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Weakly Picard mappings:
Retraction-displacement condition,
quasicontraction notion and weakly
Picard admissible perturbation

Ioan A. Rus

Abstract. Let (X, d) be a metric space, f : X → X be a mapping and G(·, f(·))
be an admissible perturbation of f . In this paper we study the following problems:
In which conditions imposed on f and G we have the following:

(DDE) data dependence estimate for the mapping f perturbation;
(UH) Ulam-Hyers stability for the equation, x = f(x);
(WP ) well-posedness of the fixed point problem for f ;
(OP ) Ostrowski property of the mapping f .
Some research directions are suggested.
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1. Introduction

Let X be a nonempty set and f : X → X be a mapping. To define a perturbation
of f we consider a mapping G : X ×X → X with the following properties:

(A1) G(x, x) = x, ∀ x ∈ X;
(A2) x, y ∈ X, G(x, y) = x implies y = x.
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Now, we consider the operator, fG : X → X defined by,

fG(x) := G(x, f(x)).

It is clear that, Ff = FfG , i.e., the fixed point equations,

x = f(x) and x = fG(x)

are equivalent.
By definition, the mapping fG is an admissible perturbation of the mapping f

corresponding to the mapping G.
Let us consider an example. For other examples see [53].

Example 1.1. Let B be a Banach space, f : B→ B be a mapping and G : B× B→ B
be defined by,

G(x, y) := (1− λ)x+ λy

for some λ ∈ R∗. Then fG is an admissible perturbation of f . We denote it by, fλ.

Remark 1.2. If X ⊂ B is a nonempty convex subset of B, f : X → X is a mapping and
G(x, y) := (1− λ)x+ λy for some λ ∈]0, 1[, then fλ is an admissible perturbation of
f , i.e., Krasnoselskii perturbation of f . For more considerations of this perturbation
see [52], [3], [12], [20], [21].

Let (X, d) be a metric space, f : X → X be a mapping and G(·, f(·)) be an
admissible perturbation of f . In this paper we shall study the following problems:

In which conditions imposed on f and G we have the following (all or one!) :
(DDE) data dependence estimate for the general perturbation of f ;
(UH) Ulam-Hyers stability for the equation, x = f(x);
(WP ) well-posedness of the fixed point problem for f ;
(OP ) Ostrowski property of the mapping f .
Some research direction are suggested.
Throughout this paper the notations and terminology given in [8], [38], [56] and

[57] are used.
Instead of long preliminaries we give the following references:
• Picard and weakly Picard mappings: [48], [56], [57], [61], [64];
• Ulam-Hyers stability: [55], [56], [57], [64];
• Well-posedness of fixed point problem: [56], [57], [9], [10], [35], [50], [33];
• Ostrowski property of a mapping (limit shadowing property): [35], [17], [22],

[46], [56], [57], [61], [64], [13], [34], [32].

2. Retractions on the fixed point set and retraction-displacement
conditions

Let (X, d) be a metric space and f : X → X be a mapping with Ff 6= ∅. Let
r : X → Ff be a set retraction, i.e., r|Ff

= 1Ff
. Then,

X =
⋃
x∈Ff

r−1(x)
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is a partition of X. If x∗ ∈ Ff then we denote, Xx∗ := r−1(x∗). By definition, the

partition X =
⋃

x∗∈Ff

Xx∗ is a fixed point partition of X corresponding to the retraction

r (see [59]).

Remark 2.1. In general, Xx∗ is not an invariant subset for f .

Let ψ : R+ → R+ be an increasing function with ψ(0) = 0 and continuous at 0.
By definition, the condition,

d(x, r(x)) ≤ ψ(d(x, f(x))), ∀ x ∈ X,

is a retraction-displacement condition on f corresponding to the retraction r.

Example 2.2. (see [57]; see also [42], [37], [36]). Let (X, d) be a complete metric space
and f : X → X be a graphic l-contraction. In addition we suppose that,

d(f(fn(x)), f(f∞(x)))→ 0 as n→∞,

for all x ∈ X. Then f is weakly Picard mapping.
The mapping f∞ : X → Ff is a set-retraction and

d(x, f∞(x)) ≤ 1

1− l
d(x, f(x)), ∀ x ∈ X.

In this case, f(Xx∗) ⊂ Xx∗ , ∀ x∗ ∈ Ff , i.e., X =
⋃

x∗∈Ff

Xx∗ is an invariant fixed point

partition of X corresponding to the retraction f∞.

Example 2.3. (Browder [11] and Bruck [14], pp. 6, 33). Let H be a Hilbert space, X ⊂
H be a convex, closed and bounded subset of H and f : X → X be a nonexpansive
mapping. Let r1(x) = lim

n→∞
xn(x), where xn is the unique solution of,

xn(x) =
1

n
x+

(
1− 1

n

)
f(xn(x)), n ∈ N∗, x ∈ X,

and

r2(x) = w − lim 1

n
(1X + f + . . .+ fn−1)(x), n ∈ N∗, x ∈ X.

