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A strong convergence algorithm for
approximating a common solution of variational
inequality and fixed point problems in real
Hilbert space

Olawale K. Oyewole,
Akindele A. Mebawondu and Oluwatosin T. Mewomo

Abstract. In this paper, we propose an iterative algorithm for approximating a
common solution of a variational inequality and fixed point problem. The algo-
rithm combines the subgradient extragradient technique, inertial method and a
modified viscosity approach. Using this algorithm, we state and prove a strong
convergence algorithm for obtaining a common solution of a pseudomonotone
variational inequality problem and fixed point of an η-demimetric mapping in a
real Hilbert space. We give an application of this result to some theoretical opti-
mization problems. Furthermore, we report some numerical examples to show the
efficiency of our method by comparing with previous methods in the literature.
Our result extend, improve and unify many other results in this direction in the
literature.
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1. Introduction

In this paper, we consider the Variational Inequality Problem (VIP) which con-
sists of finding a point x∗ ∈ K such that

〈Fx∗, x− x∗〉 ≥ 0, ∀ x ∈ K, (1.1)
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whereK is a nonempty, closed and convex subset of a real Hilbert spaceH, F : H → H
is a nonlinear single-valued mapping, 〈·, ·〉 respectively ‖ · ‖ are inner products and
norm defined on H. We denote by V IP (K,F ), the set of solutions of the VIP (1.1). A
wide range of problems in science and engineering, optimization theory, equilibrium
theory and differentiation equation leads to the study of the variational inequality
problems. For this reason, there have been several researches into the study of iterative
algorithms for approximating the solutions of VIP and related optimization problems,
(see [1, 2, 4, 6, 30, 45, 48, 51, 50, 52]).
One of the simplest and earliest known method for solving VIP is the gradient pro-
jection method as a result of a fixed point formulation which involves the metric
projection. The method is given as

xk+1 = PK(xk − λFxk), x1 ∈ K, k ≥ 1,

where PK is the metric projection of H onto K and λ ∈ (0, 1/L) with L the Lipschitz
constant of the cost operator F. For the convergence of this method, it is required
that the operator F is strongly monotone (see [22, 23, 21, 31]).
Another method for solving the VIP is the so-called Extragradient Method (EGM)
initially proposed by Korpelevich for solving the saddle points problem (see also,
Antipin [7]). For solving the VIP, the EGM is given as follows: x1 ∈ K{

yk = PK(xk − λFxk),

xk+1 = PK(xk − λFyk). k ≥ 1
(1.2)

The EGM (1.2) requires executing projection onto feasible set K twice per iteration.
Considerable efforts have been made to modify and improve this method, one of which
is to reduce the projection from two to one onto feasible sets. In particular, one of
such modifications is the Subgradient Extragradient Method (SEGM) by Censor et.
al (see [14, 15]). In this method, the second projection of the extragradient method
was replaced by a projection onto a half-space whose formula can be easily executed.
The SEGM is given as follows: x1 ∈ K :

yk = PK(xk − λFxk),

Tk = {x ∈ H : 〈xk − λFxk − yk, x− yk〉 ≤ 0},
xk+1 = PTk

(xk − λFyk), k ≥ 1

(1.3)

Another drawback of the EGM is the dependence of the constant λ on the Lipschitz
constant of the associated cost operator. For this reason, many authors have proposed
several methods which avoid the prior knowledge or use of the Lipschitz constant. One
of such is the use of well defined linesearch rule (see [11]) and the references therein.
One other popular method for avoiding the use of Lipschitz constant is to construct
an adaptable step size (see, [51, 52]) for more.
On the other hand, the Fixed Point Problem (FPP) consists of finding a point x∗ ∈ K
such that

x∗ = Sx∗, (1.4)

where K is a nonempty, closed and convex subset of a real Hilbert space H and
S : K → K is a nonlinear mapping. We denote by Fix(S), the fixed point set



A strong convergence algorithm 185

of a mapping S. The FPP finds application in proving the existence of solution of
many nonlinear problems arising in many real life problems. From the existence of
solution of differential equation to integral equations and evolutionary equations. The
approximation of fixed points of several nonlinear operators in Hilbert, Banach and
Hadamard spaces have been considered in the literature (see [18, 20, 26, 36, 53]).
In this paper, we consider the problem of finding a common solution of the VIP (1.1)
and FPP (1.4). That is, finding a point x∗ ∈ K such that

x∗ ∈ V IP (K,F ) ∩ Fix(S). (1.5)

The problem (1.5) has many real life applications which include signal recovery prob-
lems, beam-forming problems, power-control problems, bandwith allocation problems
and optimal control problems (see [25, 43] and the references therein).
For obtaining a solution of (1.5) in the case where F : H → H is inverse strongly
monotone and S : K → K is nonexpansive, Takahashi and Toyoda [49] introduced an
algorithm whose sequence {xk} is generated by the following recursive formula:{

yk = PK(xk − λFxk),

xk+1 = (1− αk)xk + αkSyk,
(1.6)

where PK is the metric projection of H onto K and {αk} is a sequence in (0, 1)
satisfying some conditions.
Kraikaew and Saejung [34], for solving problem (1.5) combined the SEGM and
Halpern method to propose an algorithm they called the Halpern Subgradient Extra-
gradient Method (HSEGM). The HSEGM is given as

x1 ∈ H,
yk = PK(xk − λFxk),

Tk = {x ∈ H : 〈xk − λFxk − yk, x− yk〉 ≤ 0},
zk = αkx1 + (1− αk)PTk

(xk − λFyk),

xk+1 = βkxk + (1− βk)Szk,

(1.7)

where λ ∈ (0, 1/L), αk ⊂ (0, 1) satisfying lim
k→∞

αk = 0,
∞∑
k=1

αk = ∞, {βk} ⊂ [a, b] ⊂

(0, 1) and S : H → H is a quasi-nonexpansive mapping.
Recently, Thong and Hieu [50] introduced two viscosity-extragradient algorithms for
approximating (1.5), where S : H → H is a η-demicontractive mapping and F : H →
H is a L-Lipschitz monotone operator. The strong convergence of both algorithms
were established under some mild conditions. One of these algorithms is presented as
follows:

Algorithm 1.1. [50, Algorithm 3.1], Viscosity-type Subgradient Extragradient Method
(VSEM)
Initialization: Choose λ0 > 0, µ ∈ (0, 1), and let x0 ∈ K be an arbitrary starting point.
Iterative steps: Calculate xk+1 as follows:

Step 1: Compute

yk = PK(xk − λkFxk).



