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Abstract. Strongly Janowski functions are used to define certain classes of ana-
lytic functions which generalize the concepts of close-to-convexity and bounded
boundary rotation. Coefficient results, a necessary condition, distortion bounds,
Hankel determinant problem and several other interesting properties of these
classes are studied. Some significant well known results are derived as special
cases.
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Janowski functions, subordination, convolution.

1. Introduction

Let A be the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. If the functions f and
g are analytic in E, we say that f is subordinate to g, written f ≺ g or f(z) ≺ g(z),
if there exists a Schwartz function w in D such that f(z) = g(w(z)). Furthermore, if
the function g is univalent in D, then we have the following equivalence

f(z) ≺ g(z)⇔ f(0) = g(0) and f(D) ⊂ g(D).
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Let f be given by (1.1) and g ∈ A is of the form g(z) = z +
∞∑
n=2

bnz
n. Then the

convolution (Hadamard product) of f and g is defined by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ D.

Let S ⊂ A be the class of univalent functions in D and let C, S∗ and K be the
subclasses of S consisting of convex, starlike and close-to-convex functions, respec-
tively. Also, let p be analytic in D with p(0) = 1. Then the function p is known a
strongly Janowski type functions of order α if

p(z) ≺
(

1 +Az

1 +Bz

)α
, α ∈ (0, 1], − 1 ≤ B < A ≤ 1 and z ∈ D.

We note that, when α = 1, A = 1 and B = −1, then p is a Carathéodory function of
positive real part.

Definition 1.1. Let p be analytic in D with p(0) = 1 and let φ be convex univalent in
D. Then p ∈ Pm(φ), m ≥ 2, if and only if there exists functions pi with pi(0) = 1,
i = 1, 2 such that

p(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p2(z), (1.2)

where pi ≺ φ.

Special cases:

Let φ(z) =
(

1+Az
1+Bz

)α
, α ∈ (0, 1], −1 ≤ B < A ≤ 1. Then the series representation

of φ(z) is given by

φ(z) = 1 + α (A−B) z +

[
−α (A−B)B +

1

2
α (α− 1) (A−B)

2

]
z2 + . . . .

On differentiating we get

φ′(z) =

(
1 +Az

1 +Bz

)α
α (A−B)

(1 +Az) (1 +Bz)
.

Now, for −1 ≤ B < A ≤ 1 and z ∈ D, we have

< (φ′(z)) ≥

{
α |A−B| (1− |A|)

α−1

(1− |B|)α+1

}
> 0,

and by simple calculations we can easily prove that

<
{

(zφ′(z))
′

φ′(z)

}
≥ 0.

This implies that φ(z) is convex univalent function in D.
Thus we have

Pm
((

1 +Az

1 +Bz

)α)
= Pm,α [A,B] ⊂ Pm(ρ),
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where ρ =
(

1−A
1−B

)α
. Also, we note that Pm,1 [1,−1] = Pm, see [19]. Moreover,

P2,1 [1,−1] = P is the well-known class of Carathéodory functions of positive real
part. When m = 2, then p ∈ P2,α [1,−1] implies |arg p(z)| ≤ απ

2 . When m = 2, α = 1,
A = 1 − 2β and B = −1, we obtain the class P(β), β ∈ (0, 1], of functions with real
part greater than β.

For the class Pm(ρ), we refer to [18]. It is worth noting that P2,α [1,−1] = Pα
and the class P 1

2
[1, 0] = £P is associated with the right-half of the Lemniscate of

Bernoulli ∂£ (see [11]) enclosing the region

£ =
{
w ∈ C : <(w) > 0,

∣∣w2 − 1
∣∣ < 1

}
,

where £ ⊂
{
w ∈ C : |argw| < π

4

}
.

The well-known hypergeometric function G (a, b, c; z) is of the form

G (a, b, c; z) =
Γ (c)

Γ (a) Γ (b)

∞∑
n=0

Γ (a+ b) Γ (b+ n)

Γ (c+ n)
.
zn

n!

=
Γ (c)

Γ (a) Γ (c− a)

∫ 1

0

ua−1 (1− u)
c−a−1

(1− zu)
−b
du,

where <(a) > 0, <(c− a) > 0 and Γ represents notation for Gamma function.

Definition 1.2. Let f ∈ A. Then f ∈ Rm,α [A,B] if and only if

zf ′(z)

f ′(z)
∈ Pm,α [A,B] .

Definition 1.3. Let f ∈ A. Then f ∈ Vm,α [A,B] if and only if

(zf ′(z))
′

f ′(z)
∈ Pm,α [A,B] .

We note the following special cases.

(i) R2,1 [A,B] = S∗ [A,B] and V2,1 [A,B] = C [A,B], see [9].

