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Global solution for a diffusive epidemic model
(HIV/AIDS) with an exponential behavior of
source

El Hachemi Daddiouaissa

Abstract. We consider the question of global existence and uniform boundedness
of nonnegative solutions of a system of reaction-diffusion equations with exponen-
tial nonlinearity, without any restriction on initial data, using maximum principle
and Lyapunov function techniques.
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1. Introduction

In this paper we consider the following reaction-diffusion system

ou

E—aAu:H—f(u,v)—ozu (x,t) € QA xRy (1.1)
% —bAv = f(u,v) —ok(v) (z,t) € X x Ry (1.2)
with the boundary conditions
ou v
8777:8777:0 on 8QXR+, (13)
and the initial data
u(0,2) = ug(w) = 0 0(0,2) = vo(x) =0 in 2, (1.4)

where  is a smooth open bounded domain in R”, with boundary 9Q of class C! and
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7 is the outer normal to 9S2. The constants of diffusion a, b are positive and such that
a # b and II, a, o are positive constants, x and f are nonnegative functions of class
Cl(Ry) and C'(R, x Ry) respectively.

The reaction-diffusion system (1.1) — (1.4) arises in the study of physical, chemi-
cal, and various biological processes including population dynamics (especially AIDS,
see C. Castillo-Chavez et al. [4], for further details see [6] [11] [17] [21] [22]).

The case I = 0, « = 0,0 = 0 and f(u,v) = h(u)Q(v), with h(u) = u (for
simplicity), has been studied by many authors. Alikakos [1] established the existence
of global solutions when Q(v) < C(1 + |v|("*2)/™). Then Massuda [18] obtained a
positive result for the case Q(v) < C(1 + |v|*) with arbitrary o > 0. The question
when Q(v) = e’ 0<B<1,a>0was positively answered by Haraux and Youkana
[13], using Lyapunov function techniques, see also Barabanova [2] for 8 = 1, with some
conditions and later on by Kanel [16], using useful properties inherent to the Green
function. For Q(v) = e®*” 3 > 1, Rebiai [3] proved the global existence. The idea
behind the Lyapunov functional stems from Zelenyak’s article [23], which has also
been used by Crandall et al. [5] for other purposes.

The case I > 0, & > 0,0 > 0 L. Melkemi et al. [19] established the existence of global
solutions, when f(&,7) < ¢(£)¢(7) such that

p I+ (7))

T—+00 T

=0.

For f(v) = e"“’ﬁ, B > 1, Djebara et al [9] showed the global existence.
The goal of this work is to generalize the existing result in [7], where it is proved the
existence of global solutions with following exponential nonlinearity

0< f(&,7) <€) (T +1)e, (1.5)

with restriction on initial data

IT 62 8ab
max (H o loc; a) S32.9¢ rn(a — b)?’ (1.6)

Hence, the main purpose of this paper is to give a positive answer, concerning
the global existence and the uniform boundedness in time, of solutions of system
(1.1) — (1.4), with out any restriction on inital data uy and vy and same exponential
nonlinearity, i.e,

(S1) vr >0, f(0,7) =0,
(S2) V€ >0,V >0,0< f(&,7) < (&) (1 + 1)2eT,
(S3) w(r) =1, pu>1,

where r, A are positive constants, such that A > 1, ¢ is a nonnegative function of class
C(RT).

For this end we use maximum principle and Lyapunov function techniques, and an
idea inspired from [8].
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2. Existence of local solutions

The usual norms in spaces LP(Q), L>(Q2) and C(Q) are respectively denoted by

1
R ARG P EN

Concerning a local existence, we can conclude directly from the theory of abstract
semilinear equations (see A. Friedman [10], D. Henry [14], A. Pazy [20]), that for
nonnegative functions uy and vy in L*°(Q2), there exists a unique local nonnegative
solution (u,v) of system (1.1) — (1.4) in C(Q) on ]0,T*[, where T* is the eventual
blowing-up time.

3. Existence of global solutions
Using the comparison principle, one obtains
II
0 < u(t,z) < max <|| U |OO,) =M, (3.1)
@
from which it remains to establish the uniform boundedness of v.
According to the results of [12], it is enough to show that
| fu,v) —or(v) [l[,< C (3:2)

(where C' is a nonnegative constant independent of ) for some p > %. To reach this
goal, let us start with this preliminaries results.
We consider the following reaction-diffusion system:

% — alAul =1 h(U17U/2) — U1 (l‘,t) S Ql X R+ (33)

% — (2= V3)a1Aug = h(ug,uz) — duy  (x,t) € Qy x Ry (3.4)
ou ou

87771 = 87772 =0 on an X R+, (35)

ur(0,2) = w1 0(x) > 0 uz(0,2) = s p(x) >0 in Oy, (3.6)

where €2 is a smooth open bounded domain in R?, with boundary 9€; of class C!
and 7 is the outer normal to 9y and a; > 0 is the diffusion constant, § is a positive
constant and [|u1,0l|c = %, h is differentiable nonnegative function such that:

