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Oscillation criteria for third-order semi-canonical
differential equations with unbounded neutral
coefficients
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Abstract. In this paper, we investigate the oscillatory behavior of solutions to a
class of third-order differential equations of the form

Lz(t) + f(t)yβ(σ(t)) = 0,

where Lz(t) = (p(t)(q(t)z′(t))′)′ is a semi-canonical operator and z(t) = y(t) +
g(t)y(τ(t)). The main idea is to convert the semi-canonical operator into canonical
form and then obtain some new sufficient conditions for the oscillation of all
solutions. The obtained results essentially improve and complement to the known
results. Examples are provided to illustrate the main results.
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1. Introduction

In this paper, we are concerned with the oscillation of solutions of the semi-
canonical third-order neutral differential equation

Lz(t) + f(t)yβ(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where L is the differential operator defined by

Lz(t) = (p(t)(q(t)z′(t))′)′, z(t) = y(t) + g(t)y(τ(t)),
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and β is the ratio of odd positive integers. Throughout the paper, and without further
mention, we will always assume that:

(H1) f, g ∈ C([t0,∞),R), g(t) ≥ 1, g(t) 6≡ 1 for large t, and f(t) ≥ 0 is not identically
zero for large t,

(H2) τ, σ ∈ C1([t0,∞),R), τ(t) ≤ t, τ is strictly increasing, σ is nondecreasing, and
limt→∞ τ(t) = limt→∞ σ(t) =∞;

(H3) the operator L is in semi-canonical form, that is,∫ ∞
t0

1

p(t)
dt <∞ and

∫ ∞
t0

1

q(t)
dt =∞,

where p, q ∈ C([t0,∞), (0,∞)).

By a solution of (1.1), we mean a function y ∈ C([ty,∞),R) for some ty ≥ t0 such
that z ∈ C1([ty,∞),R), qz′ ∈ C1([ty,∞),R), p(qz′)′ ∈ C1([ty,∞),R) and y satisfies
(1.1) on [ty,∞). We only consider those solutions of (1.1) that exist on some half-line
[ty,∞) and satisfy the condition

sup{|y(t)| : T1 ≤ t <∞} > 0 for any T1 ≥ ty;

we tacitly assume that (1.1) possesses such solutions. Such a solution y(t) of (1.1)
is said to be oscillatory if it has arbitrarily large zeros on [ty,∞), and it is called
nonoscillatory otherwise. Equation (1.1) is called oscillatory if all its solutions are
oscillatory.

In the recent years many papers appeared in the literature dealing with the os-
cillatory and asymptotic behavior of solutions of various classes of third-order neutral
type differential equations; see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17,
19, 20] and the references cited therein. However, except for the papers [5, 6, 12, 19,
20], all the papers mentioned above were dealing with the case when g(t) is bounded,
that is, the cases when 0 ≤ g(t) ≤ g0 < 1, −1 < g0 ≤ g(t) ≤ 0 and 0 < g(t) ≤ g0 <∞
were studied and so the criteria obtained in these papers cannot be applied to the
case g(t)→∞ as t→∞.

Moreover, very recently in [5, 6, 20] the authors studied equation (1.1) and
obtained oscillation criteria where q(t) ≡ 1 and p(t) ≡ 1 or

∫∞
t0

1
p(t)dt =∞. Based on

these observations, the aim of this paper is to obtain some oscillation criteria that can
be applied not only to the case where g(t)→∞ as t→∞ but also to the cases when
g(t) is bounded,

∫∞
t0

1
p(t)dt <∞ and

∫∞
t0

1
q(t)dt =∞. The main idea is to connect the

semi-canonical equation (1.1) with that of canonical equations and then we obtain
oscillation criteria for (1.1).

In the sequel, we deal only with positive solutions of (1.1), since if y(t) is a
solution of (1.1), then −y(t) is also a solution.

