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Decay rate of solutions to the Cauchy problem for
a coupled system of viscoelastic wave equations
with a strong delay in Rn

Amina Chaili, Bochra Belhadji and Abderrahmane Beniani

Abstract. Using weighted spaces, we establish a general decay rate properties of
solutions as T → ∞ for a coupled system of viscoelastic wave equations in Rn

under some conditions on g1, g2, φ. We exploit a density function to introduce
weighted spaces for solutions and using an appropriate Lyapunov function.
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1. Introduction and statement

Let us consider the following problem

u′′1 + αu2 + ∆u′1(x, t− τ) = φ(x)∆x

(
u1 +

∫ t
0
g1(s)u1(t− s, x)ds

)
, x ∈ Rn × R+

u′′2 + αu1 + ∆u′2(x, t− τ) = φ(x)∆x

(
u2 +

∫ t
0
g2(s)u2(t− s, x)ds

)
, x ∈ Rn × R+

u′1(x, t− τ) = f1(x, t− τ), u′2(x, t− τ) = f2(x, t− τ) t ∈ (0, τ)
(u1(0, x), u2(0, x)) = (u10(x), u20(x)) ∈ (H(Rn))2,
(u′1(0, x), u′2(0, x)) = (u11(x), u21(x)) ∈ (L2

ρ(Rn))2,
(1.1)

where the space H(Rn) defined in (1.11) and l, n ≥ 2, φ(x) > 0, ∀x ∈ Rn, (φ(x))−1 =
ρ(x) defined in (A2).
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In this paper we are going to consider the solutions in spaces weighted by the
density function ρ(x) in order to compensate for the lack of Poincare’s inequality
which is useful in the proof.

In this framework, (see [5], [9]), it is well known that, for any initial data
(u10, u20) ∈ (H(Rn))2, (u11, u21) ∈ (Llρ(Rn))2, then problem (P ) has a global solu-

tion (u1, u2) ∈ (C([0, T ),H(Rn)))2, (u′1, u
′
2) ∈ (C([0, T ), Llρ(Rn))2 for T small enough,

under hypothesis (A1)-(A2).

The energy of (u1, u2) at time t is defined by

E(t) =
1

2

2∑
i=1

‖u′i‖2L2
ρ(Rn) +

1

2

2∑
i=1

(1−
∫ t

0

gi(s)ds)‖∇xui‖22 +
1

2

2∑
i=1

(gi ◦ ∇xui)

+ α

∫
Rn
ρu1u2dx. (1.2)

When α is sufficiently small, we deduce that:

E(t) ≥ 1

2
(1− |α|‖ρ‖−1Ls )

[
2∑
i=1

‖u′i‖2Llρ +

2∑
i=1

(1−
∫ t

0

gi(s)ds)‖∇xui‖22 +

2∑
i=1

(gi ◦ ∇xui)

]
and the following energy functional law holds, which means that, our energy is uni-
formly bounded and decreasing along the trajectories.

E′(t) =
1

2

2∑
i=1

(g′i ◦ ∇xui)(t)−
1

2

2∑
i=1

gi(t)‖∇xui(t)‖22,∀t ≥ 0. (1.3)

The following notation will be used throughout this paper

(Φs ◦Ψ)(t) =

∫ t

0

Φs(t− τ) ‖Ψ(t)−Ψ(τ)‖22 dτ (1.4)

For the literature, in Rn we quote essentially the results of [1], [5], [6], [7], [9],
[11]. In [6], authors showed for one equation that, for compactly supported initial
data and for an exponentially decaying relaxation function, the decay of the energy
of solution of a linear Cauchy problem (1.1) with l = 2, ρ(x) = 1is polynomial. The
finite-speed propagation is used to compensate for the lack of Poincars inequality.
In the case l = 2, in [5], author looked into a linear Cauchy viscoelastic equation
with density. His study included the exponential and polynomial rates, where he used
the spaces weighted by density to compensate for the lack of Poincar’s inequality.
The same problem traited in [5], was considred in [7], where they consider a Cauchy
problem for a viscoelastic wave equation. Under suitable conditions on the initial
data and the relaxation function, they prove a polynomial decay result of solutions.
Conditions used, on the relaxation function g and its derivative g′ are different from
the usual ones.