(A1) Vr >0, h(0,7)=0,

(A2) VE 20,97 20, 0<h(é,m)=Ep(r) <E(r+aa)ets”,

where ¢ is differentiable nonnegative function and

48 3 M .1
a —max(g,(imy). (3.7)
Using the maximum principle, we obtain

0<wu(t,z) <1 (3.8)
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To establish the boundness of ug, we use the results of [14, 15], where it is enough to
show that

| h(ui, uz) — dusg [|4a< C, (3.9)

where C' is a nonnegative constant independent of ¢. For this end we need the following

Lemma 3.1. Let ¢ be a nonnegative function of class C(RT), such that

lim M

T—+0c0 T

=0
and let A be positive constant. Then there exists Iy > 0, such that

[‘W) - A] Thy (1) < Ty, (3.10)

-
for all T > 0; hy is a nonnegative function of class C(RT).

Proof. Since

im 20 g
T—+00 T

there exists 79 > 0, such that for all 7 > 7y, we have

[“ﬂ_Almﬂﬂga

i
Now if 7 is in the compact interval [0, o], then the continuous function

[6(7) = A7lha(7)
is bounded. 0

Lemma 3.2. Assume that (A1) and (A2) hold and let (uy,uz2) be a solution of (3.3)-
(8.6) on |0, T*[, with arbitrary uso. Let

1
Gi(t) = / (77— ) (uz + ar)tei 2 da. (3.11)
Q 3~ W
Then there exist a positive constant 11y such that
dG
— (1) < —o1Ga (1) + 10, (3.12)

where o1 s a positive constant.

Proof. We put q(u1) = (31u1>’ so that
2

Cr(t) = / g(ur) (g + ar) et dz.
Q

Differentiating G; with respect to t and a simple use of Green’s formula gives

Gi(t) =1 + J,
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where

I = —al/ q" (uq)(uz + a1)4e%“2|Vu1|2dx
Q1

1 1
G \/g)al / q (u)[4+ i(uQ + ap)](us + a1)361“2Vu1Vqux
Q1

1 1
- 2-V3)a / q(u)[12 4 2(ug + 1) + 1—6(uz + 1) ?(ug + a1)?e 12 |Vuy|?de,
|95

Jy = / ¢ (uy)(ug + o ) ei®dx — / ¢ (u)uy (ug + ay) e da
Ql Q1

T /Q (q(ul)[4 + i(uz + 0[1)] - q/(ul)(u2 + Oé])) (u2 + a1)3h(u1, UQ)e%’lex

1 1
— (5[4‘1‘ Z(UQ +a1)]u2(uz +C¥1)361u2d.’£.
Q

I; involves a quadratic form with respect to Vu; and Vug, which is nonnegative if

(3~ VBYl4-+ J(un + an)]? — 82 — V)12 + 2uz + 1) + 1o (uz + )]

:[72H+i@9+am2+ﬂﬂ2fV$:{1—D+3%@y+mﬂﬂ%@4w@)§0

Concerning the second term Ji, we can observe that

1 1 1
J1 < / (2 — 7(5’[142)37(’(1,2 + a1)4ezu2dx
N 4 V5w

1 1 1
- / ([4 + 7w+ o)l = g——(uz + al)) T (uz + a1)h(uy, up)e 2 da.
Q1 4 3~ W 5 W

Now we introduce a positive constant o1, such that

1 2 1 1 1
Jp < / —013 (us + a1)4€%“2 + ( o 6) 3 ug(up + ay)er"2dx
Q 5 - Uq Ug 4 5 uy

) 1
—|—/ (4 - Ea1)37(u2 + al)?’h(uhug)e%“"‘dx.
1951

2~ W
using the Lemma 3.1 and the choice in the formula 3.7, let us get
J1 < —O’1G1(t) + HQ‘Ql‘.
It follows that

where H1 = H2|Ql| O

Theorem 3.3. Under the assumptions (A1) and (A2), the solutions of (3.3) — (3.6)
are global and uniformly bounded on [0, 4+00].
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Proof. Multiplying (3.12) by e°'* and integrating the inequality on (0,t), it implies
the existence of a positive constant C's > 0 independent of ¢ such that

Gi(t) < Cs. (3.13)
Then we have

3 3
/ h4(u1,u2)dx S *Gl(t) S *Cg. (314)

o 2 2
O

Remark 3.4. From the choice (3.7) we have for all t > 0

2
G1(t) 2/ go/fdg[: > M. (3.15)
2

3.1. Main result

Now, we will state the main result

Theorem 3.5. Under the assumptions (S1) — (S3), the solutions of (1.1)-(1.4) are
global and uniformly bounded on [0, +o0l.

