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Certain class of analytic functions defined by
g—analogue of Ruscheweyh differential operator

Mohamed K. Aouf, Adela O. Moustafa and Fawziah Y. Al-Quhali

Abstract. In this paper, we obtain coefficient estimates, distortion theorems, radii
of close-to-convexity, starlikeness and convexity for functions belonging to the
class TB;\ (v, B) of analytic starlike and convex functions defined by g—analogue
of Ruscheweyh differential operator. Also we find closure theorems, Ny 4.5(e, g)
neighborhood and partial sums for functions in this class.
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1. Introduction
Let S be the class of analytic and univalent functions of the form:
(o9}
f(z):z—l—Zakzk,zeU={z:z€C:\z|<1}. (1.1)
k=2

Also let §*(a) and C(«) denote the subclasses of S which are, respectively,
starlike and convex functions of order a(0 < o < 1), satisfying (see Robertson [30])

* = : and Re zf,(z) «o
S(a)_{f.fes dR (f(z)>> }, (1.2)

C’(a):{f:feS andRe<1+Zf, (Z)>>oz}. (1.3)

and

f(z)
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It readily follows from (1.2) and (1.3) that

f(z) € Ca) & zf (z) € S*(w).
For 0 < g < 1 the Jackson’s g—derivative of a function f(z) € S is given by [22]
(see also [2, 3, 8, 13, 17, 20, 24, 34, 35, 39))

FE=H@) g 4 )
D, f(2) ={ ; (=0 7 (1.4)

’

(0) for z=0,
For f(z) of the form (1.1), we have

o

Z akz ; (1.5)

where

(0<g<1; neN={1,2,..}). (1.6)

Kanas and Raducanu [23] (see also Aldweby and Darus [1]) defined the g—analogue
of Ruscheweyh operator by

ARkt (0<g< 1A= 0), (1.7)
k=2
where
n], [n—1],..[1],, neEN,
nl | = a 1 4 1.8
i, { . - (18)
From (1.7) we obtain that
Ryf(2) = f(z) and Ryf(z) = 2Dy f(2),
and
— 1
lim R)f(z)=z+ Z (k + A arz® = R M f(2), (1.9)

q—1-
where R is the Ruscheweyh dlfferentlal operator (see [32] and [4, 7, 10, 14, 18)]).

Definition 1.1. For 0 <¢<1,0<a<1,8>0and A >0, let Bg‘(a,ﬁ) be the class
of functions f € S satisfying

2Dy(R)f(2)
Re {RV() - “} >
Let 7 C S such that:

{fes fz —Z—Zakz ak>0} (1.11)

(1.10)

2Dy(Ryf(2)
YR

and
TB)(a,B) =B (e, )N T. (1.12)
Note that
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zD f(z 1

(i) TB (e, 8) =S3(e, B) = {f € T+ Re {ZeE2 —a} > 5|25 zeU};

(ii) TBY(a, 0) =TBy(ar) = {feT Re{ 2 §)}>a};

(i) lim TBY(0,8) = S,(0.5) = {f €T : Re { £
>5{ﬁé)

(iv) TBL(a 6):UC’Sg(a,B):{feT;Re{M_a}

_ 1} ,z € U} (see [29] and [36]);

qu(z)

> | Pl — 1z e Uy
(v) T q(Oé,O):Cq( ):{fGT:Re{%}>OZ’Z€U};
(vi) lim TBl(a B) =UCS,(a,8) ={f€T: Re{lJr 2 (2) a}
a—=1- ()
> Jf—(‘)’ ,z € U} (see [29]);

(vit) ql_i}r{lﬁ TB;)(a,3) = Sp(a, B) (sce Rosy et al. [31]).

2. Coefficient estimates

Unless indicated, we assume that 0 < a < 1, 8> 0,A > 0,0 < ¢ < 1 and
fz)eT.