186 O.K. Oyewole, A.A. Mebawondu and O.T. Mewomo

Step 2: Compute

zk = PTk
(xk − λkFyk),

where

Tk = {w ∈ H : 〈xk − λkFxk − yk, w − yk〉 ≤ 0}.

Step 3: Compute {
vk = (1− βk)zk + βkSzk,

xn+1 = αkf(xk) + (1− αk)vk

and

λk+1 =

{
min{ µ‖wk−yk‖

‖Fwk−Fyk‖ , λk} if Fwk − Fyk 6= 0,

λk, otherwise.

Stopping criterion Set k := k + 1 and return to Step 1.

To speed up the convergence of iterative algorithm, the inertial technique has been
widely employed (see [3, 8, 16, 38, 39, 47]). Inertial algorithms for variational inequal-
ity and other optimization problems have received due consideration by authors, see,
e,g [51]. Very recently, Thong et al. [51] proposed the following inertial subgradient
method:

Algorithm 1.2. Inertial subgradient algorithm for VIP
Initialization: Choose λ1 > 0, µ ∈ (0, 1), θ > 0 and let x0, x1 ∈ K be an arbitrary
starting point.
Iterative steps: Calculate xk+1 as follows:

Step 1: Given xk, xk−1, k ≥ 1. Set

wk = xk + θk(xk − xk−1),

where

θk =

min

{
1

k2‖xk − xk−1‖2
, θ

}
if xk 6= xk−1,

θ otherwise.

Step 2: Calculate

yk = PK(wk − λkFwk).

If yk = wk or Fyk = 0 then stop (yk is the solution of the VIP (1.1) ). Otherwise
go to Step 3.

Step 3: Compute

zk = PTk
(wk − λkFyk),

where

Tk = {w ∈ H : 〈wk − λkFwk − yk, w − yk〉 ≤ 0}.
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Step 4 Compute

xk+1 = αkf(zk) + (1− αk)zk.

Update

λk+1 =

{
min

{
µ‖wk−yk‖
‖Fwk−Fyk‖ , λk

}
if Fwk − Fyk 6= 0,

λk, otherwise.

Set k := k + 1 and return to Step1.

In this paper, motivated by the works of Attouch and Alvarez [8], Censor et al. [14]
and [51], we proposed an inertial self adaptive subgradient extragradient algorithm
for approximating a solution of VIP and FPP in real Hilbert space. Combining this
method with a modified viscosity approach, we proved a strong convergence theorem
for approximating the solution of a pseudomonotone VIP and FPP for η-demimetric
mapping. The following highlight some of the advantages of our method and work
over previous ones in the literature.

(i) Unlike the work of Gang et al. [11] where the linesearch rule (a linesearch means
that at each outer iteration, an inner loop is executed until some finite stopping
criterion is reached which can be time consuming) was employed, we used a
carefully chosen self adaptive step size.

(ii) Also, by using self adaptive step size, our work does not depend on the prior
knowledge of the Lipschitz constant in practice which makes the execution of
the algorithm easy for computation.

(iii) Our algorithm is used for approximating a common solution of a VIP for pseu-
domonotone operator and a fixed point of an η-demimetric mapping thus includ-
ing the work of [51] as a special consideration.

(iv) We employed an inertial technique to speed up the convergence rate of the
sequence generated by our method. Our numerical experiments confirm that our
method perform better than some existing methods in literature.

The paper is organized as follows: In Section 2, we present some preliminary results
and definitions that are useful in establishing our main result. We present the main
result in Section 3, by first introducing our algorithm and then establishing the strong
convergence of the sequence generated by this algorithm. In Section 4, we give two
theoretical applications of our main result. We reported some numerical experiments
in Section 5 to demonstrate the performance of our method as well as comparing it
with some related methods in the literature. Finally, in Section 6, we gave a conclusion
of the paper.

2. Preliminaries

Throughout this paper, we denote the set of positive integers and the set of
real numbers by N and R respectively. Let H be a real Hilbert space with the inner
product 〈·, ·〉 and the norm given by ‖ · ‖ respectively. For a sequence {xk} ⊂ H, we
denote the weak and strong convergence of {xk} to a point x ∈ H by xk ⇀ x and
xk → x respectively.
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Let K be a nonempty, closed and convex subset of a real Hilbert space H. A mapping
S : K → K is said to be:

(i) L-Lipschitz with a constant L > 0, if

‖Sx− Sy‖ ≤ L‖x− y‖, ∀ x, y ∈ H;

(ii) a contraction respectively nonexpansive if L ∈ (0, 1) respectively L = 1;
(iii) firmly nonexpansive, if

〈Sx− Sy, x− y〉 ≥ ‖Sx− Sy‖2, ∀ x, y ∈ H;

(iv) quasi-nonexpansive, if Fix(S) 6= ∅ and

‖Sx− Sx∗‖ ≤ ‖x− x∗‖,
for any x ∈ H and x∗ ∈ Fix(S);

(v) k-strictly pseudocontractive in the sense of Browder and Petryshyn [9], if there
exists k ∈ [0, 1), such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k‖x− y − (Sx− Sy)‖2, ∀ x, y ∈ H;

(vi) [41]. η-demimetric with η ∈ (−∞, 1) , if Fix(S) 6= ∅ and

〈x− x∗, x− Sx〉 ≥ 1

2
(1− η)‖x− Sx‖2, for any x ∈ K and x∗ ∈ Fix(S).

Equivalently, S is η-demimetric, if there exists η ∈ (−∞, 1) such that

||Sx− x∗||2 ≤ ||x− x∗||2 + η||x− Tx||2, ∀x ∈ H and x∗ ∈ Fix(S).

Remark 2.1. [41]. The class η-demimetric mappings covers the class of strictly pseudo-
contractive mappings with nonempty fixed points and many other important nonlinear
mappings.

For each x, y ∈ H and t ∈ (0, 1), it is known that

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉
and

||tx+ (1− t)y||2 = t||x||2 + (1− t)||y||2 − t(1− t)||x− y||2, (see, [28, 37]).

