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Popoviciu type inequalities for n—convex
functions via extension of weighted Montgomery
identity

Asif R. Khan, Hira Nabi and Josip Pecari¢

Abstract. In this article, we derive the Popoviciu-type inequalities by using the
weighted version of the extension of Montgomery’s identity and Green functions.
By considering the n-convex function, we prove some identities and related in-

2l B1
equalities involving sums Z 0i¢(x:) and integrals / 0(x)¢(g(x)) dx. Some re-
i=1 o1
sults for n-convex functions at a point are also obtained. Besides that, some
Ostrowski-type inequalities are also presented, which are interrelated with the

obtained inequalities.
Mathematics Subject Classification (2010): 26A51, 26D15, 26D20.

Keywords: n-convex functions, n-convex functions at a point, Weighted Mont-
gomery identity, Green’s function, Ostrowski type inequalities.

1. Introduction
Pecarié¢ [15] established the following result (see also [18, p.262]):
Proposition 1.1. The inequality
ol
> 0i(xi) 20 (1.1)
i=1
holds for all convez functions  if and only if the y—tuples
X:(Xla"'7X’y)7 Q:(Qla"'aQV)ER7
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satisfy

v ¥

Zgi:() and ZQHX@*X,JZOVHE{I,...,’Y}- (1.2)

i=1 i=1

Since

v ¥ v

D oilxi = xel =20 = xe)t — Y 0i(Xi — X),

i=1 i=1 i=1

where y; = max(y, 0), it is easy to see that condition (1.2) is equivalent to

2

v v
Zgi:O, Zgixi:O and ZQi(Xi—Xm)—F >0 for k € {1,...,7—1}. (1.3)
i=1 i=1

i=1

Let x(1) < x(2) < ... < X(y) be the sequence x in ascending order, w(x,7) = (x —7)+
and Ay denote the linear operator

Ao(C) = Z 0iC(Xi)-

Notice that

For 7 € [X(H)7X(H+1)] we have
Aw(,7)) = Aw(, xm)) + () = 7)Y 0
{E:xi>X(r)

so the mapping 7 +— A(w(-, 7)) is linear on [X(x), X(s+1)]-
Additionally, A(w(-, x(y)) = 0, so condition (1.3) is equivalent to

g 2 g
Z 0; =0, Z 0ixi =0 and Z 0i(xi —T)+ 20V T € [xa) X(v—1)]- (1.4)
i=1 i=1

=1

It comes out that condition (1.4) is suitable for extension of Proposition 1.1 to
the integral version and the more general class of n-convex functions (see e.g. [18]).

Definition 1.2. The nth order divided difference of a function ¢ : I — R at distinct

points Xi, Xit+1,-- s Xi+n € I = [a1,b1] C R for some ¢ € N is defined recursively by:
[xj; ¢ =C(xj), JEefi...,itn}
[xi Yini (] = [Xi+15 -5 Xin3 € = X5 - -+ Xin—13 (]
oA Xi+n = Xi

It may easily be verified that

[Xi, ey Xitns C} = Z - C(wi+n) ’

=0 L Zi jin (itn = X5)
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Remark 1.3. Let us denote [Xy, ..., Xitn;C] by Ap)C(xi). The value [xi, ..., Xitn; (]
is independent of the order of the points X;, Xi+1,-- -, Xi+n. LThis definition can be
extended by involving the cases in which two or more points coincide by taking re-
spective limits. O

Definition 1.4. If for all choices of (n + 1) distinct points x;,...,Xi+n Wwe have
AyC(x:) > 0 then the function ¢ : I — R is called convex of order n or n—convez.

If the function is nth order differentiable such that (™) > 0 then ¢ is n-convex. A
function ¢ is n-convex for 1 < k < n—2, if and only if ¢(*) exists and is (n—k)-convex.
Popoviciu [19], [20] obtained the following result (see also [17, 18, 22]).

Proposition 1.5. Let n > 2. Inequality (1.1) is valid for all n-convex functions
¢ : [a1,b1] — R if and only if the y—tuples x € [a1,b1]7, 0 € RY satisfy

M-

oixs =0, Ve=0,1,...,n—1 (1.5)
1

IR

Il
—

0i(xi — 7')1_1 >0, Vré€la,b]. (1.6)

K2

Definitely Popoviciu established a significant result - it is adequate to postulate
that (1.6) holds V 7 € [X(1), X(y—n+1)] and then, because of (1.5), it is automatically
stated V 7 € [a1, b1]. The integral version is given in the following proposition (see
[17, 18, 21)).

Proposition 1.6. Let n > 2, ¢ : [a1,51] — R and g : [a1,51] — [a1,b1]. Then, the
inequality

B1
/ 2(0)C(9(x)) dx = 0 (L)

1

holds for all n-convex functions ¢ : [a1,b1] — R if and only if

B1
/ o()g(x)"dx =0, Vrk=01,....n—1

ﬁ?l (1.8)
/ o(X) (g(x) =) dx =0, V7€ [ay,bil.

a1

In this article, we would like to establish some inequalities of type (1.1) and
(1.7) by using the following extension of Montgomery’s identity via Taylor’s formula
for n-convex functions obtained in [1].

Proposition 1.7. Let ¢ : I — R be such that ("= is absolutely continuous, n € N,
a1,by € I, a1 < by, I CR an open interval, w : [a1,b1] = [0,00) is some probability
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density function. Then the following identity holds

by
¢ = / w(r)(r)dr

ai

n—2 (k+1) a X 1
+;;)C(I€+(1)!)/al w(s) ((X—al)’ﬁ' (-

n—2 (k+1) b
_|_ZC (b1

ar)" ) de

by
D70 (= b = (= by de

(k1) ),
L (n)
1\ Tw n X " d R 1.
Gy [, Tl s (19)
where
<
[ = W0 (=9
X
< ¢ <
Tonlee) =3 e L X (1.10)
/ w(w)(u— )" tdu+ (W(x) — 1) (x — )",
X
X <g S bl
If we put w(r) = ﬁ, T € [ay, b1], the above identity reduces
1 b1 n—2 C(nJrl) (al) (X _ al)n+2
() = e C(T)dr+;) T R
n—2 — K+2 b
¢V () (x = b1) 1 / o
_ T (v, . 7
— kl(k+2) bi—a (n—=1"J,, (069 ¢ () de
(1.11)
where
_n(gzl__gizl) ;Cl__c;ll (X - g)n71 ,  ay S S S X
_ e n—1
- -9 ) <gq S by.
nb—a) b—a (x ) X 1
n—2

In case n = 1 the sum Z

k=0

is empty, so identity (1.11) encounters to the

renowned Montgomery identity (see for instance [13])

1

¢(x)

bl —ay a

b1

P (x,¢)¢ (s)ds

ai

(r)dr +
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where P (x,¢) is the Peano kernel, given by

S —ap

b av a1§§§X,
1 — d1
P(X,(): c—by
) X<§§b1~
bl—al

The weighted version of Montgomery identity can be found in [14]:
Proposition 1.8. Let ¢ € AC[a1,b1]. Suppose that w : [a1,b1] — [0, 00) is satisfying

some probability density function, i.e., it is a positive integrable function and

0, 7<an,
W =1 [ wtodn 7€l
1, 7>0b.
Then N .
= [ () dr + /  Pu, () dr

where the weighted Peano kernel is given by

P ( ) W(T)v a STSXa
w X, T) =
X W(r)—1, x<7<b.

