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Global solution for a diffusive epidemic model
(HIV/AIDS) with an exponential behavior of
source

El Hachemi Daddiouaissa

Abstract. We consider the question of global existence and uniform boundedness
of nonnegative solutions of a system of reaction-diffusion equations with exponen-
tial nonlinearity, without any restriction on initial data, using maximum principle
and Lyapunov function techniques.
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1. Introduction

In this paper we consider the following reaction-diffusion system

∂u

∂t
− a∆u = Π− f(u, v)− αu (x, t) ∈ Ω× R+ (1.1)

∂v

∂t
− b∆v = f(u, v)− σκ(v) (x, t) ∈ Ω× R+ (1.2)

with the boundary conditions

∂u

∂η
=
∂v

∂η
= 0 on ∂Ω× R+, (1.3)

and the initial data

u(0, x) = u0(x) ≥ 0; v(0, x) = v0(x) ≥ 0 in Ω, (1.4)

where Ω is a smooth open bounded domain in Rn, with boundary ∂Ω of class C1 and
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η is the outer normal to ∂Ω. The constants of diffusion a, b are positive and such that
a 6= b and Π, α, σ are positive constants, κ and f are nonnegative functions of class
C1(R+) and C1(R+ × R+) respectively.

The reaction-diffusion system (1.1)− (1.4) arises in the study of physical, chemi-
cal, and various biological processes including population dynamics (especially AIDS,
see C. Castillo-Chavez et al. [4], for further details see [6] [11] [17] [21] [22]).

The case Π = 0, α = 0, σ = 0 and f(u, v) = h(u)Q(v), with h(u) = u (for
simplicity), has been studied by many authors. Alikakos [1] established the existence
of global solutions when Q(v) ≤ C(1 + |v|(n+2)/n). Then Massuda [18] obtained a
positive result for the case Q(v) ≤ C(1 + |v|α) with arbitrary α > 0. The question

when Q(v) = eαv
β

, 0 < β < 1, α > 0 was positively answered by Haraux and Youkana
[13], using Lyapunov function techniques, see also Barabanova [2] for β = 1, with some
conditions and later on by Kanel [16], using useful properties inherent to the Green

function. For Q(v) = eαv
β

, β > 1, Rebiai [3] proved the global existence. The idea
behind the Lyapunov functional stems from Zelenyak’s article [23], which has also
been used by Crandall et al. [5] for other purposes.
The case Π > 0, α > 0, σ > 0 L. Melkemi et al. [19] established the existence of global
solutions, when f(ξ, τ) ≤ ψ(ξ)ϕ(τ) such that

lim
τ→+∞

ln(1 + ϕ(τ))

τ
= 0.

For f(v) = eαv
β

, β > 1, Djebara et al [9] showed the global existence.
The goal of this work is to generalize the existing result in [7], where it is proved the
existence of global solutions with following exponential nonlinearity

0 ≤ f(ξ, τ) ≤ ϕ(ξ)(τ + 1)λerτ , (1.5)

with restriction on initial data

max

(
‖ u0 ‖∞,

Π

α

)
<

θ2

2− θ
8ab

rn(a− b)2
. (1.6)

Hence, the main purpose of this paper is to give a positive answer, concerning
the global existence and the uniform boundedness in time, of solutions of system
(1.1)− (1.4), with out any restriction on inital data u0 and v0 and same exponential
nonlinearity, i.e,

(S1) ∀τ ≥ 0, f(0, τ) = 0,
(S2) ∀ξ ≥ 0, ∀τ ≥ 0, 0 ≤ f(ξ, τ) ≤ ϕ(ξ)(τ + 1)λerτ ,
(S3) κ(τ) = τµ, µ ≥ 1,

where r, λ are positive constants, such that λ ≥ 1, ϕ is a nonnegative function of class
C(R+).
For this end we use maximum principle and Lyapunov function techniques, and an
idea inspired from [8].
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2. Existence of local solutions

The usual norms in spaces Lp(Ω), L∞(Ω) and C(Ω) are respectively denoted by

‖ u ‖pp=
1

| Ω |

∫
Ω

| u(x) |p dx, ‖ u ‖∞= max
x∈Ω
| u(x) | .

Concerning a local existence, we can conclude directly from the theory of abstract
semilinear equations (see A. Friedman [10], D. Henry [14], A. Pazy [20]), that for
nonnegative functions u0 and v0 in L∞(Ω), there exists a unique local nonnegative
solution (u, v) of system (1.1) − (1.4) in C(Ω) on ]0, T ∗[, where T ∗ is the eventual
blowing-up time.