Theorem 2.1. A function f(z) €TB)(a, ) if and only if

3 [[k]q (1+8) - (a+ 5)] %ak <1-a. (2.1)

k=2

Proof. Assume that (2.1) holds. Then it is suffices to show that

qu(R;\f(Z)) qu(Réf(Z))
W_l _Re{Ré‘f'(z)_l} <l-a.
We have
DRI | L (DR
R3f(2) R
D, (R
(1+ﬁ)2%([k] Dar

= s [F+A=1]} .

lik:QW%

This last expression is bounded above by (1 — «) since (2.1) holds.



52 Mohamed K. Aouf, Adela O. Moustafa and Fawziah Y. Al-Quhali

Conversely if f(z) GTBA(a, B) and z is real, then

[k+A—1],! » o [kA—1],! B
R {1—k , TN = 1] 7 k] arz" } > 5 22 T, 1] 7 ([k],—1)ayz"
(S — — .
) [k+)\ 1] ! -
1

A = o= !
*gzi[x]q![k_uq!akz =2 7@] Me—1] 19k="

M8

Letting z — 1~ along the real axis, we obtain (2.1). Hence the proof is completed. O

Corollary 2.2. For f(z) € TB}(a,f3),

11—«

ak<

i (k=2) (2.2)

|:[k]q(1+6) (a +5)}m

and .
—
s (k=2), (2.3)

(K], (1+8) = (@ + )| prmets

Jz) =z
|

gives the sharpness.

Remark 2.1. Letting ¢ — 1~ in the results of Section 2, we get the results of Section
2 for the class S (a, 3) studied by Rosy et al. [31].

3. Growth and distortion theorems

Theorem 3.1. For f(z) € TB)(c, ) and |z| = r < 1, we have

JEIEYS — ” (3.1
(121, 1+ 8) — (a+B)| 1+,
and )
F(2) <+ - 2. (3.2)
(121,14 8) = (a+ 8)] [1+ A,
FEqualities hold for
L-o 2, (3.3)

fz) =z -
(121,14 8) = (a+8)] [1+ 2,

at z =7 and z = re!GFHDT (k> 2).

Proof. Since for k > 2,

[21(1+8) = (a+ B+ Mg Y ar < D [kl(1+8) — (a+ B) fm—itra < 1—a,
k=2 k=2

then

Y an< 1-a . (3.5)

= 2,048 -+ 1+,
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From (1.12) and (3.5), we have
-« 9

2, (L4 8) — (a+ B)] [1+ A,

|f(z)\2rfr2iak2rf
k=2 {

and

l1—«
r2.

U@M§r+r2ma <r+
2 [12, 1+ ) — (a+ O] 11+,

This completes the proof.
Letting ¢ — 17 in Theorem 3.1, we have
Corollary 3.2. For f(z) € Sp(«, 3), then

1—«a 9
and )
-«
&I+ gy aen
Equalities hold for
fe) =2 S

Q+B8-—a)d+n""
at z =7 and z = re!GFHDT (k> 2).

Proof. Letting ¢ — 1~ in Theorem 3.1, we can show (3.8) and (3.9).
Theorem 3.3. Let f(z) € TB;‘(a,ﬂ). Then for |z| =r < 1,

4 >1_ 2(1—a)
‘f (z>‘ = ) e A

T',
q

and

4 2(1—a)
‘f (2)‘ S @arh-Gane,
The sharpness are attained for f(z) given by (3.3).

Proof. For k > 2, we have
‘f/(z)‘ <1- erak.
k=2

We find from (2.1) and (3.5) that

21, A+B) AN +1],> kar < 2(1—a)+2(a+B)N+1],> ax
k=2 k=2

2(a+ B)(1 — «a)

IA

2(1—a)+

21,1+ 8) = (@ + B)]
2[2], (1+8)(1 - o)
121,14+ 8) — (a+8)]

93

(3.11)

(3.12)
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that is, that

2(1 — )
kap < .
2o [12, (1 +5) — (a+ O] P+ 1],

From (3.11) and (3.12) that

/ >1_ >1_ 2(1—a)
’f (Z)‘ 21-r) kap>1 [2],(0+8)—(at+B)|0+A],

k=2
and
’ 2(1—a)
< < .
’f ()| <1+ T};k“’“ N PR ) [

This completes the proof.