(ii) Rm,1 [1,−1] = Rm and Vm,1 [1,−1] = Vm, the class of functions with
bounded radius and bounded boundary rotations, respectively; see [2, 19].

(iii) V2,α [A,B] = Cα [A,B] ⊂ C (ρ) ⊂ C, with ρ =
(

1−A
1−B

)α
, where C is the class

of convex functions.

(iv) Rm,α [A,B] ⊂ Rm (ρ) and Vm,α [A,B] ⊂ Vm (ρ), see [18].

It is observed that

f ∈ Vm,α [A,B]⇔ zf ′ ∈ Rm,α [A,B] .

Definition 1.4. Let f ∈ A. Then f ∈ Tm,α [A,B] if and only if

f ′(z)

g′(z)
∈ Pα [A,B] ,

for some g ∈ Vm,α [1,−1].
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The class Tm,1 [1,−1] = Tm has been introduced and studied in [17], and
T2,1 [1,−1] = K, the class of close-to-convex functions, see [10].

In the present work, we derive coefficient inequalities and distortion results for
certain subclasses of analytic functions. Further, necessary condition and radius prob-
lem are discussed. Also, the Hankel determinant problem is estimated. We need the
following results in our investigations.

Lemma 1.5. [24] If f ∈ C, g ∈ S∗, then for each h analytic in D with h(0) = 1,

(f ∗ hg) (D)

(f ∗ g) (D)
⊂ COh(D),

where COh(D) denotes the closed convex hull of h(D).

Using well-known distortion results for the class P, we can easily prove:

Lemma 1.6. Let p(z) be analytic in D with p(0) = 1. Let

p(z) ≺
(

1 +Az

1 +Bz

)α
, α ∈ (0, 1], − 1 ≤ B < A ≤ 1.

Then (
1−Ar
1−Br

)α
≤ |p(z)| ≤

(
1 +Ar

1 +Br

)α
and ∣∣∣∣zp′(z)p(z)

∣∣∣∣ ≤ α (A−B) r

(1−Ar) (1−Br)
.

Lemma 1.7. [21] Let θ1 < θ2 < · · · < θl < θ1 + 2nπ and λ ≥ λj (j = 1, 2, · · · , l). If

Ψ(z) =

l∏
j=1

(
1− e−iθjz

)−λj
(1.3)

=

∞∑
n=1

bnz
n,

then

bn = O(1).nλ−1, as n→∞.

Lemma 1.8. [8] Let p ∈ P and z = reiθ. Then

2π∫
0

∣∣p(reiθ)∣∣η dθ < c(η)
1

(1− r)η−1
,

where η > 1 and c(η) is a constant depending on η only.
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2. Main results

This section presents our main investigations. In the following theorem we derive
the coefficient inequalities. Here, we use terminology Schlicht disc d by the disc d
contained in the image of D under univalent function f .

Theorem 2.1. Let zf ′

g ∈ Pm,α [A,B], g ∈ V2, and let f be given by (1.1). Then

|an| ≤
{mα |A−B| (n− 1) + 4}

4n
.

Proof. Let g ∈ V2 be of the form

g(z) = z +

∞∑
n=2

bnz
n,

and since g is convex univalent in D, so we have |bn| ≤ 1, for all n.
Let

zf ′

g
= p(z) ∈ Pm,α [A,B] , (2.1)

where p(z) be of the form p(z) = 1 +
∞∑
n=2

cnz
n. We write p(z) as given in (1.2) with

pi(z) = 1 +
∞∑
n=2

cn,iz
n, i = 1, 2. Then |cn,i| ≤ α |A−B| by using a result due to

Rogosinski [22]. From this, it easily follows that

|cn| ≤
mα |A−B|

2
, (n ≥ 1) . (2.2)

Now, using the expansions of f(z), g(z) and p(z) in (2.1) to get

z +

∞∑
n=2

nanz
n =

(
z +

∞∑
n=2

bnz
n

)(
1 +

∞∑
n=2

cnz
n

)
.

On simplification and equating the coefficients of zn (n ≥ 2), we have

n |an| ≤
n−1∑
k=1

|bk| |cn−k|+ |bn| ,

using |bn| ≤ 1 together with (2.2), we obtain

n |an| ≤
mα |A−B|

2

n−1∑
k=1

k + 1

=
mα |A−B|

2

[
n (n− 1)

2

]
+ 1

=
mα |A−B|n (n− 1)

4
+ 1,

and this implies

|an| ≤
mα |A−B| (n− 1)

4
+

1

n
.
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This proves our required result.

In particular, we have

|a2| ≤
mα |A−B|

4
+

1

2

and

|a3| ≤
mα |A−B|

2
+

1

3
.

