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On singular ¢—Laplacian BVPs of nonlinear
fractional differential equation
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Abstract. This paper investigates the existence of multiple positive solutions for
a class of ¢—Laplacian boundary value problem with a nonlinear fractional differ-
ential equation and fractional boundary conditions. Multiple solutions are proved
under slight conditions on a possibly degenerating source term. Approximation
techniques together with the fixed point index theory a on cone of a Banach space
are employed. Some illustrating examples of are also supplied.
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1. Introduction

This paper deals with the existence of multiple positive solutions to the following
nonlinear fractional differential equation with a ¢-Laplacian operator and Riemann-
Liouville derivatives:

{ D (¢(=Dy () = a() f(t, (), DY, a(t)), 0<t<1, (L1)
2(0) = 2'(0) = Dy~ 'a(1) = D 2(0) = [DG7 (¢(= D 2(t)]i=1 = 0,

where v > 0, o € (1,2], 8 € (2,3], 8—~v—2 > 0, and Dg&,Déﬁ,D& are
the standard Riemann-Liouville derivatives. The nonlinear term f = f(¢, z,y)

[0,1] x [0, +00) X [0, +00) — RT is continuous but may be singular at = = 0 and/or
at y = 0 in a sense to be made precise. The function ¢ : R — R is an increasing
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homeomorphism such that ¢(0) = 0. The sets RT and I = (0, 400) will stand for the
nonnegative real numbers and the positive real numbers, respectively.

In the last couple of years, fractional boundary value problems (BVPs for short)
have been the subject of intensive research works, see, e.g., [2, 12, 11, 15] and reference
therein. They can thought of as extension of BVPs with ordinary differential equations
(see [5, 6]). For the p—Laplacian ¢,(s) = |s|P~2s p > 1, the authors of [13] discussed
the BVP

{Do+<wp< & y(@) = fla,y(2),0 <z <1,
y(0) =y'(0) = y(1) = D0+y(0) =0,D8,y(1) = ADS, y(e),

where o, € R, a € (2.3], 8 € (1,2], € € (0,1), A € [0,+00), D0+,D0+ are the
standard Riemann-Liouville derivatives, and f € C([0,1] x [0, +0o0), [0, +00)). They
proved the existence of positive solutions by means of the Guo-Krasnosel’skii fixed
point theorem. In [8], Lu et al. considered the BVP

{D@(%(Dwu( D) = 1), 0< <1,
u(0) = u/(0) = /(1) = 0, D}, u(0) = Df, u(1) =0,

where « € (1,2], 5 € (2, 3], D8‘+,D0 , are the standard Riemann-Liouville derivatives,
and f € C([0,1] x [0, +00), [0, 4+00)). Existence results are proved by combination of
the Guo-Krasnosel’skii fixed point theorem, the Leggett-Williams fixed point theorem,
and the method of upper and lower solutions. In [14], the authors considered the BVP

{ —D2 (pp(DPu(t)) = f(t,u(t)),0 <t <1, )
u(0) = u(1) = w/(0) =w'(1) = 0, DGiu(0) = 0, Dytu(l) = bDgtu(y),

where o € (1,2],8 € (3,4], n € (0,1),b € (0,77;%?), and f € C([0,1] x RT,R*).
They established the existence of positive solutions by the upper and lower solutions
method combined with the Schauder fixed point theorem. More recently, the existence
of positive solutions is proved in [15] by fixed point theory. In [3], A. Boucenna and T.
Moussaoui have used the Krasnoselskii fixed point theorem to establish the existence
of positive solution on the half-line for the BVP:

D, u(t) = aft)g(u(t), D, u(t)), ¢ >0,
Lo DS lu(oc) =0, (13)

where o € (1,2],8 > 0, and « — 8 > 1 and the nonlinear function g satisfies some
growth assumptions.

This work discusses the existence and the multiplicity of positive solutions to
Problem (1.1) where the function f depends on z and on the standard Rieman-
Liouville derivative Dg+x. The nonlinear term f may be singular point at x = 0
and/or D,z = 0. ¢ is a homeomorphism. We will make use of the fixed point index
theory on a suitable cone in some Banach space. Each existence result is illustrated
by an example. In this section, we also recall some preliminary results we need in this
paper. The first reminders concern the Riemann-Liouville fractional integral and the
Riemann-Liouville fractional derivation. For more details, we refer to [7, 10, 9].
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Definition 1.1. The Riemann-Liouville fractional integral of order o > 0 of a function
w: (0,1) = R is defined by

1o u(t) = ﬁ/o (t — 5)° u(s)ds

provided that the right-hand side is pointwise defined on (0,1). I'(«) is the Euler

gamma function I'(a) = 0+°° to~Lle~tdt.

Definition 1.2. The Riemann-Liouville fractional derivative of order v > 0 of a func-
tion u : (0,1) — R is defined by

d” n—e 1 dr ’ n—a—1
Dgiu(t) = Lo+ u(t) = Tn—a)dt J, (t—s) u(s)ds,

where n is the smallest integer greater than or equal to «, provided the right-hand
side is pointwise defined on (0, 1).

Lemma 1.3. Let o > 0. Then for u € L(0,1) and D§, u(t) € L(0,1), we have
o+ Doru(t) = u(t) + At oot et
where ¢1,¢2,...,¢p € (—00,+0),n —1 < a < n.
For the theory and the computation of the fixed point index on cones in Banach
spaces, we refer to [1, 2, 4]. An operator A: E — E is completely continuous if it is
continuous and maps bounded sets into relatively compact sets. A nonempty subset

P of a Banach space E is called a cone if it is convex, closed and satisfies ax € P for
all z € P and a > 0 and x, —z € P implies that = 0.