Let us denote the Green’s function by G : [a1,b1] X [a1,b1] — R with the
boundary value problem
2"(N\) =0, z(a;) = z(b) = 0.
The function Gy is defined as
(1 —b1)(s —a1)
b1 — a1
(s —b)(r —ai)
bl — a

fora; <¢ <,
Go(1,6) = (1.13)

fort<¢<lh

and for any function ¢ € C?[ay, b;],the following identity induces using integration by
parts

ai

by — —
€00 = gl + §—=be(b) + | Goloo)"(Ods. (1.14)

The function Gy is continuous, symmetric and convex with respect to both variables
7 and <.
As a special choice Abel-Gontscharoff polynomial for ‘two-point right focal’ interpo-
lating polynomial for n = 2 can be given as (see [16]):

b1

) =¢la) + (x —a))d" (b)) + [ Gilx, 7)¢"(7)dr. (1.15)

ay
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where G1(s,7) is Green’s function for two-point right focal problem defined as

a1 —T for a1 <7 <y, (1.16)
a; —¢ for ¢ <7< by

G1(§,T) = {

Motivated by Abel-Gontscharoff identity (1.15) and related Green’s function (1.16),
we would recall here some new types of Green functions G : [a1,b1] X [a1,b1] — R
for I € 2,3,4 defined as in [3]:

—b fi <7<

Gals,r)=4° " T =T = (1.17)
T—0b1 forc<7t<lh;
- fi <7<

Gyle,m) =4 " o =T=5 (1.18)
T—a1 for¢c<7<lh

by —T1 for ag <71 <g,

(1.19)
by —¢ for¢ <7 <b

Gy (§, T) = {
In [3] (see also [4], [12]), it is also shown that all four Green functions are symmetric

and continuous. These new Green functions enable us to present some new identities,
stated as follow

by

C(x) = ¢(b1) + (br — x)¢(ar) + Go(x, 7)¢" (T)dr. (1.20)

ay

by

C(x) = ¢(b1) = (b fal)C’(lh)+(X*a1)C'(a1)+/ Gs(x,7)¢"(r)dr.  (1.21)

ai

by
() = C(ar) + (b1 = a1)¢’(a1) = (br — x)¢' (b1) +/ Ga(x,<)¢"(r)dr.  (1.22)
ay
To recall definitions of a generalized convex function and related concepts and results
we refer to interested readers following references [11], [6] and [18]. This article is
arranged in the following manner. In Section 2 we will obtain inequalities of type
(1.1), (1.7) for n-convex functions by using the extension of Montgomery’s identity
(1.11). In Section 3 we will give some discrete and integral nature identities and
corresponding linear inequalities using Green functions and applying extension of
weighted Montgomery identity. In both sections, we will discuss a generalization of the
class of n-convex functions introduced in [17]. On the basis of this discussion, we will
give related inequalities for n-convex functions at a point. we will also provide some
Ostrowski-type inequalities by obtaining bounds for the remainders of the identities
from obtained results.
We will first prove some results that will have a crucial role in each Section of
the paper. Then we will propose some Related Popoviciu type inequalities.
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2. Popoviciu type identities and inequalities via extension of weighted
Montgomery identity

Theorem 2.1. Under the assumptions of Proposition 1.7 and let T, , be defined by
(1.10). Additionally, let x; € [a1,b1], 0; € R forie {1,2,...,7} and v € N be s.t.

5
> o=
i=1
Then
Y n— QC(K+1) 2 Xi T 1
;QiC(Xi)_KZo CESI 122@; w(<) ((xi —a1)™ = (¢ —a1)"*) de

Y by

Z /X w '_bl)ﬁ+1 (g_bl)/ﬁtl) de

i

n— 2<(N+1 b1

k=0

by Y
+mi1/i<2:“mxw>dm@*- (2.1)

Proof. Putting in the extension of Montgomery identity (1.9) x;,¢ = 1,...,m, multi-
plying with g¢; and summing all the identities we obtain

2l b1 2l
> aicta) = [ wcrarSe

al

n—2 C("H'l)(al

+Zgzz >/Xw(<) (x —a)" = (¢ —a1)"* ") ds

= K= OW a
n—2 (HJFI by
+Z: Z%C,“rgl)/x w(s) ((x — by)™ — (s — by)"+) de

by
* m ; “ / T (- 6)C ™ (<) ds,

By simplifying this expressions we obtain (2.1). O

Remark 2.2. If we put w(s) =
1 of [8].

ﬁ7 ¢ € [a1,b1] above identity reduces to Theorem

Its integral version is as follows.

Theorem 2.3. Let o : [a1,51] = R and g : [a1, £1] — [a1,b1] be integrable functions

s.t.
B1
/‘guﬂx=0
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Let ¢ : I — R be such that (""~Y is absolutely continuous, a; < by, a1,by € I, I CR
be an open interval, n € N, Ty, ,, be given by (1.10). Then

B1
/ 0(x) C(g(x)) dx

1

n—=2 (x+1) ay B1 9(x) 1 1
2247()/ Q(X)/ w(s) ((g(x) — a1)"*! — (¢ — a1)") dsdy

= (1) g, .
n=2 (k1) B by
" ”z:;) m ‘/al Q(X) ‘/g(x) w(g) ((Q(X) - b1>n+1 - (§ - bl)Hle) dCdX

b1 B1
+(n_11)|/ (/ Q(X)Tw,n(g(x),c)dx> ¢ (<)ds, (2.2)

1

Proof. We obtain the required result by putting x = g¢(x), multiplying with o(x),
integrating over [y, (1], and using some transformations and then using Fubini’s

theorem in the extension of Montgomery identity (1.9), d
Remark 2.4. If we put w(s) = ﬁ, ¢ € [a1,b1] above identity reduces to Theorem
2 of [8].

Now we present some inequalities which can be derived from the previous identities.

Theorem 2.5. Under the assumptions of Theorem 2.1 with the additional condition

Y
Z QiTw,n(Xiyg) > 07 v (S [ah bl] (23)

Then, for every n—convex function ¢ : I — R the following inequality holds

v n—2 (s 1) 5
S 000 > X S S [ ) () =)
i=1

k=0 K: + 1 =1

~.

n—2 K+1) bl

by
rk+1_ (. rk+1
+§ CEm Zlg/x w(s by) (c=b1)" 1) ds.  (2.4)

7

If the inequality in (2.3) is reversed, then (2.4) holds with the reversed sign of inequa-
lity.

Proof. By using the fact that function ¢ is n-convex, so ¢(™ > 0 and (2.3) in (2.1),
we can easily derive our required result. O

Remark 2.6. If reverse inequality holds in (2.3) then reverse inequality holds in (2.4).

Remark 2.7. If we put w(s) = ﬁ, ¢ € [a1,b1] above identity reduces to Theorem
3 of [8].