Let K be a nonempty, closed and convex subset of a real Hilbert space H. For every
point x ∈ H, there exists a unique nearest point PKx ∈ K, such that

||x− PKx|| ≤ ||x− y||, ∀ y ∈ K.
PK is called the metric projection (also nearest point mapping) of H onto K, see
[17, 29].

Lemma 2.2. [40]. Let K be a nonempty, closed and convex subset of a real Hilbert
space H. Given x ∈ H and z ∈ K. Then

z = PKx ⇐⇒ 〈x− z, z − y〉 ≥ 0, ∀ y ∈ K.

Lemma 2.3. [32, 40]. Let K be be a nonempty, closed and convex subset of a real
Hilbert space H. Given x ∈ H, then

(a) ‖PKx− PKy‖ ≤ 〈PKx− PKy, x− y〉, ∀ y ∈ K;
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(b) ‖x− y‖ − ‖x− PKx‖ ≥ ‖PKx− y‖;
(c) ‖(I − PK)x− (I − PK)y‖2 ≤ 〈(I − PK)x− (I − PK)y, x− y〉, ∀ y ∈ K.

Lemma 2.4. [32, Lemma 2.1]. Consider V IP (K,F ) (1.1) with K being a nonempty,
closed and convex subset of a real Hilbert space H and F : K → H being a pseu-
domonotone and continuous operator. Then x∗ ∈ V IP (K,F ) if and only if

〈Fx, x− x∗〉 ≥ 0, ∀ x ∈ K.

Lemma 2.5. [9]. Let H be a real Hilbert space and S : H → H be a η-demimetric
mapping with (−∞, 1) such that F (S) 6= ∅. Sηx := (1 − η)x + ηSx. Then, Sη is a
quasi-nonexpansive mapping and F (Sη) = F (S).

Lemma 2.6. [49]. Let {αk} be a sequence of nonnegative real numbers satisfying

αk+1 ≤ (1− γk)αk + δk,

where {γk} is a sequence in (0,1) and δk is a sequence such that

(i)
∞∑
k=1

γk =∞ and lim
k→∞

γk = 0;

(ii)
∞∑
k=1

|δk| <∞ and lim
k→∞

δk
γk
≤ 0.

Then αk → 0 as k →∞.

Lemma 2.7. [42, 46] Let {Υk} be a sequence of real numbers that does not decrease
at infinity, in the sense that there exists a subsequence {Υkj} of {Υk} such that
Υkj < Υkj+1 for all j ≥ 0. Also consider the sequence of integers {τ(k)}k≥k0 defined
by

τ(k) = max{n ≤ k : Υk < Υk+1}.
Then, {τ(k)}k≥k0 is a nondecreasing sequence verifying lim

k→∞
τ(k) = ∞ and, for all

k ≥ k0,

max{Υτ(k),Υk} ≤ Υτ(k)+1.

3. Main result

In this section, we present our main result of this paper.
For the convergence of our method, we assume the following conditions:

Assumption 3.1.

(C1) The feasible set K is nonempty, closed and convex on H.
(C2) The mapping F : H → H is pseudomonotone, L-Lipschitz continuous on H and

sequentially weakly continuous on K.
(C3) The solution set Γ = V IP (K,F )∩Fix(S) is nonempty, where S : H → H is an

η-demimetric mapping.

In addition to this, we assume that {τk} as used in Algorithm 3.2 is a positive sequence

such that lim
k→∞

τk
αk

= 0 (that is τk = ◦(αk)), where {αk} ⊂ (0, 1) such that
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(C4) lim
k→∞

αk = 0 and
∞∑
k=1

αk =∞,

(C5) αk + βk + γk = 1.

Algorithm 3.2. Iterative Algorithm
Initialization: Let f : K → K be a κ-contractive mapping. Choose λ1 > 0, ηk ⊂ (0, 1),
µ ∈ (0, 1), θ > 0 and let x0, x1 ∈ K be an arbitrary starting point.
Iterative steps: Given xk, xk−1, choose θk such that 0 ≤ θk ≤ θ̄k, where

θ̄k =

min

{
θ,

τk
‖xk − xk−1‖

}
if xk 6= xk−1,

θ, otherwise.
(3.1)

Calculate xk+1 and λk for each k ≥ 1 as follows:

Step 1: Compute

wk = xk + θk(xk − xk−1). (3.2)

Step : Calculate

yk = PK(wk − λkFwk). (3.3)

Step 2: Compute

zk = PTk
(wk − λkFyk), (3.4)

where

Tk = {w ∈ H : 〈wk − λkFwk − yk, w − yk〉 ≤ 0}.
Step 3: We obtain xk+1 by

xk+1 = αkf(xk) + βkxk + γkSηkzk (3.5)

and

λk+1 =

{
min

{
µ‖wk−yk‖
‖Fwk−Fyk‖ , λk

}
if Fwk − Fyk 6= 0,

λk, otherwise.

Stopping criterion If xk+1 = wk = yk = Szk for some k ≥ 1 then stop. Otherwise set
k := k + 1 and return to Iterative step.

The following result was stated and proved in [52]. It is easy to adapt for our situation.
We state the lemma without proof.

Lemma 3.3. [52]. The sequence {λk} defined in Algorithm 3.2 is a nonincreasing
sequence and

lim
k→∞

λk = λ ≥ min
{
λ1,

µ

L

}
.

The following is required for establishing the solution of the VIP (1.1).

Lemma 3.4. Assume that Assumption 3.1 hold and {wk} is a sequence generated by
Algorithm 3.2. If there exists a subsequence {wkj} of {wk} convergent weakly to a
point x̄ ∈ H and lim

j→∞
‖wkj − ykj‖ = 0, then x̄ ∈ V IP (K,F ).
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Proof. First we show that lim inf
j→∞

〈Fykj , z−ykj 〉 ≥ 0. Indeed, we have by the definition

of {yk} and Lemma 2.2, that

〈wkj − λkjFwkj − ykj , z − ykj 〉 ≤ 0, ∀ z ∈ K,

which implies

1

λkj
〈wkj − ykj , z − ykj 〉 ≤ 〈Fwkj , z − ykj 〉 ∀ z ∈ K.