�

Corollary 2.2. Let zf ′

g ∈ P2,α [A,B], g ∈ V2, and let f be given by (1.1). Then f (D)

contains the disc d such that

d =

{
w : w <

2

5 + α |A−B|

}
.

Proof. Let w0 (w0 6= 0) be any complex number such that f(z0) 6= w0 for z ∈ E.
Then, the function

F (z) =
w0f(z)

w0 − f(z)
= z +

(
a2 +

1

w0

)
z2 + ...

is analytic and univalent in E, see [7]. Now, using the well known Bieberbach theorem
for the best bound of second coefficient of univalent functions, we have

1

|w0|
≤ 2 + |a2| ≤

α |A−B|+ 1

2
+ 2

=
5 + α |A−B|

2
.

this implies

|w0| ≥
2

5 + α |A−B|
.

Thus, f (D) contains the disc d such that

d =

{
w : w <

2

5 + α |A−B|

}
.

�

Theorem 2.3. Let f ′

g′ ∈ Pα for g ∈ Vm,α[A,B]. Then

2(2α−1)rξ1
ξ

[G (a, b, c,−1)−G (a, b, c,−r1)] ≤ |f(z)|

≤ 2(2α−1)r−ξ1

ξ

[
G (a, b, c,−1)−G

(
a, b, c,−r−11

)]
,

where ξ =
[
(1− %)

(
m
2 − 1

)
+ α+ 1

]
with % = ((1−A)/(1−B))

α
, r1 = 1−r

1+r , G is

hypergeometric function and a, b, c are given in (2.9).
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Proof. If f ′

g′ ∈ Pα for g ∈ Vm,α[A,B], then we can write

f ′ (z) = g′ (z) p (z) , p ∈ Pα. (2.3)

Since g ∈ Vm,α[A,B] ⊂ Vm(%), with % = ((1−A)/(1−B))
α

implies

g′ (z) = (g′1 (z))
1−%

, for g1 ∈ Vm, (see [18]).

Therefore, by using distortion results of Vm [2, 19], we have[
(1− r)

m
2 −1

(1 + r)
m
2 +1

](1−%)
≤ |g′ (z)| ≤

[
(1 + r)

m
2 −1

(1− r)
m
2 +1

](1−%)
. (2.4)

Also, for p ∈ Pα, we have(
1− r
1 + r

)α
≤ |p (z)| ≤

(
1 + r

1− r

)α
. (2.5)

Therefore, from (2.3) to (2.5), it follows that

(1− r){(1−%)(
m
2 −1)+α}

(1 + r){(1−%)(
m
2 +1)+α} ≤ |f

′ (z)| ≤ (1 + r){(1−%)(
m
2 −1)+α}

(1− r){(1−%)(
m
2 +1)+α} . (2.6)

Let dr = |f (z)| denote the radius of the largest Schlicht disc centered at the origin
and contained in the image of |z| < r under f(z). Then there is a point z0, |z0| = r
such that |f(z0)| = dr.
Thus, we have

dr = |f(z0)| =
∫
C

|f ′ (z)| |dz|

≥
∫
C

(1− |z|){(1−%)(
m
2 −1)+α}

(1 + |z|){(1−%)(
m
2 +1)+α} |dz|

≥
∫ |z|
0

(1− s){(1−%)(
m
2 −1)+α}

(1 + s){(1−%)(
m
2 +1)+α} ds

=

∫ |z|
0

(
1− s
1 + s

){(1−%)(m2 −1)+α}
ds

(1 + s)
2(1−%) . (2.7)

Let 1−s
1+s = t. Then −2

(1+s)2
ds = dt and we can write (2.7) as

|f(z0)| ≥ 22%−1
∫ 1

1−|z|
1+|z|

t
{(1−%)(m2 −1)+α}

(1 + t)
−2%

dt. (2.8)

Now, let 1−r
1+r = r1 and t = r1u. Then, from (2.8), we get

|f(z0)| ≥ 22%−1
∫ 1

r1

(r1u)
{(1−%)(m2 −1)+α}

(1 + r1u)
−2%

(r1du)

= 22%−1r
{(1−%)m2 +2α+1}
1 [I1 − I2] ,
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with

I2 =

∫ r1

0

u
{(1−%)(m2 −1)+α}

(1 + r1u)
−2%

(du)

=
Γ(a)Γ(c− a)

Γ(c)
G (a, b, c,−r1) , (2.9)

where G (a, b, c, z) represents hypergeometric function and

a = (1− %)
(m

2
− 1
)

+ α+ 1, b = 2%, c = a+ 1.

Therefore,

I2 =
1

(1− %)
(
m
2 − 1

)
+ α+ 2

[G (a, b, c,−r1)] .