Lemma 1.4. Let € be a bounded open set in a real Banach space E, P a cone of E
and A : QNP — P a completely continuous map. Suppose that NAx # x,Vx €
IMNNP, e (0,1]. Theni(A,QNP,P)=1.

Lemma 1.5. Let Q be a bounded open set in a real Banach space E, P a cone of E
and A : QNP — P a completely continuous map. Suppose that Az £ x,Vx € 0Q2NP.
Then i(A,QNP,P)=0.

The basic space to study Problem (1.1) is
E ={zxcC([0,1],R) : Dj,xz € C([0,1],R)}.

E is a Banach space with the norm ||z|| = ||z||1 + ||z||2, where ||z|1 = sup |z(t)| and

||| = sup | Dy x(t)|. The following lemma is the fractional version of Ascoli-Arzéla

Theorem.
Lemma 1.6. Let M C E, then M is relatively compact in E if the following conditions
hold:

(a) M is bounded in E,
(b) the functions belonging to {x,x € M} and {z : 2(t) = D, x(t),xz € M} are
equicotinuous, i.e., Ve > 0,35 > 0,Vty,t2 € [0,1], and for all x € M,

[tr — to| <8 = |a(ts) — x(t2)| <& and |Df,a(tr) — Dy, x(tz)| < e.
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The cases where f is either regular or singular are discussed separately in Section
3 and Section 4, respectively. Some technical lemmas are collected in the following
section.

2. Fixed point setting

Consider the boundary value problem

—Dg§ u(t) =v(t), 0<t<l,
{ u(0) = D§ (1) = 0.

It is easy to verify

Lemma 2.1. If v € C([0,1]), then Problem (2.1) has the unique solution

1
u(t) :/0 H(t,s)v(s)ds

1 ol —(t—s)l 0<s<t<1,
H(t, ) = r(a){tal, 0<t<s<Ll

If we set ¢(— O+x( )) = u(t), then Do+x( ) = ¢~ (u)(t). Thus the BVP

(
- DR (6(-Dlalt) = olt), 0<t<1
o oy By L DB 20 = Do Dprh =0 @2

is equivalent to

where

~Dg.a(t) = ¢ (fy H(t,5)v(s))ds), € (0,1)

z(0) = 2/(0) = D0+ 'z(1) =0.

Lemma 2.2. Given v € C[0,1], Problem (2.2) has the unique solution

0= [ e ([ s ntonr) a

1 -1 —(t—s)f1, 0<s<t<l,
G(ts):r(g){tﬁ—l e 0<t<s<l
A direct computation yields

1 A=l (t—s)PTl 0<s<t <1,
T(B—n) | P77, 0<t<s<l.

where

DJ.G(t,s) =

Proof. By Lemma 1.3,
I§y Dgu(t) = =I5 v(t).
Then
u(t) = —ISv(t) + et P4 oot 2 e, c0 €R.
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The boundary conditions u(0) = Dgflu(l) = 0 imply ¢; = ﬁ fol v(s)ds and ¢ = 0.
Hence the solution u of Problem (2.1) is

u(t) =-— F(la fott—s" Ly ds—i—? fo
= I‘a fotal (t_s)a 1]()d5+r(aftta1()ds
= Jo H(t s)v(s)ds.
Also,
10, D0, x(t) (/ Hit, s)v )
Then

1
z(t) = —Ingqb*l (/ H(t,s)v(s))ds) + et 4 eatP 2 4 eqt? 3,
0

for some ¢1, ¢2, c3 € R. By the boundary conditions z(0) = z'(0) = D0+ 'z(1) = 0, we

have ) )
¢ = ﬁ/ ¢t (/ H(S,T)U(T)dT) ds, co=c3=0.
0 0

Finally, the explicit solution x of Problem (2.2) is

z(t) =-— F(ﬂ) fo (t—s)P 1¢ fo (T)dr)ds
+F(5) fo fo )dr)ds
= ma bl - —s) ﬂ 1 fo (r)dr)ds
F(lm f# ! fo >dr>ds
= fl (fo dT) ds.

Lemma 2.3. The function H(t,s),G(t,s), Dy, G(t,s) enjoys the properties

(a1) H,G,DJ, G are contmuous on [0,1] x [0, 1],
(G'Q) ( ) = Fa(;) < F(a)ﬂ ( ) ) [07 1] X [0, 1]7
B—1
(a3) (t 5) < Ii“(,g) < 1"(1,3), V(t,s) € [07 1] X [Oa l]a
B—1

(as) Dg+ (t,s) < w57 < T3y VY (t,8) € (0,1) x (0,1),
(a5) L5882 < Gt s) < Ud®, V(t,s) €10,1] x [0, 1],
(ag) (t 8) > p(t) sup G(¢,s), V(t,s) €[0,1] x [0,1],

te[0,1]
(ar) Y92 < DY Gt s) < 15225, V() € (0,1) x (0, 1)
(ag) D3+G(t,s) > p(t) sup D G(t,s), Y (t,s) € (0,1) x (0,1),

t€[0,1]

(1) G(t.9) = i5720) s DJLGU1,5), ¥ (1:5) € (0,1) x 0.1),
(a10) D3 Glt,s) > palt )p(t)tstl] G(t,s), ¥V (t,5) € (0,1) x (0,1),

where p(t) = ﬁ#t 11 —t)8~
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Proof. Let (t,s) €
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(0,1) x (0,1).