Now we discuss a major consequence.
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Theorem 2.8. Under the assumptions of Theorem 2.1 and let w(x) € C™[ay,b1],
X = (z1,.-.,Zm) € [a1,01]7, 0 = (01,---,0m) € RY satisfy (1.5) and (1.6) with n
replaced by j wherej eN, 2<j<n. IfC is n-convex and n — j is even, then

C(KH) (a1)

;&C(Xi)— Z /~H—1 Z&/ w< x —al)n+1_<§_a1)n+1)d<

K=7—2

n—2 CN-&-l bl by - o
+K§2 PE] Z / (=)™ —(s=by)*H) ds. (2.5)

Proof. Let ¢ € [a1,b1] be fixed. Notice that
Tw,n(mvg) = Lw,n(X) +(x — §)1_17 (2.6)
where

<
Lun00) = [ w9 du+ (W00 = 1) (= )"
X
Using the Leibnitz theorem we have
=1 /. j—1—i i X
G (v) = (n — TN ETT | | 4
1,00 =003 (1) [t o [ [Twem] @)
Therefore, (2.6) and (2.7) for ¢ < x < by yield
d7
dxJ

Towm(X:6) = L)L) + (n = 1);(x —¢)" 77"

_ (n—l)ji:l (j;1> [;Zj__ll__ii(x—c)" 2} LZ; /:w(u)du]

i=0
+(n-1);(x -9 7 >0, (2.8)
while for a1 < x < ¢ we have
d7
dy?
J L. j—1—i i X
7o) [t [ [ v
= ——(c—x - w(uw)du| > 0. (2.9
-3 () (gt 0 [ e (2.9)

=

Twn(X,<)

From (2.6) it is clear that for j <n —2, x — dXJ Twm(x,g) is continuous. Hence, if
n —jis even and j < n — 2, from (2.8) and (2.9) we can conclude that the function
X — Tw.n(X,<) is j-convex. Furthermore, the conclusion extends towards the case j =

n, i. e. the mapping x — T, »n (X, <) is n-convex, since the mapping x — dx" 2T (x,¢)
is 2-convex.

Now, by Proposition 1.5, we see that assumption (2.3) is satisfied, so inequality
(2.4) holds. Moreover, due to the assumption (1.5), >°7_; 0i(x;) = 0 for every poly-
nomial P of degree < j — 1, so the first j — 2 terms in the inner sum in (2.4) vanish,
i. e., the right hand side of (2.4) under the assumptions of this theorem is equal to
the right hand side of (2.5). O
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Remark 2.9. If we put w(s) = ﬁ, ¢ € [a1,b1] above identity reduces to Theorem
4 of [8].
Corollary 2.10. Under the assumptions of Theorem 2.5 we denote

n—2 C(m—l)(al)

HOO = 2. G /Xi w(s) (i = a1)"" = (s — )" ") de
n—2 (k+1) b1
+ Z C(/wr(ll;) / w(s) ((xi = b)) — (¢ = b1)" ™) de. (2.10)

If H is j-convex on [a1,b1] and n — j is even, then
v

Z 0i¢(xi) > 0.
i=1

Proof. Applying Proposition 1.5 we conclude that the right hand side of (2.5) is

nonnegative for the j-convex function H. O
Remark 2.11. If we put w(s) = ﬁ, ¢ € [a1, b1] above identity reduces to Corollary
1 of [8].

The rest of this section will present integral versions of the previous results. We
will skip the details because the proofs are identical to the discrete case.

Theorem 2.12. Under the assumptions of Theorem 2.3 with the additional condition

B1
/ 000 Tum (900),¢) dx = 0, Ve € [as, bi].

1

Then, for every n—convex function ¢ : I — R the following inequality holds

B1 n=2 .(k+1) ay B1
[ etoctatanz X T [ e

g(x)
/ w(©) ((9(x) — an)* = (6 — ar)™+) dedy

1

n—2
C(“Jrl)(bl) B
RCES o(x) %
k=0 : a1
b1
/ w(<) ((g(x) = b1)" " = (¢ = b1)" ™) dedx. (2.11)
9(x)
Remark 2.13. If we put w(s) = ﬁ, ¢ € [a1, b1] above identity reduces to Theorem

5 of [8].

Theorem 2.14. Let all the assumptions from Theorem 2.3 be wvalid. Moreover, let
w(x) € C™ay,b1], let 0 : [aq,B1] = R and g : [a1, f1] — [a1,b1] satisfy (1.8) with n
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replaced by 7 where j € N, 2 < j <n. If ( is n-convexr and n — j is even, then

B n—2 n+1
| etoctatoix = > CHH e [ o

n—2
C(n+1)(b1) /,31
+ > e | b
I{:j72 (K/ + 1)' (5]
b1
[ w0 (600 = b = (= b)) dea. (2.12)
9(x)
Remark 2.15. If we put w(s) = ﬁ, ¢ € [a1,b1] above identity reduces to Theorem

6 of [8].

Corollary 2.16. Letn, 0,(,j and g be as in Theorem 2.14 and let H be given by (2.10).
If n — j is even and H is j-convex, then

ﬁl
/ o(x)¢(g(x)) dx > 0.

1

2.1. Inequalities related to n-convex functions at a point

Throughout this section, we will discuss related results obtained in [17] for the
class of n-convex functions at a point.

Definition 2.17. Let n € N, ¢; a point in the interior of I and I be an interval in R.
If there exists a constant K such that

K

CE] 1)!Xn_1 (2.13)

Fi(x) =Cx) —

where the function ¢ : I — R is said to be n-convex at point ¢; and (n — 1)-concave
on I N (—oo,c1] and (n — 1)-convex on I N [c1,00). If the function —( is n-convex at
point ¢;] then ¢ is called n-concave at point ¢;. For more details, we refer the readers
to see [2, 17].

In [17], authors discussed sufficient conditions on two linear functionals
A C(lar,a1]) = R and Z : C([e1,b1]) — R so that the inequality A(() < Z(¢)
holds for every function ¢ that is n-convex at c;.

This section will provide inequalities of this type for specific linear functionals
that connect to the inequalities derived in the preceding section. Let e; denote the

monomials e;(x) = x*, i € Ng. More specifically, let T&%’CI] and Té,cfn’bl] represent the
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same as (1.10) on these intervals, i. e.,

/ () — )N+ W) (x — <)

a; <¢<x

‘ (2.14)
/ w(w)(u — )" Ndu+ (W(x) — 1) (x — )",

x <¢<c,

Tl (x, ) =

/g w(w)(u—<)" " tdu+W(x)(x —¢)" 7,

< c<
T ) =4 s g B ALY
/ w(w)(u — )" Ndu+ (W) — 1) (x — )"
X
x < ¢ < by,

Let x € [a1,c1]”, 0 € R, y € [e1,b1])" and q € R® and denote

= Z&'C (xi)

Cn+1 2l

72 K+11291

k=0 i=1

Xi
w( xi —ap)" Tt — (gfal)'wrl) ds

Cn+1

e
(5 + 1)! Zj: /X w(s )™ = (¢ — )™ ds, (2.16)

i

k=0

[1]

0
() = Z%‘C (vi)

Cn+1

Zqz/ w(s) ((yi — )™ = (¢ —er)") ds

n+1 b1
Z CH? T R e S Ly

Identity (2.1) applied to the intervals [a;, ¢;] and [e1,b;1] and by using the functionals
A and Z can be written as

A(¢) = O / (Z 0Tl ] Xu<)> ¢ (s) ds, (2.18)

(1]

b 4
(O =— (nil / (Z 0T ( ,<>> ¢ () ds. (2.19)

1
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Theorem 2.18. Let x € [a1,¢1]7, 0 € RY, y € [c1, 1] and q € RY be such that

Z 0i ujz%,q] ,6) >0,  for every ¢ € a1, c1], (2.20)

Zq T[c1 Bl (y;,6) >0, for every s € [e1, b, (2.21)

/ (Z QzT[al,Cl X“<)> dg == / (Z qZ C1,bl y“g)> d§7 (222)

where quﬁzﬁcl], ngiln’bl], A and Z are given by (2.14), (2.15), (2.16) and (2.17) respec-
tively. If ¢ : [a1,b1] = R is (n 4 1)-convez at point c1, then

A(Q) < E(Q). (2.23)
If the inequalities in (2.20) and (2.21) are reversed, then (2.23) holds with the reversed

sign of inequality.