Consequence of this, we get that

1

λkj
〈wkj − ykj 〉+ 〈Fwkj , ykj − wkj 〉 ≤ 〈Fwkj , z − wkj 〉, ∀ z ∈ K. (3.6)

Since {wkj} is convergent, it is bounded. Then, since F is Lipschitz continuous,
{Fwkj} is bounded. We obtain also that {ykj} is bounded since ‖wkj − ykj‖ → 0

as j →∞ and λkj ≥ min
{
λ1,

µ

L

}
. Passing limit over (3.6) as j →∞, we obtain

lim inf
j→∞

〈Fwkj , z − wkj 〉 ≥ 0.

Observe that

〈Fwkj , z − ykj 〉 = 〈Fykj − Fwkj , z − ykj 〉+ 〈Fykj , z − wkj 〉+ 〈Fykj , wkj − ykj 〉.
(3.7)

We obtain from lim
j→∞

‖wkj − ykj‖ = 0 and the Lipschitz continuity of F , that

lim
j→∞

‖Fwkj − Fykj‖ = 0. Thus, we get from (3.7), that

lim inf
j→∞

〈Fykj , z − ykj 〉 ≥ 0.

Next we show that x̄ ∈ V IP (K,F ). We choose a subsequence {εj} of positive numbers
decreasing such that εj → 0 as j →∞. For each j, let Nj be the smallest nonnegative
integer such that

〈Fyki , z − yki〉+ εj ≥ 0, ∀ i ≥ Nj . (3.8)

Since {εj} is decreasing, it is obvious that Nj is increasing. Further, for each j ∈ N,
{yNj} ⊂ K. Suppose FyNj 6= 0 so that yNj is not a solution of the V IP (K,F ), set

νNj
=

FyNj

‖FyNj
‖2
,

so that 〈FyNj
, νNj
〉 = 1 for each j. We see from this and (3.8), that

〈FyNj
, z + εjνNj

− yNj
〉 ≥ 0.

Since F is pseudomonotone on H, we have

F (z + εjνNj
), z + εjνNj

− yNj
〉 ≥ 0

and thus

〈Fz, z − yNj
〉 ≥ 〈Fz − F (z + εjνNj

), z + εjνNj
− yNj

〉 − εj〈Fz, νNj
〉. (3.9)
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Now, we show that εjνNj
→ 0 as j →∞. To see this, from the hypothesis we get that

yNj
⇀ x̄ as j →∞. By {yk} ⊂ K, we have that x̄ ∈ K. Since F is sequentially weakly

continuous on K, we have FyNj
⇀ Fx̄. Suppose that Fx̄ 6= 0 so that x̄ ∈ V IP (K,F ).

Since ‖ · ‖ is sequentially weakly continuous, we have

0 < ‖Fx̄‖ ≤ lim inf
j→∞

‖FyNj
‖.

From {yNj
} ⊂ {ykj} and εj → 0 as j →∞, we have

0 ≤ lim
j→∞

‖εjνNj‖ = lim
j→∞

(
εj

‖Fykj‖

)
≤ 0

‖Fx̄‖
= 0,

which shows that εjνNj
→ 0. Now letting j → ∞, we obtain by the continuity of

F that the right hand side of (3.9) tends to zero, {wNj
}, {νNj

} are bounded and
lim
j→∞

εjνNj
= 0. Therefore,

lim inf
j→∞

〈Fz, z − yNj
〉 ≥ 0.

Hence for all z ∈ K, we have

〈Fz, z − x̄〉 = lim
j→∞
〈Fz, z − yNj 〉 = lim inf

j→∞
〈Fz, z − yNj 〉 ≥ 0.

By Lemma 2.4 we have x̄ ∈ V IP (K,F ). The proof is thus complete.

Lemma 3.5. Let {zk} be given as in Algorithm 3.2 and x∗ ∈ Γ, then there holds the
inequality

‖zk − x∗‖2 ≤ ‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]. (3.10)

Proof. Using Lemma 2.3 and (3.4), we have

‖zk − x∗‖2 = ‖PTk
(wk − λkFyk)− x∗‖2

≤ ‖wk − λkFyk − x∗‖2 − ‖wk − λkFyk − zk‖2

= ‖wk − x∗‖2 − 2λk〈wk − x∗, Fyk〉 − ‖wk − zk‖2 + 2λk〈wk − zk, Fyk〉
= ‖wk − x∗‖2 − ‖wk − zk‖2 − 2λk〈zk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − zk‖2 − 2λk〈zk − yk, Fyk〉 − 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk + yk − zk‖2

− 2λk〈zk − yk, Fyk〉 − 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2 + 〈zk − yk, wk − yk〉
− 2λk〈zk − yk, Fyk〉 − 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2λk〈yk − zk, wk − λkFyk − y − k〉 − 2λk〈yk − x∗, Fyk〉
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= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉+ 2λk〈zk − yk, Fwk − Fyk〉
− 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉+ 2λk‖zk − yk‖‖Fwk − Fyk‖
− 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉+ 2
λk
λk+1

‖zk − yk‖‖Fwk − Fyk‖

− 2λk〈yk − x∗, Fyk〉
≤ ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉 − 2λk〈yk − x∗, Fyk〉

+
λk
λk+1

(‖zk − yk‖2 + ‖Fwk − Fyk‖2)

= ‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]

− 2〈yk − zk, wk − λkFwk − yk〉 − 2λk〈yk − x∗, Fyk〉. (3.11)

Since x∗ ∈ Γ, yk ∈ K and the fact that F is pseudomonotone we have that

〈yk − x∗, Fx∗〉 ≥ 0

which implies

〈yk − x∗, Fyk〉 ≥ 0.

Also from zk ∈ Tk, we get that

〈yk − zk, wk − λkFwk − yk〉 ≥ 0.

Therefore, we obtain from (3.11) that

‖zk − x∗‖2 ≤ ‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2], (3.12)

as required.

Lemma 3.6. The sequence {xk} generated by Algorithm 3.2 is bounded.

Proof. From x∗ ∈ Γ and (3.2), we have

‖wk − x∗‖‖xk + θk(xk − xk−1)− x∗‖
≤ ‖xk − x∗‖+ θk‖xk − xk−1‖

= ‖xk − x∗‖+ αk ·
θk
αk
‖xk − xk−1‖.