The key result needed to prove the Theorem 3.5 is the following

Proposition 3.6. Assume that (S1)—(S53) hold and let (u,v) be a solution of (1.1)-(1.4)
on 10, T*[, with arbitrary vy and ug. Let

B
60 = [ (Gopir—s) Crorera ). ()

where w, B,y and 0 are positive constants such that w > 1, 8 <1 and

4ab B+1)(2-0)Mr
= —_— = .1
B H(a—b)2’ v max()\,u, B0(1=0) (3.17)
and
t
P(t) 2/ /f(u,v)g(u)(v—|—w)“’pep”’dxds. (3.18)
o Ja
Then, there exist p > n/2 and positive constant T’ such that
dG
— < — .
o < —sG AT, (3.19)

where s is a positive constant.
It’s very important to state this lemma, before proving this proposition,

Lemma 3.7. For all 7 > 0 we have

1p
(1-0)M

where By and s are positive constants.

— UpK(T)(iT 1 ~t )| (T +w)Pel’m < —s(17 4+ w)PeP"T + By, (3.20)
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Proof. Let us put
1B

S oo

+ s
T+ — () + P () P
= (o )+ e+ (i~ o s waprer

then, using Lemma 3.1 we can conclude the result. O

Proof. (of Proposition 3.2). Let
M B
o) = (G=gr=)

GO = [ glu)(w+w)Permds + Ga(u(e).
Q
Differentiating G with respect to ¢ and a simple use of Green’s formula gives
G't)y=I+1J,

so that

where

I=—a /Q 9" () (v + W) P | Vul2de

—(a+Db) /Q g (W)[yp(v + )P + pr(v 4 w) PP VuVods

- b/Qg(U) (v —1) (0 +w) P24 29p (v + )P 4 PP (v + w) P Vo Pde,
J= /Q Ty () (v + w)PeP ™ d — /Q ag (wulv + w) P de

# [ (st + )™t rplo+ 6] = o )o + 0P ) flus 00 o

- /Q alyp(v +w) P+ rp(v + w) Plk(v)g(w)e’ dr + ' (1) G ($(1)).
We can see that I involves a quadratic form with respect to Vu and Vv, which is
nonnegative if
0= (pla+b)g (wy(v+w)™ ! +r(v+w)?))
—dabyp(yp — 1)g" (u)g(u)(v +w)*P~?
— dabg” (w)g(u) (v + W) P [2yp*r(v 4+ w) P + p?rP(v + w)P] < 0.

2

Indeed

) 9(0)? (0 + )12

rp’g(u)*(v + w)*
((2—=0)M — u)?

+ [(a +b)*B* — 4abB(B + 1)] 27 + r(v 4+ w)],
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the choice of 8 and v gives
dabBpyg(u)? (v +w)?*7 2

§<[B+1—py(1-10)

(2~ )M —u)?
+ dab(f — 1) Tpﬁ(é(“) ;;J“L;_ 2+ (rp) (v +w)] 0,
it follows that
I1<0.

Concerning the second term J, we use (3.12), we can observe that

J< /Q (U_Hg)M — opr(v)]- z —+ 7’]>g(u)(v + w)PTePrVdy

# [ (s 11 - g v+ ) e s

+ ' (t) (= 01G1 (¥ (1)) + IIy).
Using Lemma 3.7 and by choosing o1 = ﬁ(rp +1I;), we get

75 [[fstotapien + Bilguas
Q
9 ..
* ,/Q (UTUJ B 26 (CL _46;[))2M>f(u7v)g(u)(u + w)’YPePTvdx'

Since f is continuous function, applying the Lemma 3.1, it follows that there exist a
positive constant Ny such that

J < /Q[—s(v + w)P7eP™ + Bylg(u)dx

+ Ny /Q g(u)dz.

o= (125)

B
1
J < —SG(t)-i-(‘ Q|Bl +N1)<1_0> +803,

In addition
then

it follows that

dG
< = |
n sG+T,

where T = (| Q | By + Np)(5)” + sCs. O
Proof. (of Theorem 3.5)

Multiplying (3.19) by e and integrating the inequality, it implies the existence of a
positive constant C; > 0 independent of ¢ such that

G(t) < C).
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g(u) = (2_19>ﬁ,

/ (0 4+ w)PeP™dz < (2 — 0)PG(E) < C1(2 — 0)°.
Q

Since

Since w > 1 and (3.17) we have also,

/(v + D)PePmdg < /(’U + w)PeP™dx < C1(2 — )P,
Q Q

/v“pdmg/(v+w)7pdx§01(2—9)5.
Q Q

We put

A= o ©(&),

according to (S1) — (S3), we have
/ F(u,v)Pda < / AP(v + 1) e de < APCy(2 — 0)° = APHP,
Q Q

we conclude
[f(u,v) = or()lp < [[f(wv)lp + [lor(v)ll, < H(A+0).

By the preliminary remarks (introduction of section 3), we conclude that the solution
of (1.1)-(1.4) is global and uniformly bounded on [0, +oc0[x 2. O
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