(a5) If s < t, then
P (t-s)P = (B [, 2P
< B-Dt—t+s)=(B-1)s
and
Al —(t—s)P1 > P (1 =) = (1 — )Pt
= (- 92— t5) — (£ — )2t )
> 1P-2(1— 8)P2(t —ts) — (t— ts)P2(t — s)
> tB2(1— s)B2[(t —ts) — (t — s)]
> =21 — 5)F25(1 — 1)
> 117
If t < s, then
= (8- 1)/ #7z < (B 1)s
0
and
N a
Hence
B=1(1 _ +\B—1 -
G sae < U v e«
(a7) For s <t
7l —(t—s)fl = 1) [, 27z
< ( )(t Sy 5)
= (8- 7 s < (B—1)s
and
L ) - el O ) Lt () Kt
= P21 — 812 (t — ts) — (t — 8)P 1 2(t — 5)
> P72 (1 = 8) P2 (t — ts) — (t — ts)P TR (t — 5)
>tﬁ T72(1 = 8)BTV2[(t — ts) — (t — s)]
> 187131 — 5)8=125(1 — )
> t8-1(1 — )81
If t < s, then
t
P = (- 7—1)/ 72z < (B 1)s
0
and
A
Hence
=11 — 1) 1s (B—1)s
TG < DJ.G(t,s) < (3~ 7)
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(ag) By (as) and (a7),

Glt,s) > T

_ IB- v)t‘g”(l )P~ (B—1)s
- (B=DL(®) ~ TG

LB—yt* ' (1-1)°~ y
> — sup D). G(t,s).
(B-1)r'(B) te[0.1] o+ G(t:5)
(a19) By (as) and (a7)
P (1—t)P s
D3+G(t,s) > %
_ It a-nft (B-1)s
R
> thl[épl] G(t, s).
O
Define the cone P
P={eeE: a(t) = \plt)lzll, DLx(t) > op(t)all, ¥t € [0,1]},
where I )
1 - }
A= max 1
ERPICES)) { T(8)
and . I )
Ao = max ,1p.
ERFICESY {rw—w }
Let ay,as € R with 0 < a1 < as be such that
t2¢(z) < ¢(tx) < t*1p(x); Vte[0,1], Vo > 0. (2.3)
Then ) )
targ t(z) < ¢ Htax) < t72 ¢ M (x); Vte[0,1], Vo > 0. (2.4)
Let .
rzei, x<1
pr(@) {xs T (25)
1
re2, <1
— - 2.6
p2(@) {x“l z > 1. 26)

From Equation (2.4), we get
pr()d Hz) < o7 (tx) < pa(t)pH(z); Vit >0,Va > 0. (2.7)

By Lemma 2.1 and Lemma 2.2, Problem 1.1 is equivalent to the nonlinear integral
equation

/Gts </ H(s, 7)a(r)f(r.2(r), DY, o(r ))dr) ds.  (2.8)

Thus the fixed point operator is the operator A : E — C([0,1]) given by

0= Gt )0 ( / H(s, 7)) (7, 2(r), DY, o >>df) ds,
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where x € P. The fractional derivative is

DJ, A( / D], ot </01 H(s,7)q(7)f(7,2(7), DJ, (T ))d’/") ds.

Lemma 2.3 will help in investigating the properties of the fixed point operator. Exis-
tence of fixed points will be investigated in the next two sections.

3. Regular nonlinear term

Suppose that f :[0,1] x RT x RT — R™ is continuous such that f(tg,0,0) # 0
for some ty € (0,1]. Let the hypotheses
(H1) There exist m € C([0,1],R") and a nondecreasing function in each argument
g € C(RT x RT,RT) such that

f(t,z,y) <m(t)g(x,y), Vtel[0,1],Va,yecRT.

(H2)
c
sup o) > 1.
>0 [w(ay + ) 19 (r«x) Jy ol dT)
(H3) There exist a,b (0 < a < b < 1) such that
t
lim M = 400, uniformly int € [a,b] and y € RT.

T—r—+00 ¢(,’1§)

Proposition 3.1. Suppose (H1). Then the operator A maps P into P and it is com-
pletely continuous.

Proof.
(1) A(P) Cc P. A(x)(t) > 0,D], Az(t) >0 V t € [0,1] and by Lemma 2.3(ag)

A@)(t) = Jy G(t9)67 (Jy Hs,7)a(r)f(r,2(r), Dy, (7))dr) ds

> p(t)
S Jo G(t, )97 (fo1 H(s,7)q(r)f (7, 2(7), Dg+33(7))d7) ds
> p(t) sup Aw(t)
te[0,1]
> p(t)| Azl

By Lemma 2.3(ag),

A@)(t) = Jy Glt9)07 (Jy His,1)a(r)f(r,2(7), Dy, o(7))dr) ds
F%})”)p( )
sup fo D], G(t,s) (fo 7)f(T,2(7), D}y (T ))dr) ds

te(0,1])
LB—9) 5(t) sup D], Ax(t)
teo,1]

%

Y%

rE P

L0 (1)) Ao

IV




Hence
A(z)

Also by Lemma 2.3(a10),
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(A(z) + Az ))
(p()][ Azllr + =
1p(8)[| Az

r(,g) p( )”AxH )