Theorem 3.4. For f(z) € TB;‘(a,ﬁ) and |z| =7 < 1,

(2],(1-a)
> — q
[Daf(z)l 21 (2], (+6)— (et ]I+,
and
Dof () <1+ G s

21, (1+8)— (a+ AL+ A,

The sharpness are attained for f(z) given by (3.3).

Proof. For k > 2, we have

o0

Dy f() < 1—r Y [K],ax.
k=2

We find from (2.1) and (3.5) that

A+ HP+, S Wya < (-a)+(+B)R+1,Y
k=2 k=2
N CR (C)
121, 1+ ) = (a + B)]
2], (1 + A1~ a)
12,1+ 8) (0 +8)]
that is, that
= 2), (1 - a)
(K], ax < . ;
2 (12, (14 6) ~ @+ )] A +1],

From (3.16) and (3.17) that

- [2], (1—a)
>1-— E >1-— 4
Daf(2)] 21 Tkﬂ kg ax 21— Grass S,

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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and
[2],(1—a)

<
[Daf ()l <1 +TZ o S ¥ s A,
This completes the proof.

Letting ¢ — 17 in Theorem 3.4, we have

Corollary 3.5. For f(z) € Sﬁ‘(a,ﬁ), then

’ 2(1—a)
f (2)‘ >1- (2+B( a)(?1+>\)
and
’ 2(1—a)
o =V

The sharpness are attained for f(z) given by (3.10).

95

(3.20)

(3.21)

(3.22)

Proof. Letting ¢ — 1~ in Theorem 3.4, we can show (3.21) and (3.22). Then Corollary

3.5 corresponds to Theorem 3.3 when ¢ — 17

4. Closure theorems

Let f;(2) be defined, for j =1,2,...,m, by
z)=2z— Zakvjzk (ar,; >0, z €U).
Theorem 4.1. Let f;(z) € TB;‘(Oé,ﬂ) for j=1,2,....m. Then

2= ¢fi(2)
j=1

is also in the same class, where c; >0, > c¢; = 1.
i=1

Proof. According to (4.2), we can write

m

DI e
k=2 \j=1
Further, since f;(z) € TBa\(a,B), we get

> [, 0+ 8) — (o + B)| prmrirans <1-a.

k=2

O

(4.1)
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Hence
Yk, (14 8) — (o + B)] it Z cjar;)
k=2
=YD [klg(1+ 8) — (o + B Fgitran ]
j=1 k=2
<D |l-a)=1-a0, (4.5)
j=1
which implies that g(z) € TB;‘(a, B). Thus we have the theorem. O

Corollary 4.2. The class TB;‘ (a, B) is closed under convex linear combination.

Proof. Let f;(z) € TB)(c, ) (j = 1,2) and

9(2) = pfi(2) + (L= p)fa(z) (0<p<1), (4.6)
Then by, taking m = 2, ¢; = p and ¢ = 1 — p in Theorem 5, we have g(z) €
TB(a, ). O

Theorem 4.3. Let f1(z) = z and

fe(z) =2z — l—a (EZE 2k (k>2). (4.7)
[[k]q(1+5)*(a+ﬂ)}W_1i!

Then f(z) € TB,(a, ) if and only if

2) = pfr(2), (4.8)
k=1
where p >0 (k> 1) and > g, = 1.
k=1
Proof. Suppose that
Z“’ffk Z = hFA—1],! pr. (4.9)
— [k, (148) - (a+ﬁ)]m
Then it follows that
0 [[k], (14+8)~( +ﬁ)]7[ i L
« ME—1] ! _
Z [][ ]q_ 1 [k+,\ 1]'Mk_ZMk_1—M1<1
k=2 [[k],(1+8)— (a+5)]m k=2

(4.10)
So by Theorem 2.1, f(z) € TBy(c, ). Conversely, assume that f(z) € TB)(a, ).
Then

ap < S —r (k>2). (4.11)
[k, 0+8) = (e+B) 1111
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Setting
— !
4], (1) 0+ B)] [y tmir
M = T 4 = ag (/f 2 2), (412)
and
==, (4.13)
k=2

we see that f(z) can be expressed in the form (4.8). This completes the proof. O

Corollary 4.4. The extreme points of TB(;\(a,ﬁ) are fr(z) (k> 1) given by Theorem
4.3