2. Main results

Throughout the paper we employ the following notations:

A(t) :=

∫ ∞
t

1

p(s)
ds, a(t) := p(t)A2(t), b(t) :=

q(t)

A(t)
,
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F (t) := A(t)f(t), Π(t) :=

∫ t

t0

1

a(s)
ds, B(t) :=

∫ t

t0

Π(s)

b(s)
ds,

c(t) := exp

(∫ t

t1

Π(s)

b(s)B(s)
ds

)
for t ≥ t1 for some t1 ≥ t0,

h(t) := τ−1(σ(t)), λ(t) := τ−1(η(t)), η ∈ C1([t0,∞),R),

ψ1(t) :=
1

g(τ−1(t))

[
1− c(τ−1(τ−1(t)))

g(τ−1(τ−1(t)))c(τ−1(t))

]
,

ψ2(t) :=
1

g(τ−1(t))

[
1− 1

g(τ−1(τ−1(t)))

]
,

and

R(t) :=

∫ λ(t)

h(t)

(
1

b(u)

∫ λ(t)

u

1

a(v)
dv

)
du.

In order to ensure the nonnegativity of ψ1(t), we assume the following condition
also holds:

(H4) There exists a t1 ∈ [t0,∞) such that

c(τ−1(τ−1(t)))

g(τ−1(τ−1(t)))c(τ−1(t))
≤ 1 for all t ≥ t1. (2.1)

Theorem 2.1. Assume that ∫ ∞
t0

1

b(t)
dt =∞. (2.2)

Then the semi-canonical operator L has the following unique canonical representation

Lz(t) =
1

A(t)

(
p(t)A2(t)

(
q(t)

A(t)
z′(t)

)′)′
. (2.3)

Proof. Direct calculation shows that(
p(t)A2(t)

(
q(t)

A(t)
z′(t)

)′)′
= (A(t)p(t)(q(t)z′(t))′ + q(t)z′(t))′

= A(t)(p(t)(q(t)z′(t))′)′.

Therefore

1

A(t)

(
p(t)A2(t)

(
q(t)

A(t)
z′(t)

)′)′
= (p(t)(q(t)z′(t))′)′.

Taking (2.2) into account, we see that∫ ∞
t0

A(t)

q(t)
dt =∞,

and since ∫ ∞
t0

1

p(t)A2(t)
dt = lim

t→∞

(
1

A(t)
− 1

A(t0)

)
=∞,
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we say that (2.3) is in the canonical form. However, Trench proved in [18] that there
exists only one canonical representation of L (up to multiplicative constants with
product 1) and so our canonical form is unique. This completes the proof. �

From Theorem 2.1, it follows that (1.1) can be written in the canonical form as

(a(t)(b(t)z′(t))′)′ + F (t)yβ(σ(t)) = 0 (2.4)

and the next result is immediate.

Theorem 2.2. Assume that (2.2) holds. Then semi-canonical equation (1.1) possesses
solution y(t) if and only if canonical equation (2.4) has the solution y(t).

Corollary 2.3. Assume that (2.2) holds. Then semi-canonical differential equation
(1.1) has an eventually positive solution if and only if canonical equation (2.4) has an
eventually positive solution.

Corollary 2.3 clearly simplifies investigation of (1.1) since for (2.4) if y(t) is an
eventually positive solution, then the corresponding function z(t) satisfies either

(I) z(t) > 0, b(t)z′(t) > 0, a(t)(b(t)z′(t))′ > 0, (a(t)(b(t)z′(t))′)′ < 0, or
(II) z(t) > 0, b(t)z′(t) < 0, a(t)(b(t)z′(t))′ > 0, (a(t)(b(t)z′(t))′)′ < 0

for sufficiently large t.