194 O.K. Oyewole, A.A. Mebawondu and O.T. Mewomo

Since
θk
αk
‖xk − xk−1‖ → 0, there exists M1 > 0 such that

θk
αk
‖xk − xk−1‖ ≤M1, k ≥ 1,

hence

‖wk − x∗‖ ≤ ‖xk − x∗‖+ αkM1.

It is easy to see from Lemma 3.5, that

‖zk − x∗‖ ≤ ‖wk − x∗‖ ≤ ‖xk − x∗‖+ αkM1.

Furthermore, from (3.5), we have

‖xk+1 − x∗‖ = ‖αkf(xk) + βkxk + γkSηkzk − x∗‖
≤ αk‖f(xk)− x∗‖+ βk‖xk − x∗‖+ γk‖Sηkzk − x∗‖
≤ αk‖f(xk)− f(x∗)‖+ αk‖f(x∗)− x∗‖+ βk‖xk − x∗‖+ γk‖zk − x∗‖
≤ αkκ‖xk − x∗‖+ βk‖xk − x∗‖
+ αk‖f(x∗)− x∗‖+ γk(‖xk − x∗‖+ αkM1)

= αkκ‖xk − x∗‖+ βk‖xk − x∗‖
+ αk‖f(x∗)− x∗‖+ γk‖xk − x∗‖+ γkαkM1

= αkκ‖xk − x∗‖+ (1− αk)‖xk − x∗‖+ αk‖f(x∗)− x∗‖+ γkαkM1

= [1− αk(1− κ)]‖xk − x∗‖+ αk‖f(x∗)− x∗‖+ γkαkM1

≤ max

{
‖xk − x∗‖,

‖f(x∗)− x∗‖+ θkαkM1

1− κ

}
≤

...

≤ max

{
‖x0 − x∗‖,

‖f(x∗)− x∗‖+ θkαkM1

1− κ

}
, ∀ k ≥ 1. (3.13)

Therefore the sequence {xk} is bounded. Consequently, the sequences {zk}, {yk} and
{Szk} are bounded.

Lemma 3.7. Let {xk} be the sequence generated by Algorithm 3.2. Then, for x∗ ∈ Γ,
it holds that

‖xk+1 − x∗‖2 ≤
(

1− 2αk(1− κ)

(1− αkκ)

)
‖xk − x∗‖2

+
2αk(1− κ)

(1− αkκ)

(
αk

1− κ
‖xk − x∗‖2 +

1

1− κ
〈f(x∗)− x∗, xk+1 − x∗〉

+
θkγk

αk(1− κ)
‖xk − x∗‖‖xk − xk−1‖+

θ2
k

2αk(1− κ)
‖xk − xk−1‖2

)
.

(3.14)
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Proof. From (3.5) and x∗ ∈ Γ, we have

‖xk+1 − x∗‖2 ≤ ‖αkf(xk) + βkxk + γkSηkzk − x∗‖
≤ ‖βk(xk − x∗) + γk(Sηkzk − x∗)‖2 + 2αk〈f(xk)− x∗, xk+1 − x∗〉
≤ ‖βk(xk − x∗) + γk(zk − x∗)‖2 + 2αk〈f(xk)− x∗, xk+1 − x∗〉
≤ ‖βk(xk − x∗) + γk(wk − x∗)‖2 + 2αk〈f(xk)− x∗, xk+1 − x∗〉
≤ [βk‖xk − x∗‖+ γk(‖xk − x∗‖+ θk‖xk − xk−1‖)]2

+ 2αk〈f(xk)− f(x∗), xk+1 − x∗〉
+ 2αk〈f(x∗)− x∗, xk+1 − x∗〉
≤ [βk‖xk − x∗‖+ γk‖xk − x∗‖+ γkθk‖xk − xk−1‖]2

+ 2αkκ‖xk − x∗‖+ ‖xk+1 − x∗‖
+ 2αk〈f(x∗)− x∗, xk+1 − x∗〉
≤ [(1− αk)‖xk − x∗‖+ θkγk‖xk − xk−1‖]2

+ αkκ(‖xk − x∗‖2 + ‖xk+1 − x∗‖)
+ 2αk〈f(x∗)− x∗, xk+1 − x∗〉
≤ (1− αk)2‖xk − x∗‖2 + 2θkγk(1− αk)‖xk − x∗‖‖xk − xk−1‖
+ γkθk‖xk − xk−1‖2

+ αkκ(‖xk − x∗‖2 + ‖xk+1 − x∗‖) + 2αk〈f(x∗)− x∗, xk+1 − x∗〉,

this implies that

‖xk+1 − x∗‖2 ≤
(1− αk)2 + αkκ

1− αkκ
‖xk − x∗‖2

+
2αk

1− αkκ
〈f(x∗)− x∗, xk+1 − x∗〉+

θk
1− αkκ

‖xk − xk−1‖2

+
2γkθk

1− αkκ
‖xk − x∗‖‖xk − xk−1‖

=
1− 2αk + αkκ

1− αkκ
‖xk − x∗‖2

+
α2
k

1− αkκ
‖xk − x∗‖2 +

2αk
1− αkκ

〈f(x∗)− x∗, xk+1 − x∗〉

+
θk

1− αkκ
‖xk − xk−1‖2 +

2γkθk
1− αkκ

‖xk − x∗‖‖xk − xk−1‖

=

(
1− 2αk(1− κ)

1− αkκ

)
‖xk − x∗‖2

+
2α2

k(1− κ)

2(1− αkκ)(1− κ)
‖xk − x∗‖2 +

2θ2
k(1− κ)

2(1− αkκ)(1− κ)
‖xk − xk−1‖2

+
2αk(1− κ)

(1− αkκ)(1− κ)
〈f(x∗)− x∗, xk+1 − x∗〉
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+
2θkγk(1− κ)

(1− αk)(1− κ)
‖xk − x∗‖‖xk − xk−1‖

=

(
1− 2αk(1− κ)

1− αkκ

)
‖xk − x∗‖2

+
2αk(1− κ)

(1− αkκ)

(
αk

2(1− κ)
‖xk − x∗‖2 +

θ2
k

αk(1− κ)
‖xk − xk−1‖2

+
θkγk

αk(1− κ)
‖xk − x∗‖‖xk − xk−1‖+

1

(1− κ)
〈f(x∗)− x∗, xk+1 − x∗〉

)
. (3.15)

Theorem 3.8. Assume that condition C1−C5 hold. Then the sequence {xk} generated
by Algorithm 3.2 converges to a common solution x∗ ∈ Γ, which is also a unique
solution of the variational inequality

〈f(x∗)− x∗, x∗ − x̄〉 ≥ 0, ∀ x̄ ∈ Γ.

