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Idempotent and nilpotent elements in octonion
rings over Z,

Michael Aristidou, Philip R. Brown and George Chailos

Abstract. In this paper, we show that the set Q/Z,, where p is a prime number,
does not form a skew field and discuss idempotent and nilpotent elements in the
(finite) ring O/Z,. We provide examples and establish conditions for idempotency
and nilpotency.
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1. Introduction

Quaternions, denoted by H, were first discovered by William. R. Hamilton in
1843 as an extension of complex numbers into four dimensions [10]. Namely, a quater-
nion is of the form

T = ag+ a1t + azj + ask,
where a; are reals and 4, j, k are such that i2 = j2 = k? = ijk = —1. Algebraically
speaking, H forms a division algebra (skew field) over R of dimension 4 ([10], p.195-
196).About the same time, John T. Graves discovered the octonions, denoted by O,
which are 8-dimensional numbers of the form

T = ag + aje; + ages + azes + ageq + ases + ageg + arer

where a; are reals and e;’s are mutually anti-commuting roots of unity. (i.e. e? = —1
and e;e; = ey, eje; = —eg, © # j) [6]. Algebraically speaking, @ forms a normed
division algebra (skew field) over R of dimension 8 [6]. It is the largest of the (only)

four normed division algebras and it is nonassociative.
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A study of the structure and some of its properties of the finite ring? H/ Z,, where
p is a prime number, was done in [2]. A more detailed description of the structure
H/Z, was given by Miguel and Serodio in [20]. Among others, they found the number
of zero-divisors, the number of idempotent elements, and provided an interesting
description of the zero-divisor graph. In particularly, they showed that the number of
idempotent elements in H/Z,, is p*+p+2, for p odd prime. As discussed in [3], the only
scalar idempotents in H/Z, are ap = 0, 1. Furthermore, there are no purely imaginary
idempotents in H/Z,. On the other hand, in [4], it was shown that nilpotents z in
H/Z, are purely imaginary with norm N(z) =0 and z? = 0.

In the sections that follow, we look at the structure of the finite ring Q/Z,.
The multiplication of octonions followed the Fano Plane and it was programmed in
Maple®. We give examples of idempotent and nilpotent elements in Q/Z, and provide
conditions for idempotency and nilpotency in O/Z,.

2. Is O/Z, a finite skew field? A counterexample

In [2] we saw that since Zjy, is a field, then H/Z, is a quaternion algebra. The
theory of quaternion algebras over a field K (charK # 2) tells us that a quaternion
algebra () is either a division ring or Q = May2(K) ([16], p.16, 19). Since H/Z, is not
a division ring (see [2]), then H/Z, = Myy2(Z,) if p # 2.

The real matrix representation of H/Z,, where x = ag+a1i+asj +azk € H/Z,,,
is achieved by the 4 x 4 left or right Hamilton Operators as follows:

ap —ai; —ay —as ap —aip —ay —as

a1 Q, —a as aq a, a —ao
Hj _ 0 3 Hf _ 0 3

az  as ago —a1 a2 —az  ap aq

az —a2 —aip —ao as a2 —ax Qg

But is the finite ring O/Z, a skew field? Consider the elements
T1 = 2e9 — e3,To = e4 + 3e;
in @/Zs. Multiplying the two, we get:
x1 - T3 = (2e3 — e3)(eq + 3e5) = 0(mod 5).

This shows that O/Z5 has zero-divisors, and hence Q/Zs is not a skew field. This
was also anticipated by some well-known theorem in algebra, by Wedderburn in 1905
([11], p.361), which says that: “Every finite skew field is a field”. Since Q/Z, is not
commutative, then it is not a field, and so it is not a skew-field.

So, what is the structure of O/Z,? Since Z, is a field, then O/Z, is a non-
associative octonion algebra. As a matter of fact, is it an alternative, flexible and
power associative algebra*. It is well known that O is a skew field, yet it has no
”proper” matrix representation due to the non-associativity. Nevertheless, as O is an
extension of H, by the Cayley-Dickson process, some non-proper 8 x 8 real matrix
representations were introduced, by Tian in [26], through the left and right Hamilton
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Operators of quaternions analogous to the one above. Namely:

ay —aip —az —az3 —a4 —as —ag —ar
a ao —as a2 —as a4 ar —ag
az as ap —ar —as —ar G4 as
HQ{“ _|@3 —a2 a1 ap —ar G —a5 a4
aq  As ae ar ap —a1p —az2 —ag
as —a4 a7y —Qe a1 ao as az
as —ay —a4 As az —az Qo a
a7 G —as5 —aq4 a3 az  —ai  Go |
_a() —a; —a2 —az —a4 —a5 —ag 7(17_
aq ao as —Aasg as —Qa4 —arv Qg
as —as ao aq Qg ar —Qa4 —as
ng as as —Qq an ar —Qg as —ay
ay, —as —ag —ary ap a1 a9 as
as Qy —ary Qg —ai ag —as as
Qg ar a4 —as —a2 as ap —a
_(17 —ag as aq —az —a2 aq ap i