Proof. Let the function F; = ( — Ken is m-concave on [a1,c;1] and nm-convex on
[c1, b1](see Definition 2.17). Applymg Theorem 2.5 to Fy on the intervals [a;, ¢1] and
[c1, b1] respectively we have

0> A(Fy) = A(Q) = - Alen) (2.24)
0 < Z(R) = 2(Q) ~ +Z(en). (2.25)

Identities (2.18) and (2.19) applied to the function e,, yield

A( / (ZQlT[ahCl X17§)> d(,
E(en) —n/ <quT[Cl’b1 y“§)> ds.

Therefore, assumption (2.22) is equivalent to A(e,) = Z(e,). Now, from (2.24) and
(2.25) we obtain the stated inequality. O

Remark 2.19. If we put w(u) =
7 of [8].

ﬁ7 u € [a1, b1] above identity reduces to Theorem

Remark 2.20. In the Theorem 2.18 we have proved that
K K _ _
HH( n) < E(Q)-

A(Q) < A en) =
Inequality (2.23) still holds if we substitute assumption (2.22) with the weaker as-
sumption that K (Z(e,) — A(ey)) > 0.
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Corollary 2.21. Let n,j1,j2 € N, < j1,752 <n, let ¢ : [a1,b1] = R be (n+ 1)-convez at
point c1, let o € RY and v-tuples x € [a1,c1]7 satisfy (1.5) and (1.6) with n replaced
by j1, let q € R® and (-tuples y € [c1,b1]" satisfy

4
=0, Ve=01,.. j—1
i=1

¢
Z%(yi —0)Z >0, V7€ Yy Yu—nin)
=1

and let (2.22) holds. If n — j1 and n — jo are even, then
A(Q) < E(Q).
Proof. Same as the proof of Theorem 2.8. g

Remark 2.22. Similar results can also be stated for integral versions as well by defining
new functionals using identity (2.2).

2.2. Bounds for identities related to the Popoviciu-type inequalities

Let (1,(s : [a1,b1] — R be two Lebesgue integrable functions. We consider the
Cebysev functional

1
by —ax a

1 by 1 b1
- <b1 . (1(x)dx> (bl “a )., Cz(x)dx>. (2.26)

The symbol Ly, [a1,b1] (1 < p < co0) denotes the space of p-power integrable functions
on the interval [a1,b1] equipped with the norm

" .
lGall, = ( / 19 <T>|pd7>

and Lo [a1, b1] denotes the space of essentially bounded functions on [aq, b1] with the
norm

by
T(C1,62) = C1(x)¢a(x)dx

1Cilloe = ess sup  [G1 (7)]-

T€la1,b1]
The following results can be found in [5].
Proposition 2.23. Let (1 : [a1,b1] — R be a Lebesgue integrable function and (o :

[a1,b1] — R be an absolutely continuous function with (- —ay)(by — -)[¢5]? € Llay, b1].
Then we have the inequality

by 1/2
IT(C1, G2)| < % <b1 ial |T(C17C1)\/ (x —a1)(br — X)[Cé(X)]QdX> - (2:27)

The constant % in (2.27) is the best possible.
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Proposition 2.24. Let (5 : [a1,b1] — R be a monotonic nondecreasing function and let
1 : [ag,b1] = R be an absolutely continuous function such that ] € Leo[ar,b1]. Then
we have the inequality

b1
760l < g Gl [ (e —0deao. (229

1

The constant & in (2.28) is the best possible.

Under the assumptions of Theorems 2.1 and 2.3 we denote the following func-

tions. For y—tuples ¢ = (01,...,04), X = (X1,---,Xy) With x; € [a1,b1], s € R
(i = 1,...,7) such that >>7 0, = 0 and the function T, defined as in (1.10),

denote
Y
C) = Z QiTw,n(Xi7§)7 for S € [ala bl] (229)

Similarly for functions g : [ay,81] — [a1,b1] and o : [a1,51] — R such that
fﬁl x)dx = 0, denote

B1
Us(<) :/ 0(X) Tw.n (9(x),s) dx,  for ¢ € [ay,by]. (2.30)

1

Now, we are ready to state bounds for the integral remainders of identities
obtained in Section 2.

Theorem 2.25. Letn € N, ¢ : [a1,b1] — R be such that (™) is an absolutely continuous
function with (- — a1)(by — )¢tV € Llay, 1], xi € [a1,b1] and o; € R (i €
{1,...,7}) such that 3°)_, 0; =0 and let the functions Ty, ,, T and Uy be defined in
(1.10), (2.26) and (2.29) respectively. Then

2 C(nJrl) 2
; Z (k+1)! Z:
y

n-2 (n+1) bl

— )" = (¢ —a)"t) ds
+ Z

o]
/ — )"t = (¢ — b)) do
k=0 Xi

[¢tn= (bl) - C D(ay)] ™
(n—l)!(bl—al) /a

+ Wi(s)ds + R}, (¢ a1, by), (2.31)

1

where the remainder RL((;a1,b1) satisfies the estimation

IR} (C;ar, 1)

1 bl—al
<
(n—l)!( 2

b1
R N [ G

ai
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Proof. If we apply Proposition 2.23 for ¢; — ¥, and (3 — ¢, then we obtain

by
! / 3 ()¢ (6)ds

by —ay a1
1 by 1 b1
_ i} d ™ (\d
<b1—a1 /a1 1(s) <> <b1—a1 . ¢ (s) c)’

b, 1/2
< % ( ! T(‘1’17\I’1)|/a1 (¢ —a1)(bs —C)[C("H)(C)]QdC) :

by —ax

Furthermore, we have
1 by [C(n—l)(bl) _ C(n_l)(al)] b1
— [ U ()M ()ds = / U1()d
(n—l)!/al ()6 )ds =Dl —ay) ), O
+ Ry(Gai,by).
where RL((; aq, by) satisfies inequality (2.32). Now from identity (2.1) we obtain (2.31).
O

Remark 2.26. If we put w(u) = ﬁ, u € [aq, b1] above identity reduces to Theorem
8 of [8].

Here we state the integral version of the previous theorem.
Theorem 2.27. Letn € N,  : [a1,b1] — R be such that ¢ is an absolutely continuous
function with (- — ay)(by — )[¢C"TD]2 € Llay,bi], let g : [, B1] — [a1,b1] and o :
[a1, B81] = R be functions such that ffll o(x)dx = 0 and let the functions Ty, n, T and
Uy be defined in (1.10), (2.26) and (2.30) respectively. Then

B1
/ 0 () C(9(x)) dx
_n—z C(”+1)(a1) B 9(x) bl K1Y ded
=S L 0 [ w0 (000 e~ - o)) deay
n=2 (k+1) b B1 b1 1 1
+KZ_(>W/M Q(X)/gmw(@ ((90x) = b1)" = (¢ = b)) dedx

(n—1) _ r(n-1) a by
8 n (bll))!(bfal)( ) / Wa(s)ds + R (¢ a1, br), (2.33)

where the remainder R%((; a1, bs) satisfies the estimation
| B2 (G ar, b))

—a b 1/2
< (n,ll)! (bl 5 L T(T, U))| /al (¢ —a1)(b —c)[C("H)(g)]Qdc) . (2:34)

Proof. This result easily follows by proceeding as in the proof of the previous theorem
and replacing (2.1) with (2.2). O
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Remark 2.28. If we put w(u) = ——, u € [ay, b] above identity reduces to Theorem

~ bi—ay’
9 of [8].
By using Proposition 2.24, we obtain the following Griiss type inequality.