> NI= M=

Dy A()(t) = [y D3 Gt s)p ! (folH(s 7)a(r) f(r,2(7), Dj,a(r ))dT)d
> (B( Lop(t) fy ng G(t,s)
1 (Jy His,m)a(r)f (7, 2(7), DYa(r))dr ) ds
> F{ﬁ(BL)P( :ﬁ)pl] fol G(t,s)
-1 (fo H(s, T T)f(T,I(T),Dg+Z‘(T))dT) ds
> ikso(t) i Az(t)
> et Az
and Lemma 2.3(ag) implies
Dy A@() = fy DGt )67 (fy Hs,7)a(r)f(r,2(r), Dy, (7))dr ) ds
> p(t) Sup fo D0+G(t, 5)
o (fo H(s,m)a(r) (7. 2(r), Dy w(7))dr ) ds
> p(t) sup D3+Aw(t)
te[0,1]
> p(t)]| Azl
Hence
Dy, A(z) 1 p(®) | Az 1 + p(1)]| Ax]|2)

proving the claim.

(AVANAY)

Aap(t)]| A,

(2) Let D C E be a bounded set. Then there exists © > 0 such that Va € D, ||z| <.

By (#H1) and the properties (ag), (a3), (a

4) of Lemma 2.3, we have the estimates

1A@L = | [l Gt s)p" (folH(S,T)q(f)f(f,x(f),Dg+(7))dr) ds||;
< TIO (ﬁ fol (1) f(r,2(7), D} :C(T))dr) ds
< ¢ § Sy alym(r)g(a(r), Dy a(r)dr )
< % )fo (r dT) < 400

and

4@l = 1y Gt (mes ) (r). D)) s
< e Eio J a(r)m(r)g(a (), D o(r))dr )
<m0t (K58 fy atim(rydr) < +oo.
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Hence || A(z)|| < [%6)4—%]@5’1 (gr(((’;)) fol q(T)(m(T)dT), that is A(D) is uniformly
bounded.
(3) A(D) is equicontinuous. For t,t' € [0,1] (t < t’), we have

[A)(t) — Al)(t)
Jy 1G(t5) = G(t', )6 (3 H(s,)a(r)f(r,(7), Dy, o(7))dr ) ds
Jy 1G(t5) = Gt 9)|o7 (452 Jy a(r)m(r)dr) ds

IN

IN

and
[ D+ Alz)(t) — D3+A($)(t’)|
1 — r,r)
< Jo |Dg+G(t,s) = DJ.G(t',s) (g( fo dr) ds.
Then for any € > 0, there exists 6 > 0 such that
|Ax(t) — A(2")] < € and | Doy A(x)(t) — DngA(x)(t')\ <e,

for all ¢,¢' € [0,1] and |t — | < §, proving that A(D) is relatively compact.

(4) A is continuous: Let some sequence {z,},>0 C P be such that lirJrrl Ty = Xg-
- n—-+00o

Then there exists r > 0 such that ||z,|| < r, Vn > 0. By (H;), for all ¢t € [0,1], we
have

a(t) Ay (0]
= 1y Gy Hiom(r) (i) D (s

Ny H(s,T f(T wo(7), DYy xo(7))d)]ds]
< ﬁ ) ftars
and
2

1
D3 A (t) = D3 Awo(0)] < g5 7)¢1(9F(’(";’")) /O q(r)ym(r)dr).

With the Lebegue Dominated convergence theorem, we conclude that

lim |[Az, — Az =0,

n—-+4oo

i.e., A is continuous. O

We state and prove our first existence result

Theorem 3.2. Under Assumptions (H1) — (H2) hold, BVP (1.1) has at least one
positive solution.

Proof. From Condition (H3), there exists R > 0 such that
R
_ R,R) [l
[t + 197" (g%(a)) In q(7‘)m(7)dr>

Let ;1 = {z € E;||z| < R}. To prove that © # AAz for all z € 90y NP and
A € (0, 1], suppose by contradiction that there exist 29 € 921 NP and Ag € (0, 1] such

> 1. (3.1)
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that ©o = AgAxo. By (H1) and the properties (az), (as) and (a4) of Lemma 2.3, we
have

R =[x
= [ Ao Aol
< ||A330||11+ [ Azol|2 X
< s [} GO0 (] Hs 7)a(r) S 20(r). Do)l s
te
+ bl[lp Jy DYG(t,s) _1(f01 H(&T)Q(T)f(TJUo(T%D3+330(T))d7)d8
te|0
R,R R,R
< mpd 91(r<a)fo (RR) dT)""F(,B SO HEER fy a(r)m(r)dr)
< It + o (e Jo a(rymi(r)dr),

which contradicts (3.1). Lemma 1.4 implies that
(A, NP,P)=1.
Then there exists xg € Q1 NP such that Axg = z¢. Since
f(t0,0,0) # 0 and 2o (t) = A1p(t)[|zoll,

Zg is a positive solution of Problem (1.1). O

Example 3.3. Consider the BVP

_D§+ ( D0+x( )) =3 t4(1 + cos(Fts 5))(5” + D L+ 1)3,t € (0,1)
#(0) = #'(0) = D.x(1) = D, 2(0) = (D, (9~ D a(®))ima =0,

where

(3.2)

m 5

Flt9) = (1 + cos(GH)) (e 4y + D, qft) = ot and o() = 5.

Then ¢ is an increasing homeomorphism such that ¢(0) = 0. For
9(r,5) = o= (o 4y + 1T and m(t) = 1+ cos(519),

Assumption (Hz)

sup ¢ >1.013 > 1

1 1 c,c)
Ot + rE 1o <r<a o dT)

is satisfied and then all conditions of Theorem 3.2 hold. Therefore Problem (3.2) has
at least one positive solution.