Modifying the above over Z,, one could easily get the left and right 8 x 8 real repre-
sentations of Q/Z,, as follows®:

ay p—a1 p—a2 p—az p—ag p—as p—as P —ar

ay agp p—as a2 p—as Gy ar p—as

a2 as ao p—a p—a p—ar 2 as
HmL _ (@ P—a2 ay ao p—ar ae p—as Gy

ay as ag ar ag p—a p—az p—as

as P — a4 ar —ag a ao as a2

g p—ar p—aq as a3 p—as ag ay

| a7 ae p—as —aq as az bp—m ao

ap p—a1 p—a2 p—a3 p—a4 p—as p—0as pP—ar

ai ao as p—asz as p—ag p—ary ae
az p—as ag ai ag ar p—a4 p—as
Hf _ |93 a2 p—a Qo ar p—as as p—aq
as p—as p—as p—ar ag aj a2 as
as (€2} p—ar ag p—a ago p—as az
ae ar Qay p—as p—az as ao p—a
ar P —ae as 2 p—az p—az aq ao

Notice that for the octonionic cases @ and O/Z,,, we have that Hé‘y # HzLHyL because
of the non-associativity.
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3. Idempotent and nilpotents elements in O/Z,

Recall that an element z in a ring R is called idempotent if 22 = z. In the
ring H/Z,, p prime, in the special case where z = ag,a9 # 0 (i.e., ¢ is a non-
zero scalar in H/Z,) one quickly observes that if z is idempotent then z = 1, for
zin 1,2, ..., p-1, since (x,p) = 1. Therefore, the only scalar idempotent in H/Z,

is 1 (we omit the case x = 0 as trivial). Another simple case is the case where
x = ai,aj or ak,a # 0 (i.e., a non-zero scalar multiple of the imaginary units). Then,
22 = (ai)? = —a®® = —a® # ai = x, which shows that there are no idempotents

of the form ai,aj or ak. (Again, we omitted the case x = 0 as trivial). Examples of
proper idempotents® and conditions for idempotency in H/Z, were given in [3]. Due
to the isomorphism H/Z, = Ole;, e;, e;e;] (where e; # e;) idempotents in H/Z, will
transfer in some subalgebras” of Q/ Z,,. For example, x = 4+1i+ 37 +4k is idempotent
in H/Z7 and therefore x = 4 4 e1 + 3ea + 4es is idempotent in Q/Z7 . Nevertheless,
x = 4+ ey + 3ez + 4ey is a non-“quaternionic” idempotent in Q/Z;. Notice that
x = 7i 4 4j is nilpotent in H/Z;3 and so & = 7e; + 4eg is also nilpotent in Q/Z;3 .
Nevertheless, x = 4e1 + e2 + 3e3 + 4es is a non-“quaternionic” nilpotent in Q/Z7. As
we will show below, purely imaginary octonions in Q/Z, cannot be idempotents, just
as in H/Z, [3]. And nilpotents in O/Z,, are purely imaginary, just as in H/Z, [4].

7

Theorem 3.1. Let © € O/Z, be an octonion of the form x = ag + Z a;e;. Then x is
i=1

. : . 1+p L, -1
idempotent if and only if ag = 5 and Z aj = ——
i=1

Proof. We follow the steps given in the proof for the quaternion case in [3]. Since z
is idempotent, we have:

7 7 7

2=z = (ao + Z aiei> <a0 + Z aiei> =ag + Z a;e;

i=1 i=1 i=1
7

7 7 7
= a% + 2ag Z a;e; + (Z aiei> (Z aiei> =ag + Z a;e;
i=1 i=1 i=1

i=1

7

distr,

— ag — E a? =ap and 2aga; = a;
i=1

Fano
nd . . . 1+p
From the 2™* equation, we have that either a; = 0 or 2ag = 1. That is ag = 7 as
7 2
. . . st . 2 p - 1
p = 0(mod p). Substituting the latter in the 1% equation, we get Z a; = 1 O
i=1

Corollary 3.2. Let x € O/Z, be a purely imaginary octonion of the form

7
Xr = E a;€;.
=1
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Then x is not idempotent.

1
Proof. If x is purely imaginary then ag = 0. Then from Theorem 3.1, 0 = % which

is a contradiction. O

Example 3.3. Consider 2z = 4+ e; + 3e3 +4e; in O/Z7. Then x is idempotent. Notice

1 49 -1
that 4 = 7 and 12+32+42:26:9Tm0d(7).