Lemma 2.4. Assume that z(t) satisfies case (I) for all t ≥ t1 for some t1 ≥ t0. Then

z′(t) ≥ Π(t)

b(t)
a(t)(b(t)z′(t))′, (2.5)

z(t) ≥ B(t)a(t)(b(t)z′(t))′, (2.6)

z(t) ≥ B(t)

Π(t)
b(t)z′(t), (2.7)

and
z(t)

c(t)
is nonincreasing (2.8)

for all t ≥ t1.

Proof. Since a(t)(b(t)z′(t))′ is positive and decreasing, we see that

b(t)z′(t) = b(t1)z′(t1) +

∫ t

t1

a(s)
(b(s)z′(s))′

a(s)
ds

or

z′(t) ≥ a(t)

b(t)
(b(t)z′(t))′Π(t),

i.e., (2.5) holds. Integrating the last inequality from t1 to t yields

z(t) ≥ a(t)(b(t)z′(t))′
∫ t

t1

Π(s)

b(s)
ds = B(t)a(t)(b(t)z′(t))′,

i.e., (2.6) holds. From (2.5), we see that b(t)z′(t)/Π(t) is decreasing for t ≥ t2 for some
t2 ≥ t1, and therefore

z(t) = z(t2) +

∫ t

t2

b(s)z′(s)

Π(s)

Π(s)

b(s)
ds ≥ B(t)

Π(t)
b(t)z′(t).
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From the last inequality, we see that(
z(t)

c(t)

)′
=

(
z′(t)− Π(t)

b(t)B(t)z(t)
)

c(t)
≤ 0

for t ≥ t3 for some t3 ≥ t2. Hence, z(t)/c(t) is non-increasing. This completes the
proof. �

Theorem 2.5. Let (2.2) holds. Assume that there exists a nondecreasing function η ∈
C1([t0,∞),R) such that σ(t) ≤ η(t) < τ(t) for all t ≥ t0. If both first-order delay
differential equations

X ′(t) + F (t)Ψβ
1 (σ(t))Bβ(h(t))Xβ(h(t)) = 0 (2.9)

and

W ′(t) + F (t)Ψβ
2 (σ(t))Rβ(t)W β(λ(t)) = 0 (2.10)

oscillate, then (1.1) oscillates.

Proof. Let y(t) be a nonoscillatory solution of equation (1.1), say y(t) > 0, y(τ(t)) > 0,
and y(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. From Corollary 2.3, y(t) is also a positive
solution of (2.4) for t ≥ t1. Then the corresponding function z(t) satisfies either case
(I) or case (II) for t ≥ t2 for some t2 ≥ t1.

First, we consider case (I). From the definition of z, we get

y(t) =
1

g(τ−1(t))

[
z(τ−1(t))− y(τ−1(t))

]
≥ z(τ−1(t))

g(τ−1(t))
− z(τ−1(τ−1(t)))

g(τ−1(t))g(τ−1(τ−1(t)))
. (2.11)

Now τ(t) ≤ t and τ is strictly increasing, so τ−1 is increasing and t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)).

From this and the fact that z(t)/c(t) is nonincreasing, we see that

z
(
τ−1(τ−1(t))

)
≤ c(τ−1(τ−1(t)))z(τ−1(t))

c(τ−1(t))
. (2.12)

Using (2.12) in (2.11) yields

y(t) ≥ ψ1(t)z(τ−1(t)). (2.13)

Since limt→∞ σ(t) = ∞, we can choose t3 ≥ t2 such that σ(t) ≥ t2 for all t ≥ t3.
Thus, it follows from (2.13) that

y(σ(t)) ≥ ψ1(σ(t))z(h(t)) for t ≥ t3. (2.14)

Combining (2.14) with (2.4) yields

(a(t)(b(t)z′(t))′)′ + F (t)ψβ1 (σ(t))zβ(h(t)) ≤ 0 for t ≥ t3. (2.15)

From (2.6), we have

z(h(t)) ≥ B(h(t))a(h(t))(b(h(t))z′(h(t)))′. (2.16)



120 K. Saranya, V. Piramanantham, E. Thandapani and E. Tunç

Using (2.16) in (2.15) and letting X(t) = a(t)(b(t)z′(t))′, we see that X(t) is a positive
solution of the first-order delay differential inequality

X ′(t) + F (t)ψβ1 (σ(t))Bβ(h(t))Xβ(h(t)) ≤ 0. (2.17)

Therefore, by Corollary 1 of [14], we conclude that (2.9) also has a positive solution,
which is a contradiction.