The problem (1.1) for the case l = 2, ρ(x) = 1, in a bounded domain Ω ⊂
Rn, (n ≥ 1) with a smooth boundary ∂Ω and g is a positive nonincreasing function
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was considred as equation in [11], where they established an explicit and general decay
rate result for relaxation functions satisfying:

g′(t) ≤ −H(g(t)), t ≥ 0, H(0) = 0 (1.5)

for a positive function H ∈ C1(R+) and H is linear or strictly increasing and strictly
convex C2 function on (0, r], 1 > r. Wich improve the conditions considred recently
by Alabau-Boussouira and Cannarsa [1] on the relaxation functions

g′(t) ≤ −χ(g(t)), χ(0) = χ′(0) = 0 (1.6)

where χ is a non-negative function, strictly increasing and strictly convex on
(0, k0], k0 > 0. They required that∫ k0

0

dx

χ(x)
= +∞,

∫ k0

0

xdx

χ(x)
< 1, lim inf

s→0+

χ(s)/s

χ′(s)
>

1

2
(1.7)

and proved a decay result for the energy of equation (1.1) with α = 0, l = 2, ρ(x) = 1
in a bounded domain. In addition to these assumptions, if

lim sup
s→0+

χ(s)/s

χ′(s)
< 1 (1.8)

then, in this case, an explicit rate of decay is given.
We omit the space variable x of u(x, t), u′(x, t) and for simplicity reason denote

u(x, t) = u and u′(x, t) = u′, when no confusion arises. We denote by

|∇xu|2 =

n∑
i=1

(
∂u

∂xi

)2

, ∆xu =

n∑
i=1

∂2u

∂x2i
.

The constants c used throughout this paper are positive generic constants which may
be different in various occurrences also the functions considered are all real valued,
here u′ = du(t)/dt and u′′ = d2u(t)/dt2.

The main purpose of this work is to allow a wider class of relaxation functions
and improve earlier results in the literature. The basic mechanism behind the decay
rates is the relation between the damping and the energy. In section 2, we prove decay
estimates of the solution of our problem (1.1) when g1 and g2 are of general decay
rate. Our approach involves a perturbed energy method and leverages properties of
convex functions.

First we recall and make use the following assumptions on the functions ρ and
g for i = 1, 2 as:

A1: To guarantee the hyperbolicity of the system, we assume that the function
gi : R+ −→ R+ (for i = 1, 2) is of class C1 satisfying:

1−
∫ ∞
0

gi(t)dt ≥ ki > 0, gi(0) = gi0 > 0 (1.9)

and there exist nonincreasing continuous functions ξ1,ξ2: R+ −→ R+ satisfying

g′i(t) ≤ −ξigi(t). (1.10)

A2: The function ρ : Rn → R∗+, ρ(x) ∈ C0,γ(Rn) with γ ∈ (0, 1) and ρ ∈
Ls(Rn) ∩ L∞(Rn), where s = 2n

2n−qn+2q .



898 Amina Chaili, Bochra Belhadji and Abderrahmane Beniani

Definition 1.1 ([5], [12]). We define the function spaces of our problem and its norm
as follows:

H(Rn) =
{
f ∈ L2n/(n−2)(Rn) : ∇xf ∈ L2(Rn)

}
(1.11)

and the spaces L2
ρ(Rn) to be the closure of C∞0 (Rn) functions with respect to the

inner product

(f, h)L2
ρ(Rn) =

∫
Rn
ρfhdx.

For 1 < p <∞, if f is a measurable function on Rn, we define

‖f‖Lqρ(Rn) =

(∫
Rn
ρ|f |qdx

)1/q

. (1.12)

Corollary 1.2. The separable Hilbert space L2
ρ(Rn) with

(f, f)L2
ρ(Rn) = ‖f‖2L2

ρ(Rn).

consist of all f for which ‖f‖Lqρ(Rn) <∞, 1 < q < +∞.

The following technical lemma will be pivotal in the next section.