Remark 3.4. To find the number of idempotents in Q/Z,, one could naturally find

2 . .
how many ways % can be written as a sum of seven or fewer squares. The equation

7 2
-1
E a? = pT in Theorem 3.1 brings to mind the ”"sum of seven squares problem”,
i=1

79

7
which is to find the different values r7(n) for which n = sz n € N. A formula
i=1

for square-free values of n were stated without proof by Eisenstein in 1847, and those
were extended to all positive integers n by Smith in 1864, also without a proof. Hardy
in 1920 developed a method in deriving the proof for ri(n), where k is odd, but he
explicitly showed only the 75(n) case in [13, 12]. More general results for r7(n) were
given by Cooper in 2001 [8] and Cooper and Hirschhorn in 2007 [9].

Recall that an element z in a ring R is called nilpotent if ¥ = 0 for some k € N.

In [4], it was shown that if « in H/Z, is nilpotent then the norm N(x) = 0 (where
3

N(z) = zz* = Z a?) and, furthermore, that z is purely imaginary and 22 = 0. If z
i=0
€ O/Z,, we have similar results. First, consider the following Lemmas:

Lemma 3.5. For any z € Q/Z,, we have that * — 2apx + N(z) = 0.

7
Proof. Let x = ag + Z a;e;. Then the left-hand side of the equation becomes:
i=1
7 7
22 —2apz + N(z) = (ag + Z a;e;)(ao + Z aie;) — 2apx + N(x)
i=1 i=1

7 7 7 7 7
= a2 + 2ao Z a;e; + (Z aiei)(z a;e;) — 2ap(ap + Z a;e;) + Z a?
i=1 i=1 i=1 i=1 i=0
7 7 7 7
=al + Z 2apaie; — Z a? — 2a0(ag + Z a;e;) + Z a?
i=1 i=1 i=1 i=0
7 7 7 7
= a% +2a02aiei — Zaf — 2a3 —QaOZaiei +a(2J +Za?
i=1 i=1 i=1 i=1

=0
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Lemma 3.6. Let x € O/Z,. If x is nilpotent, then N(z) = 0.

Proof. We follow the steps given in the proof for the quaternion case in [4]. If z is
nilpotent, then 2* = 0 for some k. From Lemma 3.5 above, we have:

22 — 2apz + N(z) = 0 = z(x — 2a9) = —N(z)
= (z(z - 2a0))" = (~N(2))"*
= 2% (z — 2a0)" = (=N (z))* (see Remark 3.7 below)
= 0= (N(z))"
= N(x) =0, because Zj, is a field.
0

Remark 3.7. We discuss the statement (z(z — 2ag))* = 2*(2 — 2a0)* in the proof in
the Lemma 3.6 above: The statement is taken as obvious, without a proof, in [4] (in
Lemma 2.1) for the quaternionic case H/Z,, but it deserves a bit more explanation
in our case here considering the non-commutativity and non-associativity of Q/Z,.
As we mentioned in Sec.2, O/Z, is an alternative algebra (and flexible). Therefore, it
also satisfies the Moufang Identities, in particularly the identity (zy)(zz) = (z(yz))z.
Given this, it is not hard to show the following;:

Proposition 3.8. If A is an alternative algebra such that xy = yx, x, y € A, then
() = by

Proof. We show this for k = 2 (the general case follows by iteration). Indeed:

()? = (ay)(xy) 2™ (ya)(2y) "2 (y(a))y
TE ((ya)a)y
I ((wy)a)y
T ((ya))y
I (a(wy))y
YL ((ww)y)

T (w2) (yy)

<

||°

O

Hence, the statement (x(z — 2a0))* = 2*(z — 2a¢)* is also true in our particular case
here, because O/Z,, is alternative (and flexible) and z(x — 2ag) = (z — 2a¢)z. It is
also clear now why the statement is easy to prove in H/Z,, considering that H/Z, is

actually associative. Finally, given the above result, one could also obtain the binomial
k

formula (x +y)* = Z (k> 27y*7 which could also be used to prove the statement
§=0
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in question. That is:

k
(22 — 2a0))* = (2% — 2a02)" = 3 <’“) () (—2aw)*

J=0 J
N
= zF < ) 29 (—2a0)F 7

= zF(x — 2a0)"

Theorem 3.9. Let x € O/Z,. Then x is nilpotent if and only if x is purely imaginary
and N(x) = 0. Furthermore, if x is nilpotent, then x? = 0.