Next, we consider case (II). Since z is strictly decreasing and τ(t) ≤ t, we have

z(τ−1(t)) ≥ z(τ−1(τ−1(t)))

and using this in (2.11), we obtain

y(t) ≥ ψ2(t)z(τ−1(t)).

Hence,

y(σ(t)) ≥ ψ2(σ(t))z(h(t)) (2.18)

for t ≥ t3 for some t3 ≥ t2. Using (2.18) in (2.4) yields

(a(t)(b(t)z′(t))′)′ + F (t)ψβ2 (σ(t))zβ(h(t)) ≤ 0 for t ≥ t3. (2.19)

For t ≥ s ≥ t3, we have

b(t)z′(t)− b(s)z′(s) =

∫ t

s

a(u)(b(u)z′(u))′

a(u)
du,

or

−z′(s) ≥
(

1

b(s)

∫ t

s

1

a(u)
du

)
a(t)(b(t)z′(t))′.

Again integrating, we have

−z(t) + z(s) ≥
(∫ t

s

1

b(u)

(∫ t

u

1

a(v)
dv

)
du

)
a(t)(b(t)z′(t))′,

or

z(s) ≥
[∫ t

s

1

b(u)

(∫ t

u

1

a(v)
dv

)
du

]
a(t)(b(t)z′(t))′. (2.20)

Since σ(t) ≤ η(t) and the fact that τ is strictly increasing, we have

τ−1(σ(t)) ≤ τ−1(η(t)).

Setting s = τ−1(σ(t)) and t = τ−1(η(t)) into (2.20), we obtain

z(h(t)) ≥

(∫ λ(t)

h(t)

1

b(u)

(∫ λ(t)

u

1

a(v)
dv

)
du

)
a(λ(t))(b(λ(t))z′(λ(t)))′. (2.21)

Using (2.21) in (2.19) and letting W (t) = a(t)(b(t)z′(t))′, we see that W is a positive
solution of the first-order delay differential inequality

W ′(t) + F (t)ψβ2 (σ(t))Rβ(t)W β(λ(t)) ≤ 0. (2.22)

The remaining part of the proof is similar to the case (I) and hence the details are
not repeated. This completes the proof. �
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Corollary 2.6. Let (2.2) holds and β = 1. Assume that there exists a nondecreasing
function η ∈ C1([t0,∞),R) such that σ(t) ≤ η(t) < τ(t) for all t ≥ t0. If

lim inf
t→∞

∫ t

h(t)

F (s)ψ1(σ(s))B(h(s))ds >
1

e
(2.23)

and

lim inf
t→∞

∫ t

λ(t)

F (s)ψ2(σ(s))R(s)ds >
1

e
, (2.24)

then (1.1) is oscillatory.

Proof. The proof follows from a well-known result in [11] and Theorem 2.5, and hence
the details are omitted. �

Corollary 2.7. Let (2.2) holds and 0 < β < 1. Assume that there exists a nondecreasing
function η ∈ C1([t0,∞),R) such that σ(t) ≤ η(t) < τ(t) for all t ≥ t0. If∫ ∞

T

F (t)ψβ1 (σ(t))Bβ(h(t))dt =∞ (2.25)

and ∫ ∞
T

F (t)ψβ2 (σ(t))Rβ(t)dt =∞ (2.26)

for all sufficiently large T ∈ [t0,∞) with σ(t) ≥ t0 for all t ≥ T , then (1.1) oscillates.

