] = (yux − xuy + v)

∂

∂x
+ (u− yvx + xvy)

∂

∂y
,

[Vf , E] = (u− xux − yuy)
∂

∂x
+ (xvx + yvy − v)

∂

∂y
.

(2.9)

For details concerning this type of vector fields see [3] and [9]. Hence we follow this
path and we consider:
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Definition 2.1. The Pólya f -curvature of C is the smooth function kf : I → R given
by:

kf (t) := k(t)− 〈N(t), Vf (r(t))〉. (2.10)

Before starting its study we point out that this work is dedicated to the memory
of Academician Radu Miron (1927-2022). He was always interested in the geometry of
curves and, besides its theory of Myller configuration ([13]), he generalizes also a type
of curvature for space curves in [12]. It is worth to remark that for its meaningfully
contribution to the geometry, the Romanian edition (1966) of the book ([13]) has
received the ”Gheorghe Ţiţeica” Prize of the Romanian Academy in 1968. Obviously,
we can present on several pages the enormous contributions of Academician Radu
Miron to the theory of space curves (e.g. by extensions of the celebrated Gauss-
Bonnet theorem) but due to the planar character of our study we stop here our
commemorative discourse.

Returning to our subject we note:

Theorem 2.2. (i) The expression of the Pólya f -curvature is:

kf (t) = k(t) +
x′(t)v(x(t), y(t)) + y′(t)u(x(t), y(t))

‖r′(t)‖
. (2.11)

(ii) Moreover:

kf (t) ≤ k(t) +
√

[u(x(t), y(t))]2 + [v(x(t), y(t))]2 = k(t) + ‖Vf (r(t))‖ (2.12)

with equality if and only if the vector field Vf ◦ r is parallel to N but in the opposite
direction.
(iii) In particular, if C is an integral curve of Vf then kf is exactly k.
(iv) If the normal projection of Vf ◦ r is invariant with respect to the orientation
preserving parameter changes on C then kf is invariant too, and conversely.
(v) If the angle made by Vf ◦ r with the normal is invariant w.r.t. positively oriented
isometries then kf is invariant too, and conversely.

Proof. We have directly:

〈N(t), Vf (r(t))〉 = 〈iT (t), Vf (r(t))〉 (2.13)

and the conclusion (2.11) follows. The inequality (2.12) is the direct application of
the CBS inequality. The claimed consequence follows from the ODE system:

x′ = u,

y′ = −v. �

Theorem 2.3. With the previous notations, let I ⊆ R be an open subset and let h :
I → R be a smooth function. Fix t0 ∈ I, (x0, y0) ∈ R2 and an orthonormal pair
{T0 ∈ S1, N0 ∈ S1} of R2. Then there exists a maximal open interval J ⊆ I around
t0 and a unique parameterized curve C : J → R2, such that kf = h, C(t0) = (x0, y0)
and T (t0) = T0, N(t0) = N0.
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Proof. This result is an analogue of the fundamental theorem of plane curves ([10],
1.3.6) and the proof is similar. Consider the ODEs system:

X ′(t) = (h(t) + 〈Y (t), Vf (x(t), y(t))〉) · Y (t)

Y ′(t) = − (h(t) + 〈Y (t), Vf (x(t), y(t))〉) ·X(t)

X(t) =
1

(x′(t))2 + (y′(t))2
· (x′(t), y′(t)) ,

Y (t) =
1

(x′(t))2 + (y′(t))2
· (−y′(t), x′(t))

with the initial conditions (x(t0), y(t0)) = (x0, y0) and (x′(t0), y′(t0)) = (T0, N0).
The existence and uniqueness theorem for ODEs ensures there exists a solution
C(t) = (x(t), y(t)) on a maximal open interval J ⊆ I around t0. A short com-

putation proves that
{
X,Y

}
is the Frenet frame along C and the that the first

two formulas of the previous system are the Frenet equations. As the function
(h(t) + 〈Y (t), Vf (x(t), y(t))〉) must be the curvature function k = k(t) of C, we obtain
the relation (2.10), hence the equality kf = h. �

Example 2.4. i) If C is the line r0+tU, t ∈ R with the vector U = (U1, U2) 6= 0̄ = (0, 0)
then kf is the constant:

kf (t) =
U1v(x0 + tU1, y0 + tU2) + U2u(x0 + tU1, y0 + tU2)

‖U‖
. (2.14)

In particular, if O ∈ C then

kf (t) =
U1v(tU1, tU2) + U2u(tU1, tU2)√

(U1)2 + (U2)2

and for f(z) = z2 we have:

ksquare(t) =
U2[3(U1)2 − (U2)2]√

(U1)2 + (U2)2
t2. (2.15)

ii) If C is the circle C(O,R) : r(t) = Reit then:

kf (t) =
1

R
− v(R cos t, R sin t) sin t+ u(R cos t, R sin t) cos t. (2.16)