5. Some radii of the class 7B} («, 3)

Theorem 5.1. Let f(z) € TB)(a, ). Then for 0 < p <1,k > 2, f(z) is
(i) close -to- convex of order p in |z| < ri, where
- ktA—1],! 7 T=D

[
] (1=p)[[k],(14+8) = (e+B) 3T 11T
= Tl(‘]a Q, ﬂ? Aap) = H]if . E(1—a) [ ]q [ ]q . (51)

(ii) starlike of order p in |z| < rq, where

r [k+A—-1] ! 7 ﬁ
] (1—9)[[7€]q(1+ﬁ)—(a+ﬁ)]m
T2 = 7'2((], Q, ﬂv >‘a p) = H]if (k—p)(1—a) . . . (52)

(iii) convez of order p in |z| < r3, where

- [k+A—1],! 7 =D
] (1—9)[[k]q(1+ﬁ)—(a+ﬁ)]m
r3 = 7’3((], a, ﬂv )‘a P) = H]if k(k—p)(1—a) . < . (53)

The result is sharp for f(2) is given by (2.3).
Proof. To prove (i) we must show that
£ =110 for o] <ri(g.0,8.p).
From (1.12), we have
‘f/(z) - 1‘ <3 ka2
k=2
Thus
FEOESIESEYS
if

k _
<> a7 <1 (5.4)
I—p
k=2
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But, by Theorem 2.1, (5.4) will be true if

[k+A—1], !
k | |k71 < [[k]q(1+5)*(a+ﬁ)]m
1— p z — 11—« ’

that is, if
[k+A—1] ! (=]
(1—P)[[k]q(1+5)—(0¢+5)] N k=11
|z] < E(1—a) : . (k = 2), (5.5)

which gives (5.1).
To prove (ii) and (iii) it is suffices to show

2f(2)
-1 <1—p for |z| <19, 5.6
e g (56)
2 (2)
_ <1-—p for |z| <rs, (5.7)
f(z)
respectively, by using arguments as in proving (i), we have the results. O

6. Inclusion relations involving N ,s(e)

In this section following the works of Goodman [21] and Ruscheweyh [33] (see
also [5], [6], [9], [16], [26] and [28]) defined the k, § neighborhood of function f(z) € T

by

Nis(f;9) = {g eT:g9(z)=z— Zbkzk and Zk’ lag, — b| <6 } . (6.1)
k=2

k=2

In particular, for the identity function e(z) = z, we have

Ny s(e;g) = {g €T :g9(z)=2z— Zbkzk and Zk |br] <8 } . (6.2)
k=2

k=2
Aouf et al. [12] defined the k, ¢, § neighborhood of function f(z) € T by

Niyq,5(f39) = {g €T :g(z)=2—Y bez" and Y _[k], [ax — be| <4, } . (6.3)
k=2 k=2
In particular, for the identity function e(z) = z, we have
Niq5(e;9) = {g €T :g(z) =2z~ Zbkzk and Z [k]q |br| < dq } . (6.4)
k=2 k=2

Theorem 6.1. Let

_ (1-a)
%= [12], (14+8)—(atB)|[A+1], (6.5)

Then TB) (v, 8) C Nig5(e).
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Proof. For f € TB}(a, ), Theorem 2.1, (3.5) and (3.18), and in view of the (6.4),

Theorem 6.1 follows.

O

A function f € T is in the class TB;‘(a,ﬂ,ﬁ) if there exists a function

g €TB)(a, 3) such that
‘f(z)
9(z)

Now we determine the neighborhood for the class TB;‘(oz7 B,€).

1‘<1§q (zeU, 0<& <),

Theorem 6.2. If g GTB;I\(Q,B) and

g =1 — ull,048)—(ar B 1],
a 2{[12],(1+8)—(a+B)| A +1],—(1—a) }’

where

{2,048 - @+ n+1],-(1-a)}
2,048 - (@+p|n+1,

Then Niq,5(9) C TBy(a, 3,6).