3. Existence of global solutions

Using the comparison principle, one obtains

0 ≤ u(t, x) ≤ max

(
‖ u0 ‖∞,

Π

α

)
= M, (3.1)

from which it remains to establish the uniform boundedness of v.
According to the results of [12], it is enough to show that

‖ f(u, v)− σκ(v) ‖p≤ C (3.2)

(where C is a nonnegative constant independent of t) for some p > n
2 . To reach this

goal, let us start with this preliminaries results.
We consider the following reaction-diffusion system:

∂u1

∂t
− a1∆u1 = 1− h(u1, u2)− u1 (x, t) ∈ Ω1 × R+ (3.3)

∂u2

∂t
− (2−

√
3)a1∆u2 = h(u1, u2)− δu2 (x, t) ∈ Ω1 × R+ (3.4)

∂u1

∂η
=
∂u2

∂η
= 0 on ∂Ω1 × R+, (3.5)

u1(0, x) = u1,0(x) ≥ 0; u2(0, x) = u2,0(x) ≥ 0 in Ω1, (3.6)

where Ω1 is a smooth open bounded domain in R2, with boundary ∂Ω1 of class C1

and η is the outer normal to ∂Ω1 and a1 > 0 is the diffusion constant, δ is a positive
constant and ‖u1,0‖∞ = 1

2 , h is differentiable nonnegative function such that:

(A1) ∀τ ≥ 0, h(0, τ) = 0,

(A2) ∀ξ ≥ 0, ∀τ ≥ 0, 0 ≤ h(ξ, τ) = ξϕ(τ) ≤ ξ(τ + α1)e
1
16 τ ,

where ϕ is differentiable nonnegative function and

α1 = max
(48

5
, (

3

2

M

|Ω1|
)

1
4

)
. (3.7)

Using the maximum principle, we obtain

0 ≤ u1(t, x) ≤ 1. (3.8)
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To establish the boundness of u2, we use the results of [14, 15], where it is enough to
show that

‖ h(u1, u2)− δu2 ‖4≤ C, (3.9)

where C is a nonnegative constant independent of t. For this end we need the following

Lemma 3.1. Let φ be a nonnegative function of class C(R+), such that

lim
τ→+∞

φ(τ)

τ
= 0

and let A be positive constant. Then there exists Π2 > 0, such that[
φ(τ)

τ
−A

]
τh1(τ) ≤ Π2, (3.10)

for all τ > 0; h1 is a nonnegative function of class C(R+).

Proof. Since

lim
τ→+∞

φ(τ)

τ
= 0,

there exists τ0 > 0, such that for all τ > τ0, we have[
φ(τ)

τ
−A

]
τh1(τ) ≤ 0.

Now if τ is in the compact interval [0, τ0], then the continuous function

[φ(τ)−Aτ ]h1(τ)

is bounded. �

Lemma 3.2. Assume that (A1) and (A2) hold and let (u1, u2) be a solution of (3.3)-
(3.6) on ]0, T ∗[, with arbitrary u2,0. Let

G1(t) =

∫
Ω1

( 1
3
2 − u1

)
(u2 + α1)4e

1
4u2dx. (3.11)

Then there exist a positive constant Π1 such that

dG1

dt
(t) ≤ −σ1G1(t) + Π1, (3.12)

where σ1 is a positive constant.

Proof. We put q(u1) =

(
1

3
2−u1

)
, so that

G1(t) =

∫
Ω1

q(u1)(u2 + α1)4e
1
4u2dx.

Differentiating G1 with respect to t and a simple use of Green’s formula gives

G′1(t) = I1 + J1,
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where

I1 = −a1

∫
Ω1

q′′(u1)(u2 + α1)4e
1
4u2 |∇u1|2dx

− (3−
√

3)a1

∫
Ω1

q′(u)[4 +
1

4
(u2 + α1)](u2 + α1)3e

1
4u2∇u1∇u2dx

− (2−
√

3)a1

∫
Ω1

q(u)[12 + 2(u2 + α1) +
1

16
(u2 + α1)2](u2 + α1)2e

1
4u2 |∇u2|2dx,

J1 =

∫
Ω1

q′(u1)(u2 + α1)4e
1
4u2dx−

∫
Ω1

q′(u1)u1(u2 + α1)4e
1
4u2dx

+

∫
Ω1

(
q(u1)[4 +

1

4
(u2 + α1)]− q′(u1)(u2 + α1)

)
(u2 + α1)3h(u1, u2)e

1
4u2dx

−
∫

Ω1

δ[4 +
1

4
(u2 + α1)]u2(u2 + α1)3e

1
4u2dx.