Lemma 1.3. [4] (Lemma 1.1) For any two functions g, v ∈ C1(R) and θ ∈ [0, 1] we
have∫

Rn

v′(t)

t∫
0

g(t− s)v(s)dsdx = −1

2

d

dt
(g ◦ v)(t) +

1

2

d

dt

 t∫
0

g(s)ds

 ‖v(t)‖22

+
1

2
(g′ ◦ v)(t)− 1

2
g(t)‖v(t)‖22. (1.13)

and ∫
Rn

(∫ t

0

g(t− s)|v(s)− v(t)|ds
)2

dx ≤
(∫ t

0

g2(1−θ)(s)ds

)
(g2θ ◦ v) (1.14)

We are now ready to state and prove our main results

2. Results and proofs

Lemma 2.1. [8] Let ρ satisfies ( A2), then for any u ∈ H(Rn)

‖u‖Lqρ(Rn) ≤ ‖ρ‖Ls(Rn)‖∇xu‖L2(Rn), with s =
2n

2n− qn+ 2q
, 2 ≤ q ≤ 2n

n− 2
.

Corollary 2.2. If q = 2, then Lemma 2.1. yields

‖u‖L2
ρ(Rn) ≤ ‖ρ‖Ln/2(Rn)‖∇xu‖L2(Rn),

where we can assume ‖ρ‖Ln/2(Rn) = C0 > 0 to get

‖u‖L2
ρ(Rn) ≤ C0‖∇xu‖L2(Rn). (2.1)

Using Cauchy-Schwarz, Poincare’s inequalities, the proof of the following Lemma
is immediate.
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Lemma 2.3. There exist constants c, c′ > 0 such that∫
Rn

(∫ t

0

gi(t− s)(ui(t)− ui(s))ds
)2

dx ≤ c(gi ◦ ui)(t) ≤ c′(g′i ◦ ∇ui)(t) (2.2)

for any u ∈ H(Rn).

To construct a Lyapunov functional L equivalent to E, we introduce the next
functionals

ψ1(t) =

2∑
i=1

∫
Rn
ρ(x)ui|u′i|l−2u′idx (2.3)

ψ2(t) = −
2∑
i=1

∫
Rn
ρ(x)|u′i|l−2u′i

∫ t

0

gi(t− s)(ui(t)− ui(s))dsdx (2.4)

Lemma 2.4. Under the assumptions ( A1-A2), the functional ψ1 satisfies, along the
solution of (1.1)

ψ′1(t) ≤
2∑
i=1

‖u′i‖lLlρ(Rn)−(k+|α|C0−δ−1)

2∑
i=1

‖∇xui‖22+
(1− k)

4δ

2∑
i=1

(gi◦∇xui) (2.5)

Proof. From (2.3), integrate by parts over Rn, we have

ψ′1(t) =

∫
Rn
ρ(x)u′l1dx+

∫
Rn
ρ(x)u1

(
|u′1|l−2u′1

)′
dx

+

∫
Rn
ρ(x)u′l2dx+

∫
Rn
ρ(x)u2

(
|u′2|l−2u′2

)′
dx

=

∫
Rn

(
ρ(x)u′l1 + u1∆xu1 − αρ(x)u1u2 − u1

∫ t

0

g1(t− s)∆xu1(s, x)ds

)
dx

+

∫
Rn

(
ρ(x)u′l2 + u2∆xu2 − αρ(x)u1u2 − u2

∫ t

0

g2(t− s)∆xu2(s, x)ds

)
dx

≤
2∑
i=1

‖u′i‖lLlρ(Rn) −
2∑
i=1

ki‖∇xui‖22 − 2α

∫
Rn
ρ(x)u1u2dx

+

2∑
i=1

∫
Rn
∇xui

∫ t

0

gi(t− s)(∇xui(s)−∇xui(t))dsdx

Using Young’s, Poincare’s inequalities, Lemma (2.1) and Lemma (1.3), we obtain

ψ′1(t) ≤
2∑
i=1

‖u′i‖lLlρ(Rn) −
2∑
i=1

ki‖∇xui‖22 + (1− |α|‖ρ‖−1Ls(Rn))
2∑
i=1

‖∇xui‖22

+ δ

2∑
i=1

‖∇xui‖22 +
1

4δ

2∑
i=1

∫
Rn

(∫ t

0

gi(t− s)|∇xui(s)−∇xui(t)|ds
)2

dx

≤
2∑
i=1

‖u′i‖lLlρ(Rn) − (k + |α|C0 − δ − 1)