Theorem 2.29. Letn € N, ( : [a1,b1] — R be such that ¢ is an absolutely continuous
function with (™Y >0 on [a1,b1], xi € [a1,b1] and 0; €R (i € {1,...,~}) such that

.
Z 0; = 0.
i=0

Also, let the functions T and Uy be defined in (2.26) and (2.29) respectively. Then
we have representation (2.31) and the remainder RL(C;a1,b1) satisfies the following
estimation

1

b1 —a
R G b)l < ot 9 |25

(€D (B) + ¢ )
— [ (b1) = P @) (2.35)

Proof. If we apply Proposition 2.24 for ¢; — ¥; and (3 — ¢, then we obtain

b1
! / 1 (6)C™ (c)de

by — a1 ai
1 b1 1 by
— U, (<)ds / ™) (¢)ds
(bl — al /(;1 1( ) ) <b1 — Q1 ay C ( )

< sl [ " e — )by — T ()
= 2(by —ap) M ay A )

Since
b1
| 6= = e ods
ai
b1
= [ - o - b s
ai
= (b = @) [¢" D (B) + ¢ (a)] 2 [¢D () — (D an)], (2:36)
by using the identities (2.1) and (2.36) we deduce (2.35). O
Remark 2.30. If we put w(u) = ﬁ, u € [aq, b1] above identity reduces to Theorem
10 of [8)].

Here we give the integral version of the above theorem.

Theorem 2.31. Letn € N, ( : [a1,b1] — R be such that ¢ is an absolutely continuous
function with ¢t >0 on [ay,b1], let g : [a1, B1] = [a1,b1] and o : [a1,B1] — R be
functions such that ffll o(x)dx = 0. Also, let the functions T and Vs be defined in
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(2.26) and (2.30) respectively. Then we have representation (2.33) and the remainder
R2(C;ay,by) satisfies the following estimation

by —
ﬁnmgnm { S [T b)) + ¢ )|

_ C(”*Q)(bl) — C(nfz)(al)H ) (2.37)

Remark 2.32. If we put w(u) = ﬁ, u € [aq1, b1] above identity reduces to Theorem
11 of [8].

|R2(C;a1,b1)| <

2.3. Ostrowski type inequalities via extension of Montgomery identity

Here we present some Ostrowski-type inequalities related to the generalized lin-
ear inequalities. Throughout the section, we use the following functions ¥; and ¥y
defined as in (2.29) and (2.30).

Theorem 2.33. Let all the assumptions of Theorem 2.1 hold. Additionally, let (™ e
Lglar,b1], 1 < g, r < o0, %—&—% =1,n>2necN andlet x € [a1,b1]7 and p € RY
satisfy

Then

ZQZ'C (xi)

n—2 C(”+1)(al)

_ Z m Zgi /Xi w(s) ((Xz — al)n+1 —(c— al)n+1) de

=0 i=1 ay
n—2
¢+ (b)) Y by - y
_’;M;Qi/xi w(s) (O = b)™ = (¢ = b)) ds
1
< o<l (239)

The constant on the right hand sides of (2.38) is the best possible for ¢ = 1 and sharp
forl < q<oo.

Proof. Let us denote

By using Hoélder’s inequality on identity (2.1) we obtain inequality (2.38), i. e.
LHS. < [[<™lq el - (2.39)

Let us find a function ¢ for the proof of the sharpness of the constant

by 1/r
( / |u<<>|’“dt> 7
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for which the equality in (2.39) is obtained.
For 1 < g < oo take (¢ to be s.t.
¢ (<) = sgnp(s) - (<)Y,
For ¢ = oo, take ( s.t.
(<) = sgnp(s).

Finally, for ¢ = 1, we prove that

b1
< _max [u(@)] [ ¢ s (2.40)

ay

" g€la1,bi]

by
/ 10(<)¢™ (<) ds

is the best possible inequality.
Suppose that |u(s)| attains its maximum at g9 € [a1,b1]. First we consider the
case ((sp) > 0. For 6 small enough we define (15(s) by

0, a <¢<q,
1
Cis(s) = %(C_Co)n . 0<c<g+d,
1
W(C—%)"‘l . G+ <c<b.
So, we have

by (n) So+4 1 1 [eoto
/ us)Gis ($)ds| = / ws)5ds| = 5/ (<) ds

al So <

Now from inequality (2.40) we have

1 So+6 1 So+d
5/ w(s)ds < u(co)g/ ds = p(so)
<o N
Since

1 so+d
lim / p(s)ds = p(<o)
<o

the statement follows.
In the case p(sp) < 0, we define (15(s) by

1
m((*%*é‘)nil s a <¢ < g,
= 1
Ga(s) *w(C*%*(D" , G0 <¢<g¢+9,
0 s So + 1) S q S bl'
and the rest of the proof is the same as above. O

Remark 2.34. If we put w(s) = —— in Theorem 2.33, we capture Theorem 12 of [8].

b1—ay

At the end of this section, we will present the integral version of the above
Theorem. We will skip the details because the proof is identical.
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Theorem 2.35. Let all the assumptions of Theorem 2.3 hold. Additionally, (™ e
Lglaq,b1], 1 < gq,r < o0, %—i—% =1,n>2neNandlet g: |a1,5] — [a1,b1] and
0: a1, f1] = R satisfy

B1 B1
/ o(x)dx =0 and / o(x)g(x)dx = 0.

1

Then
B
| etoc oo

n—2 .(xy1) ay B1 9(x) X 1

B Z C(fi‘F(l)')/ Q(X)/ w(<) ((90x) = a2)™"" = (¢ = a)"™) dedx
k=0 : [ %1 a1
n—2 C(n+1)(b1) B1 b " »

) ;) G /a e /g(x) (<) ((900) = )™ = (6 = ba)"™™) dedx

< L], 2

The constant on the right hand side of (2.41) is the best possible for ¢ =1 and sharp
forl<q<oo.

Remark 2.36. If we put w(s) = ﬁ in Theorem 2.35, we capture Theorem 13 of [8].

3. Popoviciu type identities and inequalities via extension of weighted
Montgomery identity using Green Functions

In the present section, we obtain some discrete and integral identities and corre-
sponding linear inequalities using Green functions and apply the extension of weighted
Montgomery identity. We'll start by proving a few identities that will play a crucial
role in the rest of the article.