Proof. Let x∗ ∈ Γ, the proof of this theorem is divided into two cases.
Case I: Suppose there exists k0 ∈ N such that ‖{xk − x∗‖} is monotonically non-
increasing. Then, by Lemma 3.6, it follows that ‖{xk−x∗‖} is a convergent sequence
and thus

‖xk−1 − x∗‖2 − ‖xk − x∗‖2 → 0 as k →∞.
Consider

‖wk − x∗‖2 = ‖xk − x∗ + θk(xk − xk−1)‖2

= ‖xk − x∗‖2 + 2θk〈xk − x∗, xk − xk−1〉+ θ2
k‖xk − xk−1‖2

≤ ‖xk − x∗‖+ θk‖xk − xk−1‖(2‖xk − x∗‖+ θk‖xk − xk−1‖). (3.16)

From (3.5) and Lemma 3.10, we have

‖xk+1 − x∗‖2 ≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖Sηkzk − x∗‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖zk − x∗‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2

+ γk(‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2])

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖xk − x∗‖2

+
γkθkαk
αk

‖xk − xk−1‖(2‖xk − x∗‖+ θk‖xk − xk−1‖)

− γk
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]

= αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2

+
γkθkαk
αk

‖xk − xk−1‖(2‖xk − x∗‖+ θk‖xk − xk−1‖)

− γk
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]), (3.17)
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which implies

γk

(
1− λk

λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2] ≤ αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2

− ‖xk+1 − xk‖2

+
γkθkαk
αk

‖xk − xk−1‖(2‖xk − x∗‖

+ θk‖xk − xk−1‖)→ 0 as k →∞. (3.18)

Therefore, we obtain from the definition of λk, that

lim
k→∞

‖wk − yk‖ = 0 = lim
k→∞

‖yk − zk‖. (3.19)

Note also that

‖wk − xk‖ = θk‖xk − xk−1‖ = αk ·
θk
αk
‖xk − xk−1‖ → 0 as k →∞. (3.20)

It is easy to see from above that

lim
k→∞

‖yk − xk‖ = 0 = lim
k→∞

‖zk − xk‖. (3.21)

Next we show that ‖Szk− zk‖ → 0 as k →∞. From the definition of Sηk and x∗ ∈ Γ,
we have

‖Sηkzk − x∗‖2‖(1− ηk)(zk − x∗) + ηk(Szk − x∗)‖2

(1− ηk)‖zk − x∗‖2 + ηk‖Szk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2

≤ (1− ηk)‖zk − x∗‖2 + ηk‖zk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2

= ‖zk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2,
which implies from Lemma 3.10, that

‖Sηkzk − x∗‖2 ≤ ‖wk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2.
Using this in (3.5), we get

‖xk+1 − x∗‖2 ≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖Sηkzk − x∗‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2

+ γk(‖wk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2)

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2

+ γk‖wk − x∗‖2 − ηk(1− ηk)γk‖Szk − zk‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖xk − x∗‖2

+ γkθk‖xk − xk−1‖(2‖xk − x∗‖‖xk − xk−1‖)
− ηk(1− ηk)γk‖Szk − zk‖2

≤ αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2

+ γkθk‖xk − xk−1‖(2‖xk − x∗‖‖xk − xk−1‖)
− ηk(1− ηk)γk‖Szk − zk‖2. (3.22)
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We obtain from this that

ηk(1− ηk)γk‖Szk − zk‖2 ≤ αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

+
γkθk
αk
‖xk−xk−1‖(2‖xk−x∗‖‖xk−xk−1‖)→ 0 as k →∞,

hence

lim
k→∞

‖Szk − zk‖ = 0. (3.23)

It is not difficult to obtain from this, that

lim
k→∞

‖Sηkzk − zk‖ = 0. (3.24)

Observe that

‖xk+1 − x∗‖2 ≤ αk‖f(xk)− zk‖2 + βk‖xk − zk‖2 + γk‖Sηkzk − zk‖2, (3.25)

thus, we have from (3.21), (3.24) and condition (i), that

‖xk+1 − zk‖ → 0 as k →∞.

Using this and (3.21), we obtain

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

(‖xk+1 − zk‖+ ‖zk − xk‖) = 0. (3.26)

By the conclusion of Lemma 3.6, there exists a subsequence {xkj} of {xk} such that
{xkj} converge weakly to x̄ ∈ H satisfying

lim sup
k→∞

〈f(x∗)− x∗, xk − x∗〉 = lim
j→∞
〈f(x∗)− x∗, xkj − x∗〉. (3.27)

By (3.19) and Lemma 3.5, we obtain x̄ ∈ V IP (F,K). Also from (3.23), (3.24) and
Lemma 2.5, we have x̄ ∈ F (Sηk) = F (S). Hence x∗ ∈ Γ. It is clear that PΓf is a
contraction. Using Banach’s principle of contraction, PΓf has a unique fixed point,
say x∗ ∈ H. That is x∗ = PΓf(x∗). It follows from Lemma 2.2, that

〈f(x∗)− x∗, x̄− x∗〉 ≤ 0. (3.28)

Thus, we have that

lim sup
k→∞

〈f(x∗)− x∗, xk − x∗〉 = lim
j→∞
〈f(x∗)− x∗, xkj − x∗〉

〈f(x∗)− x∗, x̄− x∗〉 ≤ 0. (3.29)

Hence by (3.26) and (3.29), we have

lim sup
k→∞

〈f(x∗)− x∗, xk+1 − x∗〉 ≤ lim sup
k→∞

〈f(x∗)− x∗, xk+1 − xk〉

+ lim sup
k→∞

〈f(x∗)− x∗, xk − x∗〉 ≤ 0. (3.30)