2∑
i=1

‖∇xui‖22 +
(1− k)

4δ

2∑
i=1

(gi ◦ ∇xui)
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For α small enough and k = max{k1, k2}. �

Lemma 2.5. Under the assumptions ( A1-A2), the functional ψ2 satisfies, along the
solution of (P ), for any σ ∈ (0, 1)

ψ′2(t) ≤
2∑
i=1

(
δ −

∫ t

0

gi(s)ds

)
‖u′i‖lLlρ(Rn)

+ δ

2∑
i=1

‖∇xui‖22 +
c

δ

2∑
i=1

(gi ◦ ∇xui)− cδC0

2∑
i=1

(g′i ◦ ∇xui)l/2 (2.6)

Proof. Exploiting Eq. in (1.1), to get

ψ′2(t) = −
2∑
i=1

∫
Rn
ρ(x)

(
|u′i|l−2u′i

)′ ∫ t

0

gi(t− s)(ui(t)− ui(s))dsdx (2.7)

−
2∑
i=1

∫
Rn
ρ(x)|u′i|l−2u′i

∫ t

0

g′i(t− s)(ui(t)− ui(s))dsdx−
2∑
i=1

∫ t

0

gi(s)ds‖u′i‖lLlρ

To simplify the first term in (2.7), we multiply (1.1) by

∫ t

0

gi(t−s)(ui(t)−ui(s))dsdx
and integrate by parts over Rn. So we obtain

−
2∑
i=1

∫
Rn
ρ(x)

(
|u′i|l−2u′i

)′ ∫ t

0

gi(t− s)(ui(t)− ui(s))dsdx

=

2∑
i=1

∫
Rn

∆ui(x)

∫ t

0

gi(t− s)(ui(t)− ui(s))dsdx

−
2∑
i=1

∫
Rn

(∫ t

0

gi(t− s)(ui(t)− ui(s))
∫ t

0

gi(t− s)∆ui(s)
)
dx (2.8)

− α
∫
Rn

[
ρu2

∫ t

0

g1(t− s)(u1(t)− u1(s))ds+ ρu1

∫ t

0

g2(t− s)(u2(t)− u2(s))ds

]
dx

The first term in the right side of (2.8) is estimated as follows∫
Rn

∆ui(x)

∫ t

0

gi(t− s)(ui(t)− ui(s))dsdx

≤ −
∫
Rn
∇xui

∫ t

0

gi(t− s)(∇xui(t)−∇xui(s))dsdx

≤
∫
Rn
∇xui

∫ t

0

gi(t− s)(∇xui(s)−∇xui(t))dsdx

≤ δ‖∇xui‖2 +
1

4δ

(∫ t

0

gi(s)

)
(gi ◦ ∇ui)(t)

≤ δ‖∇xui‖2 +
1− k

4δ
(gi ◦ ∇ui)(t).
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while the second term becomes,

−
∫
Rn

(∫ t

0

gi(t− s)(ui(t)− ui(s))
∫ t

0

gi(t− s)∆ui(s)
)
dx

=

∫
Rn

(∫ t

0

gi(t− s)(∇ui(t)−∇ui(s)) ·
∫ t

0

gi(t− s)∇ui(s)
)
dx

≤ δ

∫
Rn

(∫ t

0

gi(t− s)|∇ui(s)−∇ui(t)) +∇ui(t)|
)2

+
1

4δ

∫
Rn

(∫ t

0

gi(t− s)(∇ui(t)−∇ui(s))
)2

≤ 2δ(1− k)2‖∇ui‖22 +

(
2δ +

1

4δ

)
(1− k)(gi ◦ ∇ui)(t).