Proof. If z is nilpotent, then z¥ = 0 for some k > 1 (where k is the least such natural
number). From Lemma 3.6 above, we have that N(xz) = 0. Combining Lemmas 3.5
and 3.6, we get 2 = 2agz. Following the steps given in the proof for the quaternion
case in [4], we have:
If kis even : 22 = 2apx = (2%)*/2 = (2a)*/22*/2

= 2F = (2a0)"/ ?2"/?
= 0 = (2a0)*/2a*/?
=ay=0

Ifkisodd: z2=2apz = (x2)<’f+1)/2 - (an)(k+1)/2x(k+1)/2
= (z)F+D/2 = (2q4)FH1)/25(k+1)/2

= 0 = (2a0) KD/ 25h/2
=a9=0

Hence, ag = 0 and therefore z is imaginary. Furthermore, since ag = 0, from x? = 2a¢z
we have that 22 = 0. For the converse, since N(z) = 0, Lemma 3.5 gives 2% = 2aoz.
Since also x is imaginary (ag = 0) the equation 22 = 2agx gives x? = 0. Then for any

k> 1 we have: 2% = 2F222 = 2¥=2.0 = 0, so « is nilpotent. O

Example 3.10. Consider x = 4e; + e3 + 3e3 +4es in O/Z7. Then x is nilpotent. Notice
that N(z) =02 +42 + 12+ 32402 + 42 + 02 + 0% = 0(mod 7).

4. Connection to general rings and applications

There is a lot in the literature on idempotents, nilpotents and k-potents in
general, in more general rings R. It would be interesting to see if and how some of
these results relate to the ‘special’, in a sense, ring Q/Z,,.

In [16], Hirano and Tominaga proved that in a ring R the following are equivalent:
(i) Every element of R is a sum of two commuting idempotents; (ii) R is commutative
and every element of R is a sum of two idempotents; (iii) 2® = x, for all z in R.®
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As O/Z, is not commutative, the above fails. For example, consider the idempotents
a=34e; and b =3+ ey in QO/Z5. Then,

r=a+b=B+4e)+B+e)=6+e+ex=1+e1+ea,

but x is not tripotent (indeed, (1+e; +e2)® = €1 + ez # 1+ e1 +e3). The above fails
even when the idempotents commute. Take, for example, a = b =3+ e in O/Zs.

Also, Mosic in [21] gives the relation between idempotent and tripotent elements
in any associative ring R, generalizing the result on matrices by Trenkler and Bak-
salary [27]. Namely, for any 2 € R, where 2, 3 are invertible, z is idempotent if and
only if z is tripotent and 1 — x is tripotent or 1 4 x is invertible. Notice that even
though Q/Z, is not associative, the result does hold in some cases. Take for example
the tripotent @ = 4 + 3e; + es + 4eg in Q/Z7, which is also an idempotent. It is not
hard to check that directly or using the conditions for idempotency in Theorem 3.1
above. Notice also that 1 — z is tripotent and 1 + z is invertible as N(x) = 2 # 0. So,
we conjecture that Mosic’s result may extend to (some) non-associative rings.

Finally, it is interesting to note any possible applications of rings related to the
ring Q/Z,. Malekian and Zakerolhosseini in [19] use octonionic algebras to construct
a high speed public key cryptosystem. More specifically, they consider the convolution
polynomial rings R = Z[z]/(z — 1), R, = Z,[z]/(z" — 1) and R, = Z,[z]/(zV — 1),
where p, ¢ are primes such as ¢ > p. From these they construct the octonionic
algebras:

A={ap(z +Zal Jei | a;(x) € R},
Ay ={ap(z Jrzaz Jei | ai(z) € Ry},

Ay = {ao(z +Zal Jei | ai(x) € Ry},

respectively. Then, the public (and private) key is generated as follows: initially two
small octonions F' € Ly and G € L,, where L, L, are some specifically constructed
subspaces of A, are randomly generated. Namely,