Proof. Proceeding exactly as in the proof of Theorem 2.5, we again arrive at (2.17)
and (2.22) for t ≥ t3. Since h(t) < t and X(t) is positive and decreasing, inequality
(2.17) takes the form

X ′(t) + F (t)ψβ1 (σ(t))Bβ(h(t))Xβ(t) ≤ 0,

or
X ′(t)

Xβ(t)
+ F (t)ψβ1 (σ(t))Bβ(h(t)) ≤ 0. (2.27)

Integrating (2.27) from t3 to t yields∫ t

t3

F (s)ψβ1 (σ(s))Bβ(h(s))ds ≤ X1−β(t3)

1− β
<∞ as t→∞,

which contradicts (2.25). The remainder of the proof follows from λ(t) < t and in-
equality (2.22). The proof is complete. �

In our final result, assume that σ(t) = t − δ1, τ(t) = t − δ3 and η(t) = t − δ2,
where δ1, δ2 and δ3 are positive real numbers.

Corollary 2.8. Let (2.2) holds and β > 1. If δ1 ≥ δ2 > δ3,

lim inf
t→∞

β−t/(δ1−δ3) log
(
F (t)ψβ1 (t− δ1)Bβ(t+ δ3 − δ1)

)
> 0 (2.28)

and

lim inf
t→∞

β−t/(δ2−δ3) log
(
F (t)ψβ2 (t− δ1)Rβ(t)

)
> 0, (2.29)

then (1.1) oscillates.
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Proof. Application of (2.28) and (2.29) and Corollary 1.2 of [15] imply that (2.9) and
(2.10) oscillate. Hence, by Theorem 2.5, equation (1.1) oscillates. �

3. Examples

In this section, we present some examples to show the importance of the main
results.

Example 3.1. Consider the third-order linear neutral differential equation(
t2

(
1

t

(
y(t) + 16y

(
t

2

))′)′)′
+
f0

t2
y

(
t

4

)
= 0, t ≥ 1. (3.1)

Here p(t) = t2, q(t) = 1/t, g(t) = 16, f(t) = f0/t
2 with f0 > 0, τ(t) = t/2, σ(t) = t/4

and β = 1. Then A(t) = 1/t, a(t) = 1, b(t) = 1, F (t) = f0/t
3 and the transformed

equation is (
y(t) + 16y

(
t

2

))′′′
+
f0

t3
y

(
t

4

)
= 0, t ≥ 1, (3.2)

which is in canonical form. Simple calculation show that

Π(t) = t− 1, B(t) = (t− 1)2/2, c(t) = (t− 1)2, and ψ2(t) = 15/256.

Since (2.1) holds, we have ψ1(t) ≥ 0 and

ψ1(t) =
1

16

[
1− (4t− 1)2

16(2t− 1)2

]
≥ 7

256
.

By choosing η(t) = t/3, we see that h(t) = t/2, λ(t) = 2t/3 and R(t) = t2/72. It is
clear that condition (2.2) holds. Condition (2.23) becomes

lim inf
t→∞

∫ t

t/2

f0

29

(
3

s
− 14

s2
+

15

s3

)
ds =

3f0 ln 2

29
,

and so condition (2.22) is satisfied if f0 >
29

3e ln 2
.

Condition (2.24) becomes

lim inf
t→∞

∫ t

2t/3

5f0

3× 211

1

s
ds =

5f0 ln 3/2

3× 211
,

that is, (2.24) is satisfied if f0 >
3× 211

5e ln 3/2
. Thus, by Corollary 2.6, equation (3.1) is

oscillatory if f0 >
3× 211

5e ln 3/2
.