Now, using Young’s and Poincare’s inequalities we estimate

− α

∫
Rn
ρu2

∫ t

0

g1(t− s)(u1(t)− u1(s))dsdx

≤ −|α|δ‖u2‖2L2
ρ
− |α|C0

4δ
(1− k)(g1 ◦ ∇u1)(t)

≤ −|α|δC0‖∇u2‖2L2 −
|α|C0

4δ
(1− k)(g1 ◦ ∇u1)(t).

By Hölder’s and Young’s inegualities and Lemma (2.1) we estimate

−
∫
Rn
ρ(x)|u′i|l−2u′i

∫ t

0

g′i(t− s)(ui(t)− ui(s))dsdx

≤
(∫

Rn
ρ(x)|u′i|ldx

)(l−1)/l

×
(∫

Rn
ρ(x)|

∫ t

0

−g′i(t− s)(ui(t)− ui(s))ds|l
)1/l

≤ δ‖u′‖lLlρ(Rn) +
1

4δ
‖ρ‖lLs(Rn)‖

∫ t

0

−g′(t− s)(u(t)− u(s))ds‖lLlρ(Rn)

≤ δ‖u′‖lLlρ(Rn) −
1

4δ
C0(g′ ◦ ∇xu)l/2(t).

Using Young’s and Poincare’s inequalities and Lemma (1.3), we obtain

ψ′2(t) ≤
2∑
i=1

(
δ −

∫ t

0

gi(s)ds

)
‖u′i‖lLlρ(Rn)

+ δ

2∑
i=1

‖∇xui‖22 +
c

δ

2∑
i=1

(gi ◦ ∇xui)− cδC0

2∑
i=1

(g′i ◦ ∇xui)l/2.

�

Our main result reads as follows
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Theorem 2.6. Let (u0, u1) ∈ (H(Rn(Ω))×Llρ(Rn) and suppose that (A1)− (A2) hold.
Then there exist positive constants α1, ω such that the energy of solution given by
(1.1) satisfies,

E(t) ≤ α1E(t0) exp

(
−ω

∫ t

t0

ξ(s)ds

)
,∀t ≥ t0 (2.9)

where ξ(t) = min{ξ1(t), ξ2(t)}, ∀t ≥ 0.

In order to prove this theorem, let us define

L(t) = N1E(t) + ψ1(t) +N2ψ2(t) (2.10)

for N1, N2 > 1. We require the following lemma, indicating an equivalence between
the Lyapunov and energy functions

Lemma 2.7. For N1, N2 > 1, we have

β1L(t) ≤ E(t) ≤ L(t)β2, (2.11)

holds for two positive constants β1 and β2.

Proof. By applying Young’s inequality to (2.3) and using (2.4) and (2.10), we obtain

|L(t)−N1E(t)| ≤ |ψ1(t)|+N2|ψ2(t)|

≤
2∑
i=1

∫
Rn

∣∣ρ(x)ui|u′i|l−2u′i
∣∣ dx

+ N2

2∑
i=1

∫
Rn

∣∣∣∣ρ(x)|u′i|l−2u′i
∫ t

0

gi(t− s)(ui(t)− ui(s))ds
∣∣∣∣ dx

Thanks to Hölder and Young’s inequalities with exponents l
l−1 , l, since 2n

n+2 ≥ l ≥ 2,
we have by using Lemma 2.1∫

Rn

∣∣ρ(x)ui|u′i|l−2u′i
∣∣ dx ≤

(∫
Rn
ρ(x)|ui|ldx

)1/l(∫
Rn
ρ(x)|u′i|ldx

)(l−1)/l

≤ 1

l

(∫
Rn
ρ(x)|ui|ldx

)
+
l − 1

l

(∫
Rn
ρ(x)|u′i|ldx

)
≤ c‖u′i‖lLlρ(Rn) + c‖ρ‖lLs(Rn)‖∇xui‖

l
2. (2.12)

and ∫
Rn

∣∣∣∣(ρ(x)
l−1
l |u′i|l−2u′i

)(
ρ(x)