The existence of positive solutions is given by

Theorem 3.4. Assume that (Hi) — (Hs) hold and suppose that there exist o, az,
0 < a1 < ag, such that

t2¢(x) < ¢(tx) <™ ¢(z), VL €0,1], Vo > 0.

Then Problem (1.1) has at least two positive solutions.
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Proof. Choose R as in the proof of Theorem 3.2. Then
(A, NP, P)=1 (3.3)

and there exist xg € 1 solution of Problem (1.1). Let 0 < a < b < 1 be as in (H3)
and

— i G(t,s) >0, by = i H(t,s) >0,
a =, win  G(s)>0 b= min H(s)

1
c=MX min p(t) >0, N>1+
t€la,b] Caz(b_ a)aza()?bof q

y (Hs3), there exists R’ > A1 R such that
ft,z,y) > No(z), Vt € [a,b], V>R, VyeR".

Define the open ball Q5 = {x cE:|z| < R?l}

To show that Az £ z for all € 905 NP, suppose on the contrary that there exists
xo € 009 NP such that Azg < x¢. Since x¢ € P, then

X0 (t) 2 A(E()(t)
= f%%t@¢* Jo H(s,7)a(m) f (7, 20(7), Dysvolr))dr ) ds

> f G(t, s) fa H(s T) ( Vf(r,20(T), D +x0(7’))d7') ds
- - mml—mf% No(wo(r))dr)
= (b—a)agp™! (boNo(R) f q(T)dr
= (b—a)aos (I meq drlo(R'))
> (b— a)aop (bONf q(r )R
> (b- a)asz"z(fq )
> &
contradicting ||zo|| = i By Lemma 1.5, we conclude that
i(A,QNP,P)=0. (3.4)
(3.3) and (3.4) imply
(A, (Q\N)NP,P)=—1. (3.5)
Then A has a second fixed point yg € (Q2 \ 1) N P. Moreover yo > A1p(t)R and
R <yl < R?/. Then xg and yo are two positive solutions of Problem (1.1). O

Example 3.5. Consider the BVP

=Dy (~Dyla()” = @3 + (D) +1), 1€ 0.1), (3.6)

€
£(0) = (0) = D, 2(1) = Dy 2(0) = [Dg, (6(~ D (1)) ]i=1 = 0,
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where f(t,z,y) = (26vt)(z +y+1),q(t) = V¢, § >0, and ¢(t) = t7, (p = % are such
that 0 < @ < b and (b — a) is an even number. ¢ is an increasing homeomorphism
such that ¢(0) = 0 and there exist a; = p?, g = p

P(z) < p(tr) < 7 p(z), Vte 0,1,V > 0.
For g(z,y) =z +y+1 and m(t) = 26v/t, Assumption (H>)

c 0.72(¥5) v ¢
Sup 1 1 g(c,c) = sup i
>0 [rtay + 19~ ( 7y dT) >0 (0(2e+ 1))
and (Hg)
i LGy 20V ty+1)
T—+00 ¢(,]j) T—+00 xP
> BT 20\/az'™P = 400, VteE[a,b], Vy>0

VTVp e P
are satisfied for § < <sup 072(2)1) . Finally all hypotheses of Theorem 3.2 are
c>0 (6(2¢+1))P

fulfilled. Hence Problem (3.6) has at least two positive solutions.

4. Degenerating nonlinear term

First suppose that f may have a singular point at z = 0 only. More precisely
f:00,1] x I x Rt — R* is continuous. Assume that
(H}) There exist m € C([0,1],RT), € C(RT,R*") and g, h, € C(I,T) such that h is

a decreasing function and 1, { are increasing functions with
ft,z,y) <m(t)g(x)v(y), Vtel0,1],Vzel, VyeRT
and for each ¢ > 0,
/01 q(T)m(7)h(cp(r))dT < 400,
(H2)

c
o0 g(c)¥(c) > L
>0 5y + =197 (F(a Yh(o) Jy a Jh(Aip(T)e )dT)
(H%) There exist a,b (0 < a < b < 1) such that
lim ftz.y) = 400, uniformly in t € [a,b] and y € RT.

xr——+00 d)(;[’)

(H}) For any ¢ > 0, there exist ¢, € C([0,1], R") and an interval J C [0, 1] such that
Pe(t) >0 in J and

f(tz,y) > e(t), Vie|0,1], Vo e (0,c,Vy € [0,
Given f € C([0,1] x I x R*,R"), define the sequence of functions {f,},>1
f”l(t7a:7y) :f(t’max{%7x}’y)7 ne {172""}7
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and for x € P, define the sequences of operators

_ /OlG(t </ H(s, 7)q(r) fu(7, 2(7). Dgw(T)) dr)ds.
Then

DY, A, / Dy, (/ H(s,7)q(r) fu(ry2(r, D] o(r ))dr) ds.

The proof of the following result is the same as that of the operator A in Proposition
3.1. We omit it.

Proposition 4.1. Suppose (H}) holds. Then for each n > 1, the operator A, maps P
into P and it is completely continuous.

As in the regular case, we prove two theorems: one of the existence of a single
solution and one of a pair of solutions.

Theorem 4.2. Suppose (H}),(H5),(H)) hold. Then Problem (1.1) has at least one
positive solution.