I1 involves a quadratic form with respect to ∇u1 and ∇u2, which is nonnegative if

(3−
√

3)2[4 +
1

4
(u2 + α1)]2 − 8(2−

√
3)[12 + 2(u2 + α1) +

1

16
(u2 + α1)2]

=
[
− 2[4 +

1

4
(u2 + α1)]2 + 32

]
(2−

√
3) =

[
1− [1 +

1

16
(u2 + α1)]2

]
32(2−

√
3) ≤ 0.

Concerning the second term J1, we can observe that

J1 ≤
∫

Ω1

(
2− 1

4
δu2

) 1
3
2 − u1

(u2 + α1)4e
1
4u2dx

+

∫
Ω1

(
[4 +

1

4
(u2 + α1)]− 1

3
2 − u1

(u2 + α1)

)
1

3
2 − u1

(u2 + α1)3h(u1, u2)e
1
4u2dx.

Now we introduce a positive constant σ1, such that

J1 ≤
∫

Ω1

−σ1
1

3
2 − u1

(u2 + α1)4e
1
4u2 +

(
2 + σ1

u2
− 1

4
δ

)
1

3
2 − u1

u2(u2 + α1)4e
1
4u2dx

+

∫
Ω1

(4− 5

12
α1)

1
3
2 − u1

(u2 + α1)3h(u1, u2)e
1
4u2dx.

using the Lemma 3.1 and the choice in the formula 3.7, let us get

J1 ≤ −σ1G1(t) + Π2|Ω1|.

It follows that
dG1(t)

dt
≤ −σ1G1(t) + Π1,

where Π1 = Π2|Ω1|. �

Theorem 3.3. Under the assumptions (A1) and (A2), the solutions of (3.3) − (3.6)
are global and uniformly bounded on [0,+∞[.
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Proof. Multiplying (3.12) by eσ1t and integrating the inequality on (0, t), it implies
the existence of a positive constant C3 > 0 independent of t such that

G1(t) ≤ C3. (3.13)

Then we have ∫
Ω1

h4(u1, u2)dx ≤ 3

2
G1(t) ≤ 3

2
C3. (3.14)

�

Remark 3.4. From the choice (3.7) we have for all t ≥ 0

G1(t) ≥
∫

Ω1

2

3
α4

1dx ≥M. (3.15)

3.1. Main result

Now, we will state the main result

Theorem 3.5. Under the assumptions (S1) − (S3), the solutions of (1.1)-(1.4) are
global and uniformly bounded on [0,+∞[.

The key result needed to prove the Theorem 3.5 is the following

Proposition 3.6. Assume that (S1)−(S3) hold and let (u, v) be a solution of (1.1)-(1.4)
on ]0, T ∗[, with arbitrary v0 and u0. Let

G(t) =

∫
Ω

(
M

(2− θ)M − u

)β
(v + ω)γpeprvdx+G1(ψ(t)), (3.16)

where ω, β, γ and θ are positive constants such that ω ≥ 1, θ < 1 and

β = θ
4ab

(a− b)2
, γ = max

(
λ, µ,

(β + 1)(2− θ)Mr

βθ(1− θ)

)
(3.17)

and

ψ(t) =

∫ t

0

∫
Ω

f(u, v)g(u)(v + ω)γpeprvdxds. (3.18)

Then, there exist p > n/2 and positive constant Γ such that

dG

dt
≤ −sG+ Γ, (3.19)

where s is a positive constant.

It’s very important to state this lemma, before proving this proposition,

Lemma 3.7. For all τ ≥ 0 we have[
Πβ

(1− θ)M
− σpκ(τ)(

γ

τ + ω
+ r)

]
(τ + ω)γpeprτ ≤ −s(τ + ω)γpeprτ +B1, (3.20)

where B1 and s are positive constants.
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Proof. Let us put

ξ =
Πβ

(1− θ)M
+ s

Πβ

(1− θ)M
(τ + ω)pγeprτ − σpκ(τ)[γ(τ + ω)γp−1 + r(τ + ω)γp]eprτ

=

(
Πβ

(1− θ)M
− ξ
)

(τ + ω)pγeprτ +

(
ξ

κ(τ)
− σrp

)
κ(τ)(τ + ω)γpeprτ ,

then, using Lemma 3.1 we can conclude the result. �

Proof. (of Proposition 3.2). Let

g(u) =

(
M

(2− θ)M − u

)β
,

so that

G(t) =

∫
Ω

g(u)(v + ω)γpeprvdx+G1(ψ(t)).