1
l

∫ t

0

gi(t− s)(ui(t)− ui(s))ds
)∣∣∣∣ dx

≤
(∫

Rn
ρ(x)|u′i|ldx

)(l−1)/l

×
(∫

Rn
ρ(x)|

∫ t

0

gi(t− s)(ui(t)− ui(s))ds|l
)1/l

≤ l − 1

l
‖u′i‖lLlρ(Rn) +

1

l
‖
∫ t

0

gi(t− s)(ui(t)− ui(s))ds‖lLlρ(Rn)

≤ l − 1

l
‖u′i‖lLlρ(Rn) +

1

l
‖ρ‖lLs(Rn)(gi ◦ ∇xui)

l/2(t).
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then, since l ≥ 2, we have

|L(t)−N1E(t)| ≤ c

2∑
i=1

(
‖u′i‖lLlρ(Rn) + ‖∇xui‖l2 + gi ◦ ∇xui)l/2(t)

)
≤ c(E(t) + El/2(t))

≤ c(E(t) + E(t) · E(l/2)−1(t))

≤ c(E(t) + E(t) · E(l/2)−1(0))

≤ cE(t).

Consequently, (2.11) follows. �

Proof of Theorem 2.6. From (1.3), results of Lemmas (2.4) and (2.5), we have

L′(t) = N1E
′(t) + ψ′1(t) +N2ψ

′
2(t)

≤
(

1

2
N1 − cδC0N2

) 2∑
i=1

(g′i ◦ ∇xui)l/2 +

(
4ξ2c+ (1− l)

4δ

) 2∑
i=1

(gi ◦ ∇xui)

− M1

2∑
i=1

‖u′i‖lLlρ(Rn) −M2

2∑
i=1

‖∇xui‖22

At this point, we choose ξ2 large enough so that

M1 :=

(
N2

(∫ t1

0

g(s)ds− δ
)
− 1

)
> 0,

We choose δ so small that N1 > 2cδ‖ρ‖lLs(Rn)N2. Given that δ is fixed, we can choose

ξ1, ξ2 large enough so that

M2 :=

(
−N2σ +

1

2
N1g(t1) + (l − σ)

)
> 0,

and (
1

2
N1 − cδC0N2

)
> 0.

which yields

L′(t) ≤ M0

2∑
i=1

(gi ◦ ∇xui)−mE(t), ∀t ≥ t1. (2.13)

Multiplying (2.13) by ξ(t) gives

ξ(t)L′(t) ≤ −mξ(t)E(t) +M0ξ(t)

2∑
i=1

(gi ◦ ∇xui) (2.14)
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The last term can be estimated, using (A1), as follows

M0ξ(t)

2∑
i=1

(gi ◦ ∇xui) ≤ M0

2∑
i=1

ξi(t)

∫
Rn

∫ t

0

gi(t− s)|ui(t)− ui(s)|2

≤ M0

2∑
i=1

∫
Rn

∫ t

0

ξi(t− s)gi(t− s)|ui(t)− ui(s)|2

≤ −M0

2∑
i=1

∫
Rn

∫ t

0

g′i(t− s)|ui(t)− ui(s)|2

≤ −M0

2∑
i=1

g′i ◦ ∇ui ≤ −M0E
′(t). (2.15)

Thus, (2.13) becomes

ξ(t)L′(t) +M0E
′(t) ≤ −mξ(t)E(t) ∀t ≥ t0. (2.16)

Using the fact that ξ is a nonincreasing continuous function as ξ1 and ξ2 are nonin-
creasing, and so ξ is differentiable, with ξ′(t) ≤ 0 for a.e t, then

(ξ(t)L(t) +M0E(t))′ ≤ ξ(t)L′(t) +M0E
′(t) ≤ −mξ(t)E(t) ∀t ≥ t0. (2.17)

Since, using (2.11)

F = ξL+M0E ∼ E, (2.18)

we obtain, for some positive constant ω

F ′(t) ≤ −ωξ(t)F (t) ∀t ≥ t0. (2.19)

Integration over (t0, t) leads to, for some constant ω > 0 such that

F (t) ≤ α1F (t0) exp

(
−ω

∫ t

t0

ξ(s)ds

)
,∀t ≥ t0 (2.20)

Recalling (2.18), estimate (2.20) yields the desired result (2.9). This completes the
proof of Theorem 2.6.
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