Then the mappings, r1, r2 : X → Ff are nonexpansive retractions. In general, r1 6= r2.
In this case we have two distinct fixed point partitions of X corresponding to r1

and to r2.

Remark 2.4. The notion fixed point partition of the space with respect to a retraction
is a relevant one. For example, in terms of this notion we can give the following
definitions.

Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅, r : X → Ff

be a set retraction and X =
⋃

x∗∈Ff

Xx∗ be the fixed point partition of X, corresponding

to the retraction r.
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Definition 2.5. The fixed point problem for the mapping f is well-posed with respect

to the partition X =
⋃

x∗∈Ff

Xx∗ if the following implication holds:

x∗ ∈ Ff , xn ∈ Xx∗ , n ∈ N, d(xn, f(xn))→ 0 as n→∞
⇒ xn → x∗ as n→∞.

Definition 2.6. The mapping f has the Ostrowski property with respect to the parti-

tion, X =
⋃

x∗∈Ff

Xx∗ , if the following implication holds:

x∗ ∈ Ff , xn ∈ Xx∗ , n ∈ N, d(xn+1, f(xn))→ 0 as n→∞
⇒ xn → x∗ as n→∞.

3. Results for (DDE), (UH) and (WP ) problems

3.1. (DDE) problem

Let (X, d) be a metric space, f : X → X be a mapping and fG be an admissible
perturbation. Let g : X → X be a mapping such that,

d(f(x), g(x)) ≤ η, ∀ x ∈ X, for some η ∈ R∗+.
We suppose that, Ff = {x∗} and Fg 6= ∅.

The problem is to find in which conditions imposed on f and G, there exists an
increasing, θ : R+ → R+, with θ(0) = 0 and continuous in 0 such that,

d(y∗, x∗) ≤ θ(η), ∀ y∗ ∈ Fg.
We have the following result.

Theorem 3.1. We suppose that:

(1) fG is a ψ-Picard mapping (FfG = {x∗});
(2) d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X with some c ∈ R∗+;
(3) d(g(x), f(x)) ≤ η, ∀ x ∈ X with some η ∈ R∗+.

Then we have that:

(i) d(x, x∗) ≤ ψ(cd(x, f(x))), ∀ x ∈ X;
(ii) d(y∗, x∗) ≤ ψ(cη), ∀ y∗ ∈ Fg.

Proof. Since fG is a Picard mapping and an admissible perturbation of f we have
that, Ff = {x∗} and from (1),

d(x, x∗) ≤ ψ(d(x, fG(x))), ∀ x ∈ X.
From (2) we have (i).

If we take x = y∗ ∈ Fg, then from (i) and (3),

d(y∗, x∗) ≤ ψ(cd(y∗, f(y∗))) = ψ(cd(g(y∗), f(y∗))) ≤ ψ(cη). �

Example 3.2. Let X := B be a Banach space and G(x, y) := (1 − λ)x + λy, with
λ ∈ R∗+. We suppose that fλ is an l-contraction for some λ ∈ R∗+. Then fλ is 1

1−l -

Picard mapping and d(x, fλ(x)) = ‖x− fλ(x)‖ ≤ |λ|‖x− f(x)‖.
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Let, ‖f(x)− g(x)‖ ≤ η, ∀ x ∈ B. Then by Theorem 3.1 we have that:

‖y∗ − x∗‖ ≤ |λ|
1− l

η, ∀ y∗ ∈ Fg.

Remark 3.3. For the mappings fλ which are contractions or which satisfy other metric
conditions, see Berinde [4] and Berinde-Păcurar [7].

Remark 3.4. With similar proof as the one given for Theorem 3.1, we have the fol-
lowing result.

Theorem 3.5. We suppose that:

(1) fG is a ψ-weakly Picard mapping;
(2) d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X with some c ∈ R∗+;
(3) d(g(x), f(x)) ≤ η, ∀ x ∈ X with some η ∈ R∗+.

Then we have that:

(i) d(x, f∞G (x)) ≤ ψ(cd(x, f(x))), ∀ x ∈ X;

(ii) if x∗ ∈ Ff , then d(y∗, x∗) ≤ ψ(cη), ∀ y∗ ∈ Fg ∩Xx∗ , where X =
⋃

x∗∈Ff

Xx∗ is a

fixed point partition of X corresponding to the retraction f∞G .

3.2. (UH) problem

Let (X, d) be a metric space, f : X → X be a mapping and fG : X → X be an
admissible perturbation of f . For ε ∈ R∗+ we consider the inequation

d(y, f(y)) ≤ ε.

Let y∗ be a solution of this inequation. We suppose that fG is a ψ-weakly Picard
mapping and

d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X, with some c ∈ R∗+.