Differentiating G with respect to t and a simple use of Green’s formula gives

G′(t) = I + J,

where

I = −a
∫

Ω

g′′(u)(v + ω)γpeprv|∇u|2dx

− (a+ b)

∫
Ω

g′(u)[γp(v + ω)γp−1 + pr(v + ω)γp]eprv∇u∇vdx

− b
∫

Ω

g(u)[γp(γp−1)(v+ω)γp−2+2γp2r(v + ω)γp−1 + p2r2(v + ω)γp]eprv|∇v|2dx,

J =

∫
Ω

Πg′(u)(v + ω)γpeprvdx−
∫

Ω

αg′(u)u(v + ω)γpeprvdx

+

∫
Ω

(
g(u)

[
γp(v + ω)γp−1 + rp(v + ω)γp

]
− g′(u)(v + ω)γp

)
f(u, v)eprvdx

−
∫

Ω

σ[γp(v + ω)γp−1 + rp(v + ω)γp]κ(v)g(u)eprvdx+ ψ′(t)G′1(ψ(t)).

We can see that I involves a quadratic form with respect to ∇u and ∇v, which is
nonnegative if

δ =
(
p(a+ b)g′(u)[γ(v + ω)γp−1 + r(v + ω)γp]

)2
− 4abγp(γp− 1)g′′(u)g(u)(v + ω)2γp−2

− 4abg′′(u)g(u)(v + ω)γp[2γp2r(v + ω)γp−1 + p2r2(v + ω)γp] ≤ 0.

Indeed

δ = [(pγ)2(a+ b)2β2 − 4abβ(β + 1)pγ(pγ − 1)]
g(u)2(v + ω)2pγ−2

((2− θ)M − u)2

+ [(a+ b)2β2 − 4abβ(β + 1)]
rp2g(u)2(v + ω)2pγ−1

((2− θ)M − u)2
[2γ + r(v + ω)],
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the choice of β and γ gives

δ ≤ [β + 1− pγ(1− θ)]4abβpγg(u)2(v + ω)2pγ−2

((2− θ)M − u)2

+ 4ab(θ − 1)
rpβg(u)2(v + ω)2pγ−1

((2− θ)M − u)2
[2 + (rp)(v + ω)] ≤ 0,

it follows that

I ≤ 0.

Concerning the second term J , we use (3.12), we can observe that

J ≤
∫

Ω

(
Πβ

(1− θ)M
− σpκ(v)[

γ

v + ω
+ r]

)
g(u)(v + ω)pγeprvdx

+

∫
Ω

(
p[

γ

v + ω
+ r]− β

(2− θ)M − u

)
f(u, v)g(u)(v + ω)γpeprvdx

+ ψ′(t)
(
− σ1G1(ψ(t)) + Π1

)
.

Using Lemma 3.7 and by choosing σ1 = 1
M (rp+ Π1), we get

J ≤
∫

Ω

[−s(v + ω)pγeprv +B1]g(u)dx

+

∫
Ω

(
pγ

v + ω
− θ

2− θ
4ab

(a− b)2M

)
f(u, v)g(u)(v + ω)γpeprvdx.

Since f is continuous function, applying the Lemma 3.1, it follows that there exist a
positive constant N1 such that

J ≤
∫

Ω

[−s(v + ω)pγeprv +B1]g(u)dx

+N1

∫
Ω

g(u)dx.

In addition

g(u) ≤
(

1

1− θ

)β
,

then

J ≤ −sG(t) + (| Ω | B1 +N1)

(
1

1− θ

)β
+ sC3,

it follows that
dG

dt
≤ −sG+ Γ,

where Γ = (| Ω | B1 +N1)
(

1
1−θ
)β

+ sC3. �

Proof. (of Theorem 3.5)
Multiplying (3.19) by est and integrating the inequality, it implies the existence of a
positive constant C1 > 0 independent of t such that

G(t) ≤ C1.
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Since

g(u) ≥
(

1

2− θ

)β
,∫

Ω

(v + ω)γpeprvdx ≤ (2− θ)βG(t) ≤ C1(2− θ)β .

Since ω ≥ 1 and (3.17) we have also,∫
Ω

(v + 1)λpeprvdx ≤
∫

Ω

(v + ω)γpeprvdx ≤ C1(2− θ)β ,∫
Ω

vµpdx ≤
∫

Ω

(v + ω)γpdx ≤ C1(2− θ)β .

We put
A = max

0≤ξ≤M
ϕ(ξ),

according to (S1)− (S3), we have∫
Ω

f(u, v)pdx ≤
∫

Ω

Ap(v + 1)λpeprvdx ≤ ApC1(2− θ)β = ApHp,

we conclude

‖f(u, v)− σκ(v)‖p ≤ ‖f(u, v)‖p + ‖σκ(v)‖p ≤ H(A+ σ).

By the preliminary remarks (introduction of section 3), we conclude that the solution
of (1.1)-(1.4) is global and uniformly bounded on [0,+∞[×Ω. �
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