Proof. (1) Construction of a sequence (z,,), of approximating fixed points.
By condition (H}), there exists R > 0 such that

R
I+ rr 1 (B Jy a(r)m(h(np(r) Rydr )

Let Q; = {z € E : ||z|| < R}. Then z # AA,(z) for any z € 9Q; NP, A € (0,1] and
n > ng > %. Otherwise there exist n; > ng, 1 € 921 NP and Ag € (0,1] such that
21 = AoAp, x1. Since 1 € Q1 NP, we have z1(t) > Ap(t)||z1]| = A1p(t)R, then

R =[x
= Ao An, 21|
[An,z1[l1 + [[Az1]l2

b Jy Gt s)o (f; H(s,7)(7) fun (7. 21(), DY 1 (7)) ) ds
sup fo Dy, G( (fo T) oy (7, 21(7), D07+:c1(7))d7> ds
te[O

[t + 7107 (ﬁ I qmmmg(max{,%ﬁx1<v>}>w<D3+x1<T>>dT)
g(max{n x1(T)})
1( )})m

> 1. (4.1)

I/\ IN

IA

IN

_ 1
(7 + ry 16 (i S a(r)m()h(max{ &, @
(Dgy 1 (7))dr)
_ 1
< [ty + riile ! (BHEE Jy a(rym(r)h(hp(r) R)dr )
which is a contradiction to (4.1). By Lemma 1.4, we deduce that

(A, 21 NP, P)=1, forall ne {ng,no+1,...}. (4.2)

Hence there exists an xz,, € Q1 NP such that A,z, = z,, V n > ng.
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(2) The sequence (z,,),, is relatively compact.
(a) Since ||z,] < R, by (H}) there exists ¥r € C([0,1],RT) such that

fn(tvxn( ) D0+£17n( )) Z wR(t)7 Vte [Oa 1]
Then, by Lemma 2.3(as),

z(t) = A CCn()
= fo fo (5,7)q(7) fu (T, 20 (T), Dys 2 (7)) dT)ds
> [LG(t,s)o ([, H(s,m)a(r ¢R( )dr)ds
> (tll(%) 0] fo st (fol (s, 7)q(T)Yr(T )dT) ds.
Let . )
¢ = (f—‘(ﬁ)l) /0 s¢ 1 (/o H(S,T)q(T)i/}R(T)dT> ds > 0.
Then

xn(t) > " p(t), Vte[0,1],V n > ne.
(b) For any ¢,t' € [0,1] (¢t > t/),

o= (Jy (s, 7)) (7,20 (7), Dycien(r))d7 ) ds
< Jy |Gtt5) = Gt )| o7t (HE0E [ atrym(r)h(e” p(r))dr )

Also
|Do+xn t) — Dm—xn( )|
< Jy|pi s - Dy.a )|

¢! (fol H(s,7)q(7) fu(7, 20(7), D7+xn( ))dT) ds
< fol‘Dg+G(t,s)—Dg+G(t’,s)‘¢ (;((1;)15((?)) Ll e p(T))dT> s

Since G' and D], G are continuous, by Lemma 1.6 (), is relatively compact in E.

Then there exists a subsequence (z,, )r>1 such that i lim x,, = xo. Since x,, (t) >
- ——4o00

cp(t)Vk > 1,¥t €]0,1], we have xo(t) > c*p(t), V€ [0,1]. Since f is continuous,
by the Lebesgue dominated convergence theorem,

xo(t)
- kEI—iI-l s (t)
= hm fo ¢_1 (fol H(s,7)q(T) f,, (T, Ty, (T), Dy T, (T))dT) ds
= hmoo fo
( (s T)q(T) f(T max{ik,xnk ()}, Dy (7))dr ) ds
= f G(t.s ( fo 7). (r, max{0, z(7)}, DY (7)) ) ds
= fo G(t,s fo f(T, zo(7), Dgywo(T))dT)ds.
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Therefore xq is a positive solution of Problem (1.1). O

Example 4.3. Consider the BVP

_DE, (_D§+x(t))é—5t < Oh(DE,x), t € (0,1)
#(0) = #/(0) = Dy, (1) = D 2(0) = [Di (d(~ Dyl (1) ]e=1 = 0,

where
21,+t

f(t,2,y) = 6——Ch(y). (6> 0), q(t) = tie™" and ¢(1) = t1.

Hence ¢ is an increasing homeomorphism and ¢(0) = 0 We check the conditions of
Theorem 4.2.

(M}) Let m(t) = de’, g(z) = <, ¥(y) = Ch(y), h(y) = 1. Then 45 = ¢ and
1) are increasing,
ft,z,y) <m(t)g(x)y(y), Vt €[0,1], Vz € I, Vy € R,
and for any ¢ > 0

16
dr = — .
/ m(T h(cp(T))dr 15 < 400
(H3)
sup c > sup 81ct
c)p(c - c 3
O a7 + tp=yle (lgéa)df)t((c) Jo 4 Jh(Aap(7) )dT) >0 (0erChe)
(1) For every ¢ > 0, there exists ¢, = < such that

flt,zy) > ve(t), Vte [0,1],V Va e (0,c,y € [0,

4

3
Let 0 <6 < (Sup (ecglhc(c))g) . Then Problem (4.3) has at least one positive solution.
c>0

The existence of two positive solutions is given by

Theorem 4.4. Let (H}) — (H}) and suppose that there exist o, aa with 0 < aq < @z
such that
t2p(x) < ¢(tr) <t ¢p(x), Vt €[0,1], Va > 0.