Note that canonical equation (3.2) is considered in [20] and proved that (3.2) is

oscillatory if f0 >
3×211

5 ln 3/2 . Hence, Corollary 2.6 improves Theorem 2.7 of [20].
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Example 3.2. Consider the third-order sublinear neutral differential equation(
t2

(
1

t

(
y(t) + ty

(
t

2

))′)′)′
+
f0

tα
y3/5

(
t

10

)
= 0, t ≥ 16. (3.3)

Here p(t) = t2, q(t) = 1/t, g(t) = t, f(t) = f0/t
α with f0 > 0 and α ≤ 3/5, τ(t) = t/2,

σ(t) = t/10 and β = 3/5. Then A(t) = 1/t, a(t) = 1, b(t) = 1, F (t) = f0/t
α+1 and

the transformed equation is(
y(t) + ty

(
t

2

))′′′
+

f0

tα+1
y3/5

(
t

10

)
= 0, t ≥ 16, (3.4)

which is in canonical form. Simple calculation shows that

Π(t) = t− 16, B(t) = (t− 16)2/2, c(t) = (t− 16)2, and ψ2(t) =
4t− 1

8t2
> 0.

Since (2.1) holds, we have ψ1(t) ≥ 0 and ψ1(t) ≥ 4t− 9

8t2
. By choosing η(t) = t/8, we

see that h(t) = t/5, λ(t) = t/4 and R(t) = t2/800. It is clear that condition (2.2)
holds. For any T ≥ t0 with σ(t) ≥ t0, condition (2.25) becomes∫ ∞

T

f0

tα+1

(
10t− 225

2t2

)3/5(
t− 80√

50

)6/5

dt ≥ d1

∫ ∞
T1

1

tα+2/5
dt =∞,

where d1 > 0 is a constant and T1 ≥ T .
Condition (2.26) becomes∫ ∞

T

f0

tα+1

(
10t− 25

2t2

)3/5(
t2

800

)3/5

dt ≥ d2

∫ ∞
T1

1

tα+2/5
=∞,

where d2 > 0 is a constant and T1 ≥ T . Thus, by Corollary 2.7, equation (3.3) is
oscillatory if α ≤ 3/5.

Note that canonical equation (3.4) is considered in [20] and proved that (3.4) is
oscillatory if α = 1

5 . Hence, Corollary 2.7 improves Theorem 2.8 of [20].

Example 3.3. Consider the third-order superlinear neutral differential equation(
t2
(

1

t
(y(t) + ty (t− 2))

′
)′)′

+ t exp(4t)y3(t− 4) = 0, t ≥ 2. (3.5)

Here p(t) = t2, q(t) = 1/t, g(t) = t, f(t) = t exp(4t), τ(t) = t − 2, σ(t) = t − 4 and
β = 3. Then A(t) = 1/t, a(t) = 1, b(t) = 1, F (t) = exp(4t) and the transformed
equation is

(y(t) + ty(t− 2))′′′ + exp(4t)y3(t− 4) = 0, (3.6)

which is in canonical form. A simple calculation show that

Π(t) = t− 2, B(t) = (t− 2)2/2, c(t) = (t− 2)2,

ψ1(t) =
1

t+ 2

[
1− (t+ 2)2

(t+ 4)t2

]
≥ t

(t+ 2)(t+ 4)
≥ 0 and ψ2(t) =

t+ 3

(t+ 2)(t+ 4)
≥ 0.
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By choosing η(t) = t − 3, we see that h(t) = t − 2, λ(t) = t − 1, R(t) = 1/2, δ1 = 4,
δ2 = 3, δ3 = 2. As in Examples 3.1 and 3.2, it is easy to see that conditions (2.2),
(2.28) and (2.29) are satisfied. Thus, by Corollary 2.8, equation (3.5) is oscillatory.

4. Conclusion

In this paper, we have established some new oscillation criteria for (1.1). The
results are obtained by converting (1.1) into canonical type equation. Hence, the
results are new and complement to those in [5, 6, 12, 20]. Also we have shown that
the results obtained here improve those in [20].
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