For f(z) = z2 we have:

ksquare(t) =
1

R
+R2 cos 3t ∈

[
1

R
−R2,

1

R
+R2

]
. (2.17)

iii) For the case of logarithmic spiral expressed in polar coordinates as ρR,α(t) = Reαt,
R,α > 0 and t ∈ R we have the f -curvature:√

α2 + 1kf (t) = R−1e−αt + (α cos t− sin t)v(Reαt cos t, Reαt sin t)

+(α sin t+ cos t)u(Reαt cos t, Reαt sin t) (2.18)

and for α→ 0 we re-obtain the f -curvature of the circle C(O,R). Again for f(z) = z2

we have: √
α2 + 1ksquare(t) = R−1e−αt +R2e2αt[cos 3t+ α sin 3t]. (2.19)
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In the following since the problem of vanishing or of constant values for kf
can not be treated due to the generality of f we continue to present some concrete
examples in order to remark the computational aspects of our approach.

Example 2.5. We study completely a curve with non-constant rotational curve.
Namely, the involute of the unit circle S1 is:

C : r(t) = (cos t+ t sin t, sin t− t cos t) = (1− it)eit, t ∈ (0,+∞). (2.20)

A direct computation gives:

r′(t) = (t cos t, t sin t) = teit, k(t) =
1

t
> 0, ‖r′(t)‖ = t (2.21)

and then the f -curvature is:

kf (t) =
1

t
+v(cos t+t sin t, sin t−t cos t) cos t+u(cos t+t sin t, sin t−t cos t) sin t (2.22)

which for f(z) = z2 becomes:

ksquare(t) =
1

t
+ 3(1− t2) sin t cos2 t− 2t cos3 t− sin3 t+ 6t sin2 t cos t. (2.23)

Example 2.6. For the square function f(z) = z2 the integral curves of its Pólya vector
field are the solutions of the ODE system:

ẋ = x2 − y2, ẏ = −2xy (2.24)

having the first integral:

Fsquare(z = x+ iy) = 3x2y − y3 = Im(z3). (2.25)

Fix then a arbitrary real number a 6= 0; the implicit plane curve:

C(a) : F (z) = a (2.26)

has the usual curvature:

k(C(a)) = − a

27(x2 + y2)2
. (2.27)

We end this section with an approach in terms of Fermi-Walker derivative. Let
Xγ be the set of vector fields along the curve γ. Then the Fermi-Walker derivative is
the map ([7]) ∇FWγ : Xγ → Xγ :

∇FWγ (X) :=
d

dt
X + k‖r′(·)‖[〈X,N〉T − 〈X,T 〉N ] =

d

dt
X + k[X[(N)T −X[(T )N ]

(2.28)
with X[ the differential 1-form dual to X with respect to the Euclidean metric. For
X = Vf ◦ r we have:

∇FWγ (Vf ◦r)(t) =
d

dt
Vf (r(t))+‖r′(t)‖k(t)[〈Vf ◦r(t), N(t)〉T (t)−〈Vf ◦r(t), T (t)〉N(t)]

(2.29)
and then we restrict to the tangential component of this equation:

〈(∇FWγ Vf ◦ r)(t)−
d

dt
Vf (r(t)), T (t)〉 = ‖r′(t)‖k(t)〈Vf ◦ r(t), N(t)〉. (2.30)
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Hence, if C is not a line we have:

kf (t) = k(t)−
〈(∇FWγ Vf ◦ r)(t)− d

dtVf (r(t)), T (t)〉
‖r′(t)‖k(t)

. (2.31)

3. A reverse potential for f and the corresponding Pólya curvature

Usually, the smooth function F ∈ C∞(Ω) is called a potential of f if the gradient
relation holds f = ∇F which means u = Fx and v = Fy. But for our formulae (2.11)
another object seems more naturally:

Definition 3.1. F is a reverse-potential of f if u = Fy and v = Fx.

In a matrix form we express this condition as:(
u
v

)
= Γ · ∇F, Γ :=

(
0 1
1 0

)
∈ Sym(2). (3.1)

We point out that since Γ2 = I2 and dimKer(I2 + Γ) = dimKer(I2 − Γ) = 1 the
endomorphism Γ is exactly the paracomplex structure of the plane R2, [6]. The kernel
of I2 + Γ is the second bisectrix B2 : x+ y = 0 while the kernel of I2 − Γ is the first
bisectrix B1 : x − y = 0. The paracomplex structure Γ and the complex structure
J := R

(
π
2

)
of the plane commute:

Γ · J = J · Γ =

(
1 0
0 −1

)
= diag(1,−1). (3.2)

In fact, in [9, p. 5] there is another vector field associated to f , namely

V ⊥f := −Vif = v
∂

∂x
+ u

∂

∂y

and hence if F is a reverse potential of f then its gradient is exactly V ⊥f .