Then Problem (1.1) has at least two positive solutions.
Proof. With R the same as in the proof of Theorem 4.2, we get
Z(An,QlﬁP,P) = 1, for all n € {Tlo,nl,...}. (44)

Then for every n € {ng,n1,...}, there exists a solution z,, of Problem (1.1) in ;.
Let 0 < a <b<1beasin (H;) and ag, by, ¢ as in the proof of Theorem 3.4. Choose

1
c2 (b —a)*af bof q(t
y (H5), there exists a positive constant R’ > max{1, )qR} such that
f(t,z,y) > Né(x), Vt € [a,b], Vo >R, VyeR".

N>1+
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Consider the open ball Q5 = {m el x| < RT/} . Then Apz &  for all z € 9Q, NP

and n € {1,2...}. Otherwise there exist n € {1,2,...} and ¢y € 9Qs NP such that
Apxg < . Since zg € 0 NP,

zo(t) > Apzo(t)
— G st (i H ™) fu(7, 20(7), Dy, o(7))dr ) ds
> (PGt ) ([0 H( s,T)q(T)f(T, max{g,xo(T)},D0+x0(7))d7) ds
= (b= a)ags ™" (bo [ a(r)No(ro(r))dr )

= (b= a)ags ™" (boNO(R) [! a(7)dr)
— @%¢1[mNﬁthﬂwR0
> (b—a)agpr (boN qu )R’
> (b a)aobo N=z (f q(T );2 R
> i
contradicting ||zo|| = R?I Finally, Lemma 1.5 entails
i(Ap, Q2NP,P)=0, Vn € N* (4.5)
whereas (4.4) and (4.5) imply
i(Ay, (0 \QU)NP,P)=—1, Vn > ng. (4.6)

Then A,, has a second fixed point y, € (Q2\ Q1) NP, Vn > ng.
In addition y, () > Aip(t)R, Vt € [0,1] and |y,| < R?l. As above, we can show that

(Yn)n>n, has a subsequence (y,,);>1 such that 'lirjra Yn; = Yo and yp is a solution
- j—+oo

of Problem (1.1). Finally R < ||yo| < 0/7 i.e., o and yo are two positives solutions

of Problem (1.1). O

Example 4.5. Consider the BVP

1 1
z 92 3 5 e2*Ch(DS% x
-DJ, (—D6‘+x(t))3 _ i3 ChDy )

£(0) = (0) = Dy, (1) = D, 2(0) = [Dg (6(~ Dy ()= = 0,

1

where f(t,z,y) = 5%, (6 > 0), q(t) = tiet. ¢(t) = t3. Hence ¢ is an
increasing homeomorphism, ¢(0) = 0, and there exist a; = 1, @y = 2 such that

o(x) < d(tx) < tip(x), vVt €[0,1], Vo > 0.

x )

0<t<1 (4.7)

(H3)

. f(t, Z, y) 62‘T
> m — 00 v > () v > ()
z—>h+oo ¢(J)) x~>h+oo J;% ’ t ’ Y ’

Choosing § < sup (%) & , all conditions of Theorem 4.4 are fulfilled and Prob-
c>0

lem (4.7) has at least two positive solutions.
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In the last part of this work, the nonlinear function f may be degenerating at
both z = 0 and y = 0. More precisely f : [0,1] x I x I — R™* satisfies Assumption
(HY), ie., there exist m E C([O7 1],R*) and g¢,h,¢,l € C(I,I) such that h,l are
decreasmg functions and ¥ -, E are increasing functions and satisfies

[t z,y) <m()g(x)d(y), Vtel0,1],Ve,yel,

and for any ¢, ¢’ > 0,
Jo a Yh(ep(T))I( p(t)dT < +oo.

Assumption (HY%) is
c

sup > 1.

>0 [ﬁ + F(gl,y)]qbil (F(i(c})lz/)cc = fO Yh(Ap(T)e )l(Agp(T)C)dT)
Regarding Assumption (#5), there exist a,b (0 < a < b < 1) such that
[t z,y)

wgrfoo o) = 400, uniformly in ¢ € [a,b] and y > 0.

As for Assumption (H}), we have that for any ¢ > 0, there exist ¢. € C([0,1],RT)
and an interval J C (0,1] such that ¢.(t) > 0, in J and

0
f(t7z7y) ZwC(t)7 Vte [Oal]a vxvye (070}'
For f € C([0,1] x I x I,R"), define the sequence (f,,)n>1 by
[t z,y) = f(t, max{L 2} max{1,y}), ne{l,2,..}

and for z € P, define the sequence of operators

t):/olG(t 5 </ H(s,7)q(r) fu(r, (7). D]l (7 ))dr)d

Then

D], A, (x / D], (/ Hy(s,7)q(7) fu(r, 2(T ),Dg+x(r))d7> ds.

As for Proposition 3.1, we can prove

Proposition 4.6. Suppose (H{) holds then, for each n > 1, the operator A, sends P
into P and is completely continuous.

As in the previous cases, we prove the existence of one solution and then two
solutions. The first result is

Theorem 4.7. Assume that (HY),(HY), (HY) hold. Then Problem (1.1) has at least
one positive solution.