There exists x∗ ∈ Ff such that y∗ ∈ Xx∗ . For a such x∗ we have that

d(y∗, x∗) ≤ ψ(cε).

So, we have the following result.

Theorem 3.6. In the above conditions the fixed point equation, x = f(x) is Ulam-Hyers
stable.

3.3. (WP ) problem

By standard proof (see [56], [57]) and the above considerations, we have the
following result for this problem.

Theorem 3.7. Let (X, d) be a metric space, f : X → X be a mapping and fG be an
admissible perturbation. We suppose that:

(1) fG is ψ-weakly Picard mapping;
(2) d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X, for some c ∈ R∗+.

Then the fixed point problem for f is well-posed.
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4. Notion of quasicontraction and (OP ) problem

4.1. Quasicontractions

In [8] the following definition is given:
Let (X, d) be a metric space and f : X → X be a mapping with Ff 6= ∅. By

definition f is a quasicontraction if there exists l ∈]0, 1[ such that

d(f(x), x∗) ≤ ld(x, x∗), ∀ x ∈ X, ∀ x∗ ∈ Ff .
It is clear that if f is a quasicontraction then Ff = {x∗}.
If Ff 6= ∅ and r : X → Ff is a set-retraction then we have the following

definition.

Definition 4.1. Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅
and r : X → Ff be a set retraction. Then f is a quasicontraction with respect to the
retraction r if there exists l ∈]0, 1[ such that,

d(f(x), r(x)) ≤ ld(x, r(x)), ∀ x ∈ X.

For example, if f is a weakly Picard mapping then f is a quasicontraction if,

d(f(x), f∞(x)) ≤ ld(x, f∞(x)), ∀ x ∈ X.
For more considerations on quasicontractions, see: [3], [17], [46], [56], [57], [67],

[14], [13].

4.2. (OP ) problem

Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅ and

r : X → Ff be a set retraction. LetX =
⋃

x∗∈Ff

Xx∗ be the partition ofX corresponding

to the retraction r. Let x∗ ∈ Ff and xn ∈ Xx∗ , n ∈ N such that,

d(xn+1, f(xn))→ 0 as n→∞.
Let us suppose that the mapping f is a quasi l-contraction with respect to the retrac-
tion r, i.e.,

d(f(x), x∗) ≤ ld(x, x∗), ∀ x ∈ Xx∗ , ∀ x∗ ∈ Ff .
From this condition we have that,

d(xn+1, x
∗) ≤ d(xn+1, f(xn)) + d(f(xn), x∗)

≤ d(xn+1, f(xn)) + ld(xn, x
∗)

≤ d(xn+1, f(xn)) + ld(xn, f(xn−1)) + l2d(xn−1, x
∗)

...

≤ d(xn+1, f(xn)) + ld(xn, f(xn−1)) + . . .+ lnd(x1, f(x0))→ 0,

as n→∞, from a Cauchy-Toeplitz lemma [63].
So we have,

Theorem 4.2. Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅
and r : X → Ff be a set retraction. We suppose that f is a quasicontraction with
respect to the retraction r. Then the mapping f has the Ostrowski property.
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For example let fG be an admissible perturbation of f . If fG is a weakly Pi-
card mapping and the mapping f is a quasicontraction with respect to f∞G , then the
mapping f has the Ostrowski property with respect to f∞G .

5. Research directions

5.1. To give relevant examples of iterative fixed point algorithms which generate
retractions on a fixed point set.

References: [3], [10], [12], [17], [28], [31], [35], [45], [53], [58], [66], [65], [11].

5.2. To give relevant examples of quasicontractions with respect to retractions defined
by iterative algorithms.

For theoretical and applicative point of view, from the considerations of this
article, the following problems arise:

To give similar results for:

5.3. Zero point equations
References: [16], [43], [19], [3], [35], [55].

5.4. Coincidence point equations
References: [15], [55], [60].

5.5. Equations with nonself mappings
References: [6], [9], [18], [35], [54], [55], [61].

5.6. Equations in Rm+ -metric spaces
References: [35], [47], [61], [48], [56], [63], [27], [34].

5.7. Equations in s(R+)-metric spaces
References: [68], [56], [57], [61], [63], [27].

5.8. Equations in dislocated metric spaces
References: [31], [51], [24], [25], [29], [2], [1], [5].

5.9. Equations in a set with two metrics
References: [48], [61], [49], [24], [47].

5.10. Equations in a set with an order relation and a metric
References: [41] and the references therein.

5.11. Equations with multivalued mappings
References: [40], [44], [61], [55], [62], [14], [30].
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[8] Berinde, V., Petruşel, A., Rus, I.A., Remarks on the terminology of the mappings in fixed
point iterative methods in metric spaces, Fixed Point Theory, 24(2023), no. 2, 525-540.
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