7
F=fo+) fie: | fi €Ly,

7
ngo—l—Zgiei ‘ gi ELQ.
i=1
The octonion F' must be invertible in A, and A, , otherwise a new octionion F' is gen-
erated. The inverses of F'in A, and A, are denoted by in F;* and F, ', respectively.
The public key, which is an octonion, is then given by H = Fp’loG € A, , where o is
a multiplication defined on A, in terms of the convolution product. Encryption and
decryption are done with similar calculations.
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1. R, C, H and O are the only normed division algebras. This was proved by Hurwitz

in 1898 [17].

2. “4” and “” on H are defined in [14, p. 124]. As p

they are defined as follows:

O(modp) on H/Z,

r+y= ((10 +ali+a2j+a3k) + (b() +b1i+b2j +b3k)
= (ap + bo) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k
Ty = (ao +a1i+a2j+a3kz) . (bo +b1i+b2j+b3]€)
= apby + (p — 1)&1[)1 + (p — 1)a2b2 + (p — 1)@3()3 +
(aobo + aibo + azbs + (p — 1)asb2)j +
(aobg —+ (p — 1)(11[)3 =+ a2b0 =+ (Zgbl)j =+

(aobs + a1bs + (p — 1)agby + asbg)k

3. Fano Plane (Figure 1); Multiplication table (Figure 2); Program in Maple

(Figure 3):

Figure 1. Fano Plane

(il‘(i]‘ €0 €1 €2 €3 €4 €5 €6 €7
€q €0 e1 (&) €3 €4 €5 €6 er
€1 €1 | —€ €3 —e2 €5 —€4 | —€7 €6
€2 €2 | —€e3 | —€p €71 €6 €7 —€4 | —€n
€3 €3 €2 —€1 | —€o er —€6 €5 —€4
€4 €eg | —€5| —€g | —€7 | —€) €1 €2 €3
ey €5 €4 —ey €6 —€1 | —¢y | —€3 €
€6 €6 er €4 —e5 | —€3 €3 —€p | —€1
er €7 | —€g €5 €4 —€3 | —€2 €1 —€)

Figure 2. Multiplication table
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> HypercomplexLib :='C:\\Hypercomplex\\Hypercomplex.mla  ;
> libname:=HypercomplexLib, libname; ### now Maple will find the lib
HypercomplexLib = C:\Hypercomplex\Hypercomplex.mla
libname = "C:\Hypercomplex\Hypercomplex.mla", "C:\Program Files\Maple 18\lib", "." 1)
> with(Hypercomplex)
> setHypercomplex(octonion) :

> 247
i -is @
> (2i2—i3)-(i4+3i5) mod5;
i 0 3)
> (44il+3i3+4i5)-(4+il+3i3+4i5) mod7;
| 44il+3i3+4i5 @
> (4il +i2+3i3+4i5)-(4il +i2+3i3+4i5) mod7;

0 ®)

Figure 3. Maple program

4. Accordingly, the following hold: (zz)y = z(zy) (alternative), z(yx) = (zy)z
(flexible), (x) is power associative for all z.

5. These representations are given in [11] without a proof. The proof for O/Z,
is actually straightforward, following the exact steps in the proofs of Theorems 2.1
and 2.3 in [26] for the case of Q.

6. In Herstein [14, p. 130], we have as an exercise that: In a ring R, if 22 = x, for all
z in R, then R is commutative. It is not hard to show that the converse is not true.
(e.g. F = Zs, 2 is not idempotent). Actually, a field F has only trivial idempotents.
Hence, in H/Z, some elements are non-trivial idempotents and they were described
in [3].

7. Namely, the seven quaternionic subalgebras of O each generated by the
seven ”line” (including the circle) in the Fano Plane.

8. A ring R is called a tripotent ring if 23 = x, for all x in R. The fact that
a tripotent ring is commutative is found as an exercise in Hernstein [14, p. 136].
Several proofs of this fact have been given since the 60’s [5]. In Bourbaki, we find
it also as an exercise with guided steps/hints for the proof [7, p. 176]. See also [23].
Interestingly, a more general result by Jacobson was already known in the 40’s [18].
Namely, if in a ring R there exists an integer n > 1 such that z"=x, for every z in
R, then R is commutative. For a proof of Jacobson’s Theorem see [5], [15].
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