Proof. From the condition (#4), there exists R > 0 such that
R

[t + 1o (rSesidr Jy a(r)m()h(p(r) R ap(r) R)dr )

>1. (4.8)
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Let & = {z € E : ||z|| < R}. We claim that z # AA,(x), for any z € 00y NP,
A€ (0,1] and n > ng > %. On the contrary, there exist ny > ng, 1 € 92 NP and
Ao € (0,1] such that z1 = A\gA,, 2. Since z1 € 92 NP, then

z1(t) = Mpt)||z1] = Mp()R, Vi € [0,1]
and
Dy a1(t) = Aep(t)||z1]l = A2p(t) R, Vit € [0, 1].
Hence

R = ||zl
= [[AoAn, 21|
< |[[An, 211 + Azl

= [Fw) + F(B 7)]
(fo s,7)q(7) f(T, max{%, z1(7)}, maux{%7 Dg+;v1(7')}d7>

< [L + 1 ]

= r(B) F(lﬁ*’Y)
o~ (et Jy alr m(T)g(max{ L) max(y, Dy (r))ir)

g(max{ ;- z1(7)})

=< [ﬁ + F(ﬁlﬂ) a) fo m(7)h(max{ -, z1( )})m
P(max{L D7, @1 (7

l(max {i D’9+m l(‘r)})l(rnax{i 0+!L‘1(T)})dT>

max(2,D,, z1(0 D)
<l + ra=ple ! (h(%%(ﬁ)w(R) @ Jo a Jh(Arp(T )R)l()\zp(T)R)dT)

which is a contraction to (4.8). By Lemma 1.4, we deduce that
i(Ap, 21 NP, P)=1, forall ne{ng,no+1,...}. (4.9)

Then there exists x,, € 3 NP such that A,x, = z,; V n > ng. As in the proof of
Theorem 4.2(2), (z,,) is proven to be relatively compact in E and thus there exists
a subsequence (z,, )k>1 such that . lim x,, = xo, where z( is a positive solution of

— 400
Problem (1.1). O
Example 4.8. Consider the BVP
1
_ ° (_ 5 ) _ o2 —2 te$+D02+m
DO+¢ D0+‘r(t) =0t (1 t) 5 ."cDO%Jrac ’ (&S (07 1) (410)

2(0) = 2/(0) = D 2(1) = D 2(0) = [D§. ((~ Dy x(t))]e1 =0,

where

o

z+y 12
flt,z,y) = 5t%e_t6$—y, (6>0), qt) =tF(1— )% and ¢(t) = £* + .

Hence ¢ is an increasing homeomorphism such that ¢(0) =
e” e¥
(H{) Let m(t) = L, g(x) = &, v(y) = <, hly) = L,1(y) = 5 Then

[tz y) <m(t)g(x)y(y), Ytel[0,1],Va,yel,
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and for any ¢,¢’ > 0

1
35
h I dr = .
; m(r)a(r)h(cp(T))I(c'p(T))dr = 5= < +oo
(H5)
e L S PTG e S BT B
> sup — =5
o0 71(6)
> 1 sup 0.94c¢

0T os0 97N (S

(H)) For any c¢ > 0 there exists 1. = M such that

ftz,y) = ¢e(t), Viel01], Vo e (0,d,y € (0,¢.

e2

>0 ¢ (5
has at least one positive solution.

4
For 6 < (sup 0.94¢ ) , all conditions of Theorem 4.7 hold. Then Problem (4.10)

The last result of this work concerns the existence of two positive solutions. The
proof is similar to the proof of Theorem 4.4 and is omitted.

Theorem 4.9. Assume that (H{) — (H]) hold and there exist oy, ae with 0 < aq < @z
such that

t2¢(z) < ¢(tx) < t*¢(x), Yt € [0,1], Vo > 0.
Then Problem (1.1) has at least two positive solutions.

Example 4.10. Let the BVP

1

DE o (~DEa()) = 6t#(1 - t)¥et 00 e (0,1
- 0+¢(_ o+97( ))— 5 (1—1) S €(0,1) (4.11)

o+

2(0) = 2/(0) = D, 2(1) = D5 2(0) = [Dg, (¢(~ D x(t)i=1 = 0,

z+y

Flt,a,y) =6tiet—— (§>0), q(t) =t5(1—1)% and ¢(t) =t + .

Hence ¢ is an increasing homeomorphism such that ¢(0) = 0. Moreover there exist
a1 = 1,as = 4 such that

tho(x) < o(tx) < té(x),Vt € [0,1], Va > 0.
Assumption (H35') reads

S bz
lim f(tvxay) > i 5&46 €

ATl 2o rane - T TETZ0

4
If we choose § such that § < (sup ¢(0 94)° 1) , all conditions of Theorem 4.9 hold.
c>0 2

Consequently Problem (4.11) has at least two positive solutions.




On singular ¢—Laplacian BVPs 113

Remark 4.11. The same results can be obtained in case the nonlinear function f has
a singular point at y = 0 but not at x = 0. The corresponding assumptions are
(HY") There exist m € C([0,1],R*),¢ € C(RT,R") and g,l,€ C(I,I) such that [ is
a decreasing function and g, % are increasing functions with

ft2,y) < m)gla)yi(y), Vitel(0,1],Ve e R, Vyel

and for each ¢ > 0,

/0 q(T)m(m)l(ep(T))dr < 400,

(H3")
sup > 1.
c - c)(c)
>0 [y + vl (g(a)l fo Yh(A2p(7) )dT)
(H%") There exist a,b (0 < a < b < 1) such that
t
lim ftoy) = +o00, uniformly in ¢ € [a,b] and y > 0.

T— 00 QS(I)

(H}") For any ¢ > 0 there exists 1. € C([0,1],R") and there exists an interval
J C (0,1] such that v.(¢t) > 0, in J and

flt,zy) > we(t), Vtel0,1,V Vae[0,c],y € (0,]
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