It results immediately that our considered curvature, denoted now kF , is:

kF (t) = k(t) +
1

‖r′(t)‖
d

dt
F (r(t)), kF (t) ≤ k(t) + ‖∇F (r(t))‖ (3.3)

since ‖Vf‖ = ‖∇F‖.

Remark 3.2. An useful formalism is that of [14, p. 2]; if r : S1 ' [0, 2π) → R2 is
naturally parametrized then there exists the smooth function θ : S1 → R, called
normal angle, such that:

N(s) = eiθ(s) = (cos θ(s), sin θ(s)), T (s) = −iN(s) = −ieiθ(s) = ei(θ(s)−
π
2 ) (3.4)

and then the Frenet equations yield:

dθ

ds
(s) = k(s). (3.5)

Then kF is a derivative:

kF (s) =
d

ds
(θ(s) + F (r(s))) (3.6)
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and hence kF is vanishing if and only if the function θ + F ◦ r is a constant.

Example 3.3. Suppose that f is a holomorphic function i.e. its real and imaginary
components satisfy the Cauchy-Riemann equations: ux = vy, uy = −vx. If f is pro-
vided by the reverse potential F then the first equation holds directly while the second
equation implies the harmonicity of F i.e. the vanishing of the Euclidean Laplacian:
∆F = 0. If we restrict the class of F to radial (i.e. S1-invariant) ones F = F̃ (x2 + y2)
we have the solution F (x, y) = 1

2 ln(x2 + y2) = 1
2 ln f1(x, y) for 0 /∈ Ω and then:

f(z) =
i

z
= y

x2+y2 + i
x

x2 + y2
=

(
y

x2 + y2
,

x

x2 + y2

)
,

Vf =
y

x2 + y2
∂

∂x
− x

x2 + y2
∂

∂y

kF (t) = k(t) +
〈r(t), r′(t)〉
‖r(t)‖2‖r′(t)‖

≤ k(t) +
1

‖r(t)‖
.

(3.7)

The circles C(O,R) : r(t) = Reit are exactly the integral curves of Vf and applying
the last part of proposition 2.2 we get: kF (t) = k(C(O,R)) = 1

R=constant. For the

more general example of logarithmic spiral r(t) = Reiαt, α > 0 we obtain:

kF (t) =
α+ 1

Reαt
√
α2 + 1

, lim
α→0

kF = k(C(O,R)). (3.8)

We have

V ⊥f (x, y) =
1

‖(x, y)‖2
E(x, y)

and then

‖Vf‖ = ‖V ⊥f ‖ =
1√

x2 + y2
.

For a harmonic function f the Lie brackets (2.9) can be expressed only with the
partial derivatives of u:

[Vf , ξ] = (yux − xuy + v)
∂

∂x
+ (u+ xux + yuy)

∂

∂y
,

[Vf , E] = (u− xux − yuy)
∂

∂x
+ (uux − xuy − v)

∂

∂y

(3.9)

and then Vf commutes with ξ while [Vf , E] = 2VF , equality which follows also from
the (−1)-homogeneity of coefficients of f .

4. Pólya related curves

Let f(x, y) = u(x, y) + iv(x, y) be an arbitrary function on the complex plane
and C : I → R2 be a regular parameterized curve, as in Section 2. Denote by k and kf
the curvature function and the Pólya curvature function of C, respectively. From the
fundamental theorem of the theory of plane curves, we know there exists a regular
parameterized curve C̃ : I → R2, whose curvature k̃ is exactly kf ; moreover, this
curve is unique, up to a positively oriented isometry and an orientation preserving
parameter change.
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Definition 4.1. We say C̃ is the Pólya mate of C w.r.t. the function f .

Example 4.2. Let again C = C(O,R) : r(t) = Reit and consider f(z) = z̄. Then, from

the formula (2.16) it results kf = 1
R +R and then C̃ = C(O, R̃) is the Pólya mate of

C for:

R̃ =
R

R2 + 1
≤ min{1

2
, R}. (4.1)

Continuing this process with the fixed f we obtain the Pólya mate of C̃ as being the
circle Ĉ = C(O, R̂) with:

R̂ =
R(R2 + 1)

R2 + (R2 + 1)2
(4.2)

which proves that the ”Pólya mate” relation for a fixed f is not a symmetric one in
general.
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