5y <

Proof. Suppose that f € Ny ,s(g) then

M8

(K], lak — bi| < dq,

b
[|

2

where d, is given by (6.5), which implies that the coefficient inequality

Z |ak — bk‘ S i
P 2],

Next, since g € TB;‘(a,ﬂ), we have

o0
< 17&
;bk = [21, 0+8)—(atB)| A +1],’

so that
S Jax—bil ) _
fz) ’ =2 < Y [[2], (1+8) = (a+8)| A +1], <1_
8- < Ea SR, e, < S
k=2

(6.6)

Provided that &, is given precisely by (6.7). Thus, by definition, f € TBt;\(cLﬁ,g),

which completes the proof.

0
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7. Partial sums

For f(z) of the form (1.1), the sequence of partial sums is given by
z)=z+ Zakzk (m e N\ {1}).
k=2

Now following the work of [38] and also the works cited in [11, 15, 19, 25, 27,
31, 37] on partial sums of analytic functions, to obtain our results. Let

[k+x—1],!
) = Wk, 8) = [[K], (1+ B) - (o + B)] Syt (7.1)
Theorem 7.1. If f € S, satisfies the condition (2.1), then
f(2)> (I)t/l\m+1_1+a
Re > —= , 7.2
(.f’rn(z) (I)é,m+1 ( )
where
1—a, if k=23,....m
(I)q k = . (73)
<I>qm+1, if k=m+1m+2,..
The result (7.2) is sharp for
l1-a
f(z)=2z+ FYSI 2™t (7.4)
q,m—+1

Proof. Define g(z) by

m % oo
1+k22akzk71+ (7{’1’31 > k—z+1akzk71
= = . (75)

1—-g(2)

A A
14g(2) _ 2omtr | f(2) _ Pgmp—lte|
I—a f"L(Z) q>qA,'m+1

1+ in: apzk—1
k=2
It suffices to show that |g(z)] < 1. Now from (7.5) we have

A
P o0
(—%’T“) X oaget!

9(2) = e ~
2+2Zakzk 1+(7q1m:1> > apzk?
k= k=m+1
Hence we obtain
E2s )
(—quﬂ;l) 5 Jasl
l9(2)| < —

2 2zwauf(w) $ Jaul

k=m+1

Now |g(z)| < 1 if and only if
(I))\ T [eS) m
2 % D lakl <2-2) faxl,
k=m+1 k=2

or, equivalently,
S 9

Z|ak|+ > &Zwaﬂg.

k=m+1
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From (2.1), it is sufficient to show that

m 00 (I))‘ 00 (I)A
Dolal+ D Sl <3t la
k=2 k=m+1 @ k=2 @

which is equivalent to

N (8 1t . (o e
Z(q”f_(f )Iak|+ 3 (1_&”*) lag| > 0. (7.6)

k=2 k=m+1

For z = re'™ ™ we have

flz) 1— k 1— o @k’m —14+a o
fm(z) - 1 + ﬁz - 1 N (bé,moj»l q¢)£;+1 Where r— 1 k)
which shows that f(z) is given by (7.4) gives the sharpness. =

Remark 7.1. (i) Putting A = 0 and (i7) A = 1 in Theorem 7.1, we obtain the following
results, respectively.

Corollary 7.2. If f € S, satisfies the condition (2.1) and @ #0(0 < |z| < 1), then

f(z) [[m+1],(148)—(a+B)] ~1+a
> 4 .
Re ( Fn(z)) = lmt1,048)—(@+B)] (7.7)
The result is sharp for
f(z)=z+ [ 1o 2™t (7.8)

[m+1],(1+8)—(a+8)]

Corollary 7.3. If f € S, satisfies the condition (2.1) and @ #0(0 < |z < 1), then

f(z) 1—
>1-— o . .
Re <fm(z) =1 [m+1], [[m+1],(1+8)—(a+8)] (7.9)
The result is sharp for
flz) =2+ Lo ]zm“. (7.10)

[m—+1], [[m+1], (148)— (a+8)

Theorem 7.4. If f € S, satisfies the condition (2.1), then
A
Re <fm(z)> > roamtl (7.11)

fe) ) 2 T

1 is defined by (7.1) and satisfies (7.3) and f(z) given by (7.4) gives the

A
where ®7 .

sharpness.