Theorem 3.1. Let ¢ : I — R be such that (=Y is absolutely continuous, n > 3,

n €N, a <by,a,by €I, I CR an open interval, w : [a1,b1] — [0,00) is some
probability density function. Let o € RY satisfy

5 5
Zgi =0 and ZQiXi =0
i=1 i—1
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and x € [a1,b1]7, G; are as given by (1.13), (1.16) — (1.19). Then

n—2 (n+1) by Y
Zgz Cxi) = C al /IZQsz (Xi»s

K= 0 =1
x [w<<><< —a [ w)e - am-ldu] "
C m+1

b1 Y
i TS 0t

k=0 1 4=1

b1
X [—w(g)(g —b)" + H/ w(u)(s — bl)“_ldu] ds

b1 by
+ / </ Z QzGl Xis S w n— 2(§ U)Ck) C(n) (u)du, (31)

where
Twn—2(s,u) = w()(s — w2 (3.2)

=2 (W) =) (c—uw)" % ¢<u<b.

Moreover, the following identity holds

i b1 Y b1
ZQiC(Xi):/ > 0iGilxirs) (/ w(T)C”(T)dT> ds

n—1 =1 by Y
+;M/a1 ;QiGl(Xiaq
X [((“)(al) /< w(u) ((g —a)" % = (u— al)”*2) du

+¢C) (by) / " w(u) ((s = b1)""2 = (u = b1)"?) du] ds

by Y
+ (’I’L i 3)] </ ZQtGl Xir S w n— 2(( U)d§> du (33)

1 4=1

where Ty, ,, is as defined in (1.10).

v 24 v
Proof. Using (1.14) in Z,Qig“(xi) and the fact that Zgi = 0 and Z 0ix;: = 0 we
i=1 i=1 i=1
get
-

b1
ZQ! Xi) / > 0:Gi(xi, )¢ ()ds. (3-4)

1 4=1
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Differentiating the function f in (1.9) twice gives

—2 f(,ﬁ-l)(al)

K!

¢"(s) = { )s—a)*+r | wu)(s—a)* 1du]
] 1 / 1

n—2 (n-‘rl)b by
+27f (b) | w(s) g—bl”—i—ﬁ/ w(u)(s — b)) tdu

K!

k=0
Lo [ Fyals, 06 (35)
+ 7/ Ty n—2(s, )" (u)du. 3.5
(n - 3)! aq
Inserting (3.5) in (3.4) yields
2l n—2 (n+1) a
ZQiC(Xi)—ZC - / ZQzGl Xis S
i=1 k=0 a1 =1

« [w(g)(g — a4 m/< w(u)(s - al)“_ldu] de

ay

/-c+1)
+ Z C / Z QzGl Xis S

1 4=1

X [—w(g)(g —by)" + /@'/b1 w(u)(s — bl)“_ldu] dg

by Y by
: ; [ (n)
n — / ; QlGl(X“ §) (/a Tw,n72(§7 U)C (u)du) ds.

1

and in the last term, by applying the Fubini’s theorem we get (3.1).
Furthermore, in (1.9) by replacing ¢ — ¢” and n — n — 2 respectively, and
after some rearrangements we get

b1
¢"(s) = / w(r)C" (r)dr

ai

-3 it [ [t -

1

b1
R,

1 by
— | Tyn_a(s,w)C™ (w)du. 3.6
L Tonals w0 (36)
Similarly, using (3.6) in (3.4) and applying Fubini’s Theorem we get (3.3). O

Remark 3.2. If we put w(r) = ﬁ in Theorem 3.1, we capture Theorem 2.1 of [9)].

Now we will discuss some inequalities that can be obtained from the previous
identities.
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Theorem 3.3. Under the assumptions of Theorem 3.1 with the additional condition

/ ZQzGl Xis S wn 2(§ U)d§ > 0 YVue [alabl]v (37)

1 4=1

where Gy and Ty, o are given in (1.13),(1.16) — (1.19) and (3.2). If ¢ is n—conver,
then the following inequality holds

¥ n—2 (
ZQ%C()@) Z ¢ +1 / ZQZGZ Xis S
i=1 @

k=0 1 4=1

X [w(g)(g —a1)" + n/g w(u)(s — al)”ldu} ds

<<*€+1> b1) Z
0iG1(xi,

1 =1 .
X [—w(g)(g —b)" + /{/ w(u)(s — bl)“_ldu] ds > 0. (3.8)

Proof. Using the fact that function ¢ is n—convex, we have ((™ > 0 and (3.7) in (3.1)
we obtain our required result. O

Remark 3.4. If we put w(r) = blial in Theorem 3.3, we capture Theorem 2.2 of [9)].

Theorem 3.5. Under the assumptions of Theorem 3.1 with the additional condition

by
|3 06 sl s 2 0, ¥ u € fan, b, (3.9)

1 4=1

where Gy and Ty, are defined in (1.13), (1.16) — (1.19) and (1.10). If ¢ is n—convez,
then the following inequality holds

b1
Z@z ¢(xi) / ZQiGl(Xia§) (/ w(T)C”(T)dT>d<

1 =1 ai

by Y

1
- 2(5_2)'/11 ZQiGl(Xi,§)

1 4=1

x [<<“><a1> / w(u) (s — a1)*% = (u— a1)"2) du

+¢") (1) /b1 w(u) ((s=b1)" 2= (u—0b1)"?) du] ds>0.  (3.10)

N

Proof. Using the fact that the function ¢ is n—convex, we have (™ > 0 and (3.9) in
(3.3), we easily arrive at our required result. O

Remark 3.6. If we put w(r) = in Theorem 3.5, we capture Theorem 2.3 of [9].

1
bi—ai

Here we discuss a major consequence.
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Theorem 3.7. Under the assumptions of Theorem 3.1 and additionally,

Y

N
> 0i=0and > oilxi— x| >0

=1 i=1

for k € {1,...,~4}. If n is even and  is n—convex, then inequalities (3.8) and (3.10)
hold.

Proof. The Green’s function G(s,7) is convex w.r.t 7V ¢ € [a1,b1]. Therefore, from
Proposition 1.5, with conditions (1.5) and (1.6) replaced by (1.4) as in [15], we have

,
> 0iG(xi) 20 V<€ fay,byl. (3.11)

Here Tw,n_g(c, 7) > 0 and Ty n—2(s, 7) > 0 because n is even. By combining this fact
with (3.11) we get inequalities (3.7) and (3.9). As { is n—convex, the results follow
from Theorems 3.3 and 3.5. O

Remark 3.8. If we put w(r) = blial in Theorem 3.7, we capture Theorem 2.4 of [9]

Following that, we will present the integral versions of our main findings. We
will skip the details because the proofs are identical to discrete version.

Theorem 3.9. Let ¢ : I — R be a function such that ("~Y is absolutely continuous,
n>3,neN, a5 <by,a,b €1, 1CR an open interval, w : [ay,b1] — [0,00) is some
probability density function. Additionally, let o : [aq, f1] — R satisfy f’Bl X)dx =0

and g : [a, f1] = [a1,b1], ffll 0(x)g(x)dx =0, and let Gy, Ty n and Ty, be given by
(1.13),(1.16) — (1.19), (3.2) and (1.10). Then the following two identities hold:

/jlmx)c(g(x))dx—mdw /bl /ﬁl VG(500.<)

1 K=

x [w(g)(g—m) 4—/{/(11 w(u)(s —a1)™~ 1du} dxds

n=2 (k+1) by B
+;)<+H!(bl)/al /m o(x)Gi(9(x); <)

by
X l—w(g)@ —b)"+ n/ w(u)(s — bl)“_ldul dxds

N

b1 B _
T E 3)!/ ((/ Q(X)GZ(Q(X)7<)dX) Tw,nz(c,u)dg> ¢ (u)du. (3.12)
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and
B1 Y .
| etoststnax= [ [ aocitsto. i < IR dT) .
= 1 by B
+,;,(H2)'/ (/a Q(X)Gl(g(x)7<)dx> «