By applying Lemma 2.6, Lemma 3.7, and (3.30), we have xk → 0 as k →∞.
Case II: There exists a subsequence {‖xkj − x∗‖} of {‖xk − x∗‖} such that

‖xkj − x∗‖2 ≤ ‖xkj+1 − x∗‖2
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for all j ∈ N. By Lemma 2.7, there exists a nondecreasing sequence {mn} of N such
that lim

n→∞
mn =∞ and there hold

‖xmn
−x∗‖2 ≤ ‖xmn+1−x∗‖2 and ‖xk−x∗‖2 ≤ ‖xmn+1−x∗‖2, ∀ n ∈ N. (3.31)

By (3.17) and Lemma 3.7, we have

‖xmn
− x∗‖2 ≤ ‖xmn+1 − x∗‖2 ≤ αmn

‖f(xmn
)− x∗‖2

+ βmn
‖xmn

− x∗‖2 + γmn

(
‖wmn

− x∗‖2

−
(

1− λmn

λmn
+ 1

)
[‖wmn

− ymn
‖2 + ‖ymn

− zmn
‖2]

)
≤ αmn

‖f(xmn
)− x∗‖2 + βmn

‖xmn
− x∗‖2 + γmn

‖xmn
− x∗‖2

+ γmnθmn‖xmn − xmn−1‖(2‖xmn − x∗‖+ θmn‖xmn − xmn−1‖)

− γmn

(
1− λmn

λmn
+ 1

)
[‖wmn

− ymn
‖2 + ‖ymn

− zmn
‖2]

= αmn‖f(xmn)− x∗‖2 + (1− αmn)‖xmn − x∗‖

− γmn

(
1− λmn

λmn
+ 1

)
[‖wmn − ymn‖2 + ‖ymn − zmn‖2]

+ γmn
θmn
‖xmn

− xmn−1‖(2‖xmn
− x∗‖+ θmn

‖xmn
− xmn−1‖).

Since αmn
→ 0 as n→∞, it follows from above that

lim
n→∞

γmn

(
1− λmn

λmn
+ 1

)
[‖wmn

− ymn
‖2 + ‖ymn

− zmn
‖2] = 0,

hence

lim
n→∞

‖wmn
− ymn

‖ = ‖ymn
− zmn

‖ = 0. (3.32)

By using similar arguments as in Case I, the following are easy to establish:

lim
n→∞

‖Sηmn
zmn
− zmn

‖ = ‖Szmn
− zmn

‖ = 0, (3.33)

lim
n→∞

‖wmn
− xmn

‖ = ‖xmn+1 − xmn
‖ = 0. (3.34)

and

lim sup
n→∞

〈f(x∗)− x∗, xmn+1 − x∗〉 ≤ 0.
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It follows from (3.14), that

‖xmn+1 − x∗‖2 ≤
(

1− 2αmn
(1− κ)

1− αmnκ

)
‖xmn

− x∗‖2

+
2αmn(1− κ)

1− αmn
κ

(
αmn

1− κ
‖xmn − x∗‖2

+
1

1− κ
〈f(x∗)− x∗, xmn+1 − x∗〉+

θ2
mn

2αmn
(1− κ)

‖xmn
− xmn−1‖2

+
θmn

γmn

αmn(1− κ)
‖xmn

− x∗‖‖xmn
− xmn−1‖

)
,

which implies that

‖xmn+1 − x∗‖2 ≤
αmn

1− κ
‖xmn

− x∗‖2 +
1

1− κ
〈f(x∗)− x∗, xmn+1 − x∗〉

+
θ2
mn

2αmn
(1− κ)

‖xmn
− xmn−1‖2

+
θmn

γmn

αmn
(1− κ)

‖xmn
− x∗‖‖xmn

− xmn−1‖.

By (3.31), we obtain

‖xk − x∗‖2 ≤ ‖xmn+1 − x∗‖2

≤ αmn

1− κ
‖xmn − x∗‖2 +

1

1− κ
〈f(x∗)− x∗, xmn+1 − x∗〉

+
θ2
mn

2αmn
(1− κ)

‖xmn
− xmn−1‖2

+
θmn

γmn

αmn(1− κ)
‖xmn

− x∗‖‖xmn
− xmn−1‖.

Thus, we get that lim sup
k→∞

‖xn − x∗‖2 = 0, which means that lim
n→∞

‖xn‖ = x∗. The

proof is therefore complete.

4. Application

In this section, we give some applications of our main result.

4.1. Constrained optimization problem

Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let
h : H → R be a differentiable function on K with its gradient ∇h. The Constrained
Optimization Problem (COP) is given as: Find x∗ ∈ K such that

h(x∗) ≤ h(x), ∀ x ∈ K. (4.1)

We denote by Sol(h) the solution set of (4.1). It is well known (see [44]), that a point
x∗ is a minimizer of (4.1) if and only if x∗ is a solution of the VIP (1.1) with F = ∇h.
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Thus by applying this formulations and substituting F = ∇h in Algorithm 3.2, we
have the following result for finding a common solution of a COP and a FPP.

Theorem 4.1. Let K be a nonempty, closed and convex subset of a real Hilbert space
H. Let h : H → R be a differentiable function on K with its gradient ∇h. Let S : H →
H be an η-demimetric mapping. Assume Sol(h) ∩ Fix(S) 6= ∅. Then, the sequence
{xk} generated by Algorithm 3.2 with F replaced by ∇h converges strongly to a point
x∗ = PSol(h)∩Fix(S)f(x∗).

4.2. Split feasibility problem

Let K and Q be nonempty, closed and convex subsets of real Hilbert spaces
H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. The Split
Feasibility Problem (SFP) in the sense of Censor and Elfving [13] is to find

x ∈ K such that Ax ∈ Q. (4.2)

We denote by Ω the solution set of (4.2). Many authors have considered the solution of
the SFP (4.2). We note that whenever the SFP (4.2) is consistent (i.e, has a solution),
then x∗ ∈ Ω solves the fixed point equation

x∗ = PK(x− λA∗(I − PQ)Ax), ∀ x ∈ K,

where PK and PQ are orthogonal projection of H1 and H2 onto K and Q respectively
λ > 0 and A∗ is the adjoint of A. One of the most popular method for solving the
SFP was the algorithm proposed by Bryne [10]. He gave a recursive formula {xk}
generated by x1 and

xk+1 = PK(xk − λA∗(I − PQ)Axk), k ∈ N, (4.3)

where λ ∈ [0, 2/γ] with γ the spectral radius of the operator A∗A.
For the adaptation of our main result to the solution of the SFP, we need the following
proposition (see Ceng et al. [12]).