Proof. The proof follows by defining

1+ g(Z) — éé\,m+1+1*0‘ fm(z) _ ¢;,m,+1
=g~ o | f(z)  Bearis
and much akin are to similar arguments in Theorem 7.1. So, we omit it. 0

Remark 7.2. (i) Putting A = 0 and (#) A = 1 in Theorem 7.4, we obtain the following
sharp results, respectively.
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Corollary 7.5. If f € S, satisfies the condition (2.1) and @ #0(0 < |z| < 1), then
Re (fm(2)> 5 [mt1],(148)~(a+8)

f(z) ) = POt i—a

Corollary 7.6. If f € S, satisfies the condition (2.1) and @ #0(0 < |z| < 1), then

(7.12)

Jm(2) [m+1], [[m+1],(1+8)—(a+5)]
> 4 4 . .
Re( f(z) ) = [m+1],[lm+1],(1+8)~(atB)[+1-a (7.13)
Theorem 7.7. If f € S, satisfies the condition (2.1), then
F(2)\ o s (miD(-a)
e <f7/n(2) = +1q’2.,m+1 ’ (7'14)
and
Fmn(2) 0 s
e ( f(z) 2 @ (e (7.15)
where <I>(’1\’m_,_1 >(m+1)(1—a) and
E(l-a), if k=23,....,m
(7.16)

(I))‘ > N
ok = k(f;;{;), if k=m+1,m+2,..
f(2) is given by (7.4) gives the sharpness.

Proof. We write
l+g(z) a2, | () [(®,.,-mii-a
T—g(z) 0D | 770 |

‘I’é‘m-u = & k—1
mtD(A—a) kiZ arz

m41

™m Fy ) .

where

9(z) =

Now |g(z)| < 1 if and only if

Zk |ak| + ((erql;nIrla)) Z k |ak\ < 1.

k=m-+1
From (2.1), it is sufficient to show that

oo

Zk|ak| + ((m_:l;(l;rla)) Z klag| < Z

k=m+1

which is equivalent to

i( qk—k(l a)) ‘_’_ Z ((m+(1)¢>>‘1k k‘i’q)m+1> |ak| >0
m—+1) = 7

k=2 k=m+1
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To prove the result (7.15), define the function g(z) by

149(2) _ mena-a+ed,, | fml2) ®) it
1— g(Z) - (m+1)(1—a) f’ (Z) (m+1)(17a)+<1>;m+1 ’
and by similar arguments in first part we get desired result. O

Remark 7.3. (i) Putting A = 0 and (i¢) A = 1 in Theorem 7.7, we obtain the following
sharp results, respectively.

Corollary 7.8. If f € S, satisfies the condition (2.1) and @ #0(0 < |z| < 1), then
Re ( / (Z)> >1- —(mtl-a) (7.17)

() 1], (1+8)—(a+5)’

and

Re (%(z)) S [m+1], (146)— (o) (7.18)

(z) | = (B~ (et A +mtD(A-a)*

Corollary 7.9. If f € S, satisfies the condition (2.1) and @ #0(0 < |z| < 1), then
f'(2)

Re ;
(fm(Z)

Re (fm(2)> [m+1], [(m+1)(148)—(a+8)]

_ (m+1)(1-a)
) 2 1~ G e A -G AT (7.19)

and

Z [ 11, (A ) A A)— @+ AT+ (T D1—a) (7.20)

Remark 7.4. Letting ¢ — 1~ in Theorems 7.1, 7.4 and 7.7, respectively, we get
Theorems 4.1 and 4.2, respectively, for the class S;‘(a, B) studied by Rosy et al. [31].

Acknowledgements. The authors express their sincere thanks to the referees for their
valuable comments and suggestions.
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