[d@(al) [ ) (66 = a2 = (= 1)) d

ay

by
‘*‘C(n)(bl)/ w(u) ((§ — 1) — (u— bl)'(”*Q) du] ds

by by B1
), ( / ( / e(x)Gz(g<x>,<>dx> Tw,n_z(g,wdg) du. (3.13)

1
Remark 3.10. If we put w(7) = ﬁ in Theorem 3.9, we capture Theorem 2.5 of [9].

Theorem 3.11. Under the assumptions of Theorem 2.3 with the additional condition
br P -
[ e006i000.9 Tunslcu)dyds =0, Vuclah]  (314)
al [e5]

where G is defined in (1.13),(1.16) — (1.19) and Ty, is given in (3.2). If ¢ is
n—convez, then the following inequality holds

/jlg(x)é(g(x))dx:Z:W/:/

B1
o(x)Gi(9(x),<)

1 — «

X {w(c)(c —a1)" + n/

ai

n—2 (k+1) by B1
Sy / / 0()Gi(9(x),<)
k=0 ’ a1 «

w(u)(s — al)“_ldu} dxds
1 bl
X [—w(g)(g —b)"+ K,/ w(u)(s — bl)“_ldul dxds > 0. (3.15)

Remark 3.12. If we put w(r) = blial in Theorem 3.11, we capture Theorem 2.6 of
[9].

Theorem 3.13. Under the assumptions of Theorem 2.3 with the additional condition

by B1
/ / 0(X) G1(9(x)6) Tuwm—a(s, udx ds >0, Vu € [ar, by, (3.16)
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where Gy is defined in (1.13),(1.16) — (1.19) and Ty is given in (1.10). If ¢ is
n—convez, then the following inequality holds

B1 by B1 by
/ 000C(a00)dx — / / 000G (9(x). 6)dx ( / w<r><"<r>dr) ds
n—1

1 ay

by b1
- ; ﬁ /al (/al Q(X)Gz(g(x),g)dx>
- {C(N)(al) /g wu) (s —a1)" % = (u—a1)""?) du

1

by
—¢) (by) / w(w) (s = b)) 2 = (u—b)"?) du] de > 0. (3.17)

Remark 3.14. If we put w(r) = blial in Theorem 3.13, we capture Theorem 2.7 of
[9]-

Theorem 3.15. Under the assumptions of Theorem 3.9 and additionally let g :
[a1, B1] = [a1,b1] and o : [a1, f1] — R satisfy (1.8). If n is even and ¢ is n—convex,
then inequalities (3.15) and (3.17) hold.

Remark 3.16. If we put w(7) = bli in above, we capture Theorem 2.8 of [9]

al

3.1. Inequalities related to n-convex functions at a point

In the present subsection, we would like to discuss some results related to the
Green function following the definition of convexity at a point (Definition 2.17 of
subsection 2.1). Here we improve results from previous subsection. More specifically,

let Tl[ua,i{cl] and Tl[uc’lﬁbl] represent the same as (1.10) on these intervals, i.e.,

/ () — )" du 4 WO (x— O

< c <y
Tl (x,6) =< e e (3.18)
/ w(w)(u — )" du+ (W(x) — 1) (x — )",
X
x <¢<ecyp;
<
/ w(w)(u — )" Ndu+ W) — )"
X
Tl CLSCSX (3.19)

w,nbl](ng) = S
/ w(w)(u — )" du + (W) — 1) (x — o)™,
* x <¢s < b
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Similarly, T, 1[0‘111’012] and T Elnbjg denote equivalent of (3.2) on these intervals, i.e.,
_ n—2
WJFW(O(C—U)"B, ar Su<g
Th (s u) = 0(€)(6 — w2 (3.20)
1) (s — 3 <
(TL—2) +(W( ) )(( U’) , s<u b17
_ n—2
W FWEE—u)"?, a<u<g
T (s u) = w(6)(s — w2 (3.21)
P S S A _ _ n—3 <
=2 + W) -1 (c—u)"" ¢<u<b.
Let x € [a1,c1]”, 0 € R, y € [e1,b1])" and q € R? and denote
m+1) a
ZQZ ¢(xi) Z ¢ - / ZQiG(Xi7§)
ar =1
X {w(<)(< —a1)" + fi/ w(u)(s — al)“—ldu] ds
n—2
C K+1) c1 Z
Z 0iG(Xis
k=0 ar =1
X { w(s)(c — )™ + n/ w(u)(s — cl)“ldu} ds, (3.22)
S
- £ C('{H) (c1)
=1(() = Zqzc(y) " S G
i=1 =1
X {w(c)(c —c1)" + ﬁ/ w(u)(s — cl)'“du] de
C(Ii+1) bl / Z
- Z 4G (yi, s
€1 =1
by
x [—w(g)(g b+ ,@/ w)(s — bl)"“ldu] de. (3.23)
N

Identity (3.1) applied to the intervals [a1, ¢1] and [e1,b1] and by using the functionals
A; and Z; can be written as

A () = / (/ Z 0iG1(xi, s TI[Ua;q? (§,u)d<> ¢ (u)du, (3.24)

1 4=1

1 4=1

a(@z(n% / </ Z%Gl v, ) Th (s, >dg> ¢ (udu.  (3.25)
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In the same manner, we can introduce further functionals namely

820 = =g | ( | Y s oriey <<,u>dc> ¢ (u)du,  (3.26)

1 4=1

1 b b & [e1,b1]
E2(¢) = m/ (/ Zinz(yuc)wan’E(c,u)dc) ¢ (u)du, (3.27)

1 q=1
1 c1 c1 B1
As(Q) = ———
3(C) (n—3)!/al /a /a o(X)Gi(g(x), <)dx
XI5 w)ds ) ¢ (wd, (3.28)
1 b1 b1 B1
0= g ). ( | ( / q(y)Gz<g<y>,<)dy)
XTL (s u)ds ) ¢ (w)d, (3.29)
1 c1 c1 B1
Ag(Q) = ———
4(¢) (n—3)!/al /a /a o(X)Gi(g(x), <)dx
x Ti (s, w)ds ) ¢ (u)d, (3.30)
1 b1 b1 B1
== L (L (L awcst. o
TP, u)d() ¢ (u)du. (3.31)
Theorem 3.17. Let x € [a1,¢1]7, 0 € RY, y € [c1,b1]' and g € R! be such that
cy 7 5
/ ZQz‘Gl(XmC) el (Guyde >0, Ve far,el, (3.32)
a1 =1
by Y .
> Gy, T (cu)ds 20, V€ [er, by, (3.33)
=1
(5] C1 Y ~
/ </ ZQiGl(Xi7<)TI[,J(L,;’612](<,U)d<> du
a1 a1 =1
by by ¢ .
=/ (/ Zinz(yi,<)T£ff,;_1%(<7u)d<> du, (3.34)
1 €1 =1

where TIc1] Tlevb) AL and =, are given by (3.20), (3.21), (3.22) and (3.23) res-

w,n—27 Tw,n—27

pectively. If ¢ : [a1,b1] = R is (n 4+ 1)—convex at point ¢y, then
A1(Q) < Ea(Q)- (3.35)
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If inequalities in (3.32) and (3.33) are reversed, then (3.35) is valid with reversed sign
of inequality.