Proposition 4.2. [12] Given x∗ ∈ H1, the following are equivalent

(i) x∗ ∈ Ω;
(ii) x∗ solves (4.3);
(iii) x∗ solves the system of variational inequality problem: find x∗ ∈ K such that

〈A∗(I − PQ)Ax∗, x− x∗〉 ≥ 0, ∀ x ∈ K,

where A∗ is the adjoint of A.

By these adaptations, we have the following theorem for approximating a solution of
an SFP and a FPP.

Theorem 4.3. Let K and Q be nonempty, closed and convex subsets of real Hilbert
spaces H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. Let
S : H → H be an η-demimetric mapping. Assume Ω∩Fix(S) 6= ∅. Then, the sequence
{xk} generated by Algorithm 3.2 with F := A∗(I − PQ)A converges strongly to

x∗ = PΩ∩Fix(S)f(x∗).
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5. Numerical examples

We next provide some numerical experiments to illustrate the performance of
our method as well as comparing it with some related methods in the literature.

Example 5.1. Let H = Rm with the standard topology. Consider a mapping F :
Rm → Rm given in the form F (x) = Mx+ q (see [19], also [35]) where

M = BBT + P +Q

q is a vector in Rm, B is an m ×m matrix, P is an m ×m skew-symmetric matrix,
Q is a positive definite diagonal matrix, hence the variational inequality is consistent
with a unique solution. We define the feasible set K by K := {x ∈ H : ‖x‖ ≤ 1}. Let
S : H → H be defined by S(x) = −3x

2 for all x ∈ H and f(x) = x. In this example,

we choose αk = 1
k+3 , βk = γk = 0.5(1 − αk), ηk = 0.8 − αk, θ = 1

3 , λ0 = µ = 0.95

and τk = 1
k1.9 . For VSEGM and HSEGM, we choose βk = 0.8− αk and λk = 0.75/L

where L = ||F ||. We terminate the iterations at Tol = ||xk − PC(xk − Fxk)||2 ≤ ε
with ε = 10−4.
We compare Algorithm 3.2, VSEGM [50] and HSEGM [34] for different values of m.
The results are presented in Figure 1.

Example 5.2. The following example was taken from [24],

min g(x) =
xTPx+ aTx+ a0

bTx+ b0

subject to x ∈ X = {x ∈ R5 : bTx+ b0 > 0},
where

P =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 b =


2
1
1
0

 , a0 = −2, b0 = 4.

Since P is symmetric and positive definite, g is pseudoconvex on X. We minimize g
on K = {x ∈ R4 : 1 ≤ xi ≤ 10} ⊂ X.
Following our consideration in Theorem 4.1, we have

F (x) = ∇g(x) =
(bTx+ b0)(2Px+ a)− b(xTPx+ aTx+ a0)

(bTx+ b0)2
. (5.1)

We define the mapping S : H → H by S(x) = −3x
2 and the function f by f(x) = x

2 .
Since the Lipschitz constant of F given by (5.1) is unknown, we compare Algorithm
3.2 with the VSEGM [50]. The following choices of parameters are made: αk = 1

k+3 ,

βk = γk = 0.5(1− αk), ηk = 0.5, θ = 1
3 , λ0 = µ = 0.5 and τk = 1

k1.5 .

We terminate the iterations at Tol = ||xk − PC(xk − Fxk)||2 ≤ ε with ε = 10−4. The
results are presented in Figure 2 for varying initial values x0 and x1.

Case1: x0 = (10, 10, 10, 10)′ and x1 = (5, 5, 5, 5)′;
Case2: x0 = (5, 5, 5, 5)′ and x1 = (20, 20, 20, 20)′;
Case3: x0 = (1, 1, 1, 1)′ and x1 = (−4,−4,−4,−4)′.
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Figure 1. Performance of Algorithm 3.2 compared with VSEGM
[50] and HSEGM [34].

Example 5.3. Let H = L2([0, 1]) with the inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀ x, y ∈ H

and the induced norm

‖x‖ =

√∫ 1

0

|x(t)|2dt.

Let the mapping F : H → H be defined by F (x) = max{0, x(t)}, ∀x ∈ L2([0, 1]), t ∈
[0, 1] for all x ∈ H and the feasible K := {x ∈ H : ‖x‖ ≤ 1}. Define the mapping T
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Figure 2. Performance of Algorithm 3.2 compared with VSEGM [50].

by

Tx(t) =

∫ 1

0

tx(t)dt, ∀x ∈ L2([0, 1]), t ∈ [0, 1],

then T is 0-demimetric. Also, let f : H → H be given by f(x) = x
2 . For this example,

we choose parameters for Algorithm 3.2, HSEGM [34] and VSEGM [50] as follows:
αk = 1

k+3 , βk = γk = 0.5(1−αk), ηk = 1
2k+1 , θ = 1

3 , λ0 = 0.25, µ = 0.5 and τk = 1
k1.9 .

For the VSEGM and HSEGM, we choose βk = 1
2k+1 . We make our comparisons with

different initial values and present the result in Figure 3.

Case i: x0 = −5t and x1 = 2t;
Case ii: x0 = 9t3 + 11t and x1 = t2;

Case iii: x0 = cos(2t) + 5 and x1 = e−3t.
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Figure 3. Performance of Algorithm 3.2 compared with VSEGM
[50] and HSEGM [34].

6. Conclusion

In this paper, we considered the problem of finding a common element of the
set of solution of VIP and FPP for η-demimetric mapping in real Hilbert space. We
proposed a new iterative algorithm of inertial form and proved a strong convergence
theorem under some mild conditions. Our proposed method uses a combination of sub-
gradient extragradient method and a modified viscosity approach with self adaptable
step size which avoids the knowledge of the Lipschitz constant of the cost operator
in practice. Some applications to constrained optimization and split feasibility prob-
lems were considered. We finally gave some numerical experiments to illustrate the
behaviour of our method and compare it with some related methods in the literature.
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