Remark 3.18. From proof of Theorem 3.17 we have

M0 £ T A(en) = S Eien) < Zi(0).

In fact, inequality (3.35) still is valid if we replace assumption (3.34) with weaker
assumption that

K (Z1(en) — Ai(en)) > 0.

Remark 3.19. If we put w(u) = ﬁ in above identity, we capture Theorem 2.11 of
[7].

Here we have another similar result.

Theorem 3.20. Let x € [a1,¢1]?, 0 €RY, y € [c1,b1]! and g € R! be such that

cy 7
/ Z QiGl (Xia C)Tglfl;l] (§7U) dg > 07 Vuc [ala Cl]v (336)
a1 =1
b Y
/ Y 4Gy Ty (s u)ds >0, ¥ € e, b, (3.37)
Cc1 C1 2
/ / > 0:Gilxis )T (s, w)ds | du
a1 =1
by b
/ / ZQZGZ Yi, S wCIn 12(§7u)d§ du, (338)
€1 4=1
where Tl[uailcg], Twcln’blz, Ay and Es are given by (3.18), (3.19), (3.26) and (3.27) res-
pectively. If  : [al, b1] = R is (n+ 1)—convex at point ¢y, then

As(C) < Ea(Q). (3.39)

If inequalities in (3.36) and (3.37) are reversed, then (3.39) is valid with reversed sign
of inequality.

Remark 3.21. If we put w(u) = blial in above identity, we capture Theorem 2.13 of
[7].

Remark 3.22. Similar results can also be stated for integral versions as well by using
functionals A3(¢), Z3(¢), A4(¢) and Z4(() as defined in (3.28), (3.29) (3.30) and (3.31)
respectively.
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3.2. Bounds for identities related to the Popoviciu-type inequalities

Under the assumptions of Theorems 3.1 and 3.9, we denote the following func-
tions Q;, j € {1,2,3,4}, define as

by Y
D= [ 3 0G0 Tunalc s, we far,bil

1 4=1

by 7Y
/ ZQ% Xza wn 2(§ u)d§>0 (S [alvbl];

1 4=1

b1 1 N

= / / 0 (X) G(g(X)a §) Tw,nf2(§, U) dX ds, ué€ [al, bl];
by B1

= / / 0 (X) G(g(X)a () Tw,n72(§; U)dX d§, u e [ah bl]

Theorem 3.23. Let n € N, n > 3, ( : [a1,b1] — R be such that (") is an absolutely

continuous function with (- — a1)(by — )[¢*V]2 € Llay,b1] and let x € [a1,b1]” and
o € RY satisfy

vy
> 0i=0and > oixi =0.

i=1 i=1
Then

2l (”i""l) a
> 0iCla) = C ' / Z&Gz (Xi»s
i=1 k=0 a

1 4=1

X [ (S)(s —ay)” +/<a/ (u)(g—al)”_ldu} ds

(k+1) b
C 1 ZQzGl Xis S

a1 =1

X l—w(g)(g —b1)"+ n/bl w(u)(s — bl)“_ldu] ds

(") = ¢ D@y "
T 3 — ) /Ql(<>d<+Rn(C,a1,b1), (3.40)

al

and

al’Ll ai

b1
Z Q1 X1 Z QiGl (Xiv §) (/ w(T)CH(T)d’T> d§

by Y

+ ,;s (H%Q)'/a > 0iGilxirs)

1=t
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e [ ) (66 - a2 - (w0

ai

+¢) (by) /bl w(u) ((s = b1)""2 = (u—b1)"7?) du] ds

(=D (by) = ¢ V(ay) [
(’I’L — 3)'(b1 — al)

+ Qo(s)ds + R2(; a1, b1), (3.41)

ay

where the remainders RJ,((;a1,b1), j = 1,2, satisfy the bounds

J (- !
|RY (G a1, b1)] < n—3)
1/2

Remark 3.24. If we put w(u) = ﬁ, u € [aq, b1] above identity reduces to Theorem
3.3 of [9].

b1
705, [ (6= anlbn - Ol () s

ai

By using Proposition 2.24, we obtain the following Griiss type inequality.
Theorem 3.25. Let n € N, n > 3, ( : [a1,b1] — R be such that (") is an absolutely
continuous function with (™Y >0 and let x € [a1,b1]” and o € RY satisfy

Y

v
> 0i=0and > oixi =0.

i=1 i=1

Then representations (3.40) and (3.41) hold and the remainders R} (C;a1,b1), 7 = 1,2,
satisfy the bounds

i 1 / bi —a1 [ (n-1) (n—1)
RAGian )] < g 9 e { 25 [ o) + )]
- [¢ D) - ¢ )]} (3.43)
Remark 3.26. If we put w(u) = ﬁ, u € [aq1, b1] above identity reduces to Theorem

3.4 of [9].

Remark 3.27. Similar results can also be stated for the integral version as well by
using functional ¥;, where j € {3,4}.

3.3. Ostrowski type inequalities via extension of Montgomery identity and Green
functions

Here we present some Ostrowski-type inequalities related to the generalized
linear inequalities. Throughout the section, we use the following functions Q;, j €
{1,2,3,4} defined as in the previous subsection.
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++=1n2>3, neN,

S =

Theorem 3.28. Let (™ € Lylai,b1], 1 < ¢,r <
j€{1,2,3,4}. Then

(N+1) Y
Clxi) — C al / Z 0iG(xi, S

1 4=1

oo,

Q=

x [ S)(s—a)"” —l—m/‘ (u)(<—a1)”_1du] ds

ay

C(”H)
Z /a Z 0:G Xza

1 4=1

by
X l—w(q)(g —b1)"+ /@/ w(u)(s — bl)“_ldu] ds

1
< Ll I, (40
and
il by Y by
ZQiC(Xi) _/ ZQiG(Xi,C) (/ w<7')CN(T)dT> de
i=1 a1 =1 ay
n—1
_ ’;3 K — 2 /al ;Qz Xl,

X {dﬁ)(al) /g w(r) (s —a1)" 2 — (1 —a1)""2) dt

1

S

by
+¢ (br) / w(r) (s = b1)"2 — (1 — b1)"2) dt] ds

1K™ g 1221, - (3.45)

1
(n—3)!
The constant on the right hand sides of (3.44) and (3.45) is the best possible for g =1
and sharp for 1 < g < oco.

Remark 3.29. If we put w(r) = blial in Theorem 3.28, we capture Theorem 3.5 for

J € {1,2} and Theorem 3.8 for j € {3,4} of [9].

4. Conclusion and remarks

In this article, we have given a generalization of the results stated in [8] and
[9](see also [10]) by introducing weights which are probability density functions. If
we put our weights equal to ; ial in our proposed results, we will capture almost
all the results of [8], [9] and [10] as our special cases. Due to the general nature of
the article, in some places we have used the Leibnitz rule of integration due to the
involvement of the variable of integration in the limit of the integral as well. In our
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subsections we stated results, related to n—convexity at a point for Popoviciu-type
inequalities involving the weighted version of the extension of Montgomery’s identity
and similar results for Popoviciu-type inequalities involving the weighted version of
the extended Montgomery’s identity with Green functions. We have also discussed the
bounds of remainders for our proposed results using é’ebyéev functional and Griiss
type inequalities. In the end of sections we obtained bounds of Ostrowski type. Such
results are also valid in the context of Green functions.
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