Also,

I1 =

∫ 1

0

u
{(1−%)(m2 −1)+α}

(1 + r1u)
−2%

(du)

=
Γ(a)Γ(c− a)

Γ(c)
G (a, b, c,−1) . (2.10)

Thus

|f(z0)| ≥ 22%−1r
{(1−%)(m2 −1)+α+1}
1

1

(1− %)
(
m
2 − 1

)
+ α+ 2

×

[G (a, b, c,−1)−G (a, b, c,−r1)] .

For the upper bound, we use (2.6) with similar method and routine computations and
have

22%−1r
{(1−%)(m2 −1)+α+1}
1

1

(1− %)
(
m
2 − 1

)
+ α+ 2

×

[G (a, b, c,−1)−G (a, b, c,−r1)]

≤ |f(z)| ≤ 22%−1r
−{(1−%)(m2 −1)+α+1}
1

1

(1− %)
(
m
2 − 1

)
+ α+ 2

×[
G (a, b, c,−1)−G

(
a, b, c,−r−11

)]
.

�

Corollary 2.4. (Covering result) Let r → 1 and f satisfy the condition of Theorem

2.3. Then f(D) contains the Schlicht disc |z| < 22%−1

ξ , ξ =
{

(1− %)
(
m
2 − 1

)
+ α+ 1

}
.

As special cases, we note that the radius of this disc is

(i) 1
m+2 , when A = 1, B = −1 and α = 1, (see [15]).

(ii) 22%−1

2(1+α)−% , when m = 2 and for % = α = 1
2 , it is 2

5 .

(ii) m = 4 gives 22α−1

2(α−%)+3 and for % = α = 1
2 , it is 1

3 .
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Theorem 2.5. Let f ′

g′ ∈ Pα for g ∈ Vm,α [A,B] and let f(z) be given by (1.1). Then,

for m > 2 + 2−α
1−ρ , . Thus, by taking r =

(
1− 1

n

)
, n→∞, it follows that

an = O(1)nβ with β =
{

(1− ρ)
(m

2
− 1
)

+ α
}
,

where O(1) is a constant depending only on α, m, A, B and ρ =
(

1−A
1−B

)α
.

Proof. We can write

f ′(z) = g′(z)p(z), g ∈ Vm,α [A,B] ⊂ Vm (ρ) ,

where ρ =
(

1−A
1−B

)α
and p ∈ Pα implies, for z ∈ D,

p(z) = (p1(z))
α

, p1 ∈ P. (2.11)

For g ∈ Vm (ρ), it is well known that there exists g1 ∈ Vm such that

g′(z) = (g′1(z))
1−ρ

, z ∈ D. (2.12)

Also, it is known [3] that, for g1 ∈ Vm,

g′1(z) = s(z)h
m
2 −1(z), m > 2, s ∈ S∗, h ∈ P. (2.13)

From (2.11), (2.12), (2.13) and Cauchy theorem, we have

n |an| ≤
1

2πrn

∫ 2π

0

|s(z)|1−ρ |h(z)|(
m
2 −1)(1−ρ) |p(z)|α dθ

≤ 1

rn

(
r

(1− r)2

)1−ρ [
1

2π

∫ 2π

0

|h(z)|{(
m
2 −1)(1−ρ)} 2

2−α dθ

] 2−α
2

×

[
1

2π

∫ 2π

0

|p(z)|2 dθ
]α

2

≤ C(ρ,m, α)

{
1

(1− r)

}(m2 −1)(1−ρ)+α+1

,

where we have used distortion result for starlike functions, Holder’s inequality and a
result for the class P, due to Hayman [8], with

m > 2 +
2− α
1− ρ

, ρ =

(
1−A
1−B

)α
.

Thus, by taking r =
(
1− 1

n

)
, n→∞, it follows that

an = O(1).n{(1−ρ)(
m
2 −1)+α}, (n→∞) .

�

Special cases:
(i) We note that, for m = 4, we have

an = O(1).n(1−ρ+α).
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(ii) A = 1, B = −1 gives us ρ = 0 and with α = 1
2 , m = 5, we get β = 2.

Therefore, in this case

an = O(1).n2, (n→∞) .

(iii) Choosing ρ in such a way that ρ = α and m = 4, we have

an = O(1).n, (n→∞) .

Theorem 2.6. Let f ′

g′ ∈ Pα for g ∈ Vm,α [A,B]. Then f(z) is a convex function of

order ρ for |z| < r∗, where

r∗ =
2

m1 +
√
m2

1 − 4
, with m1 = m+

2α

1− ρ
.

Proof. We have

f ′(z) = g′(z)p(z), p ∈ Pα. (2.14)

Since Vm,α [A,B] ⊂ Vm(ρ) with ρ =
(

1−A
1−B

)α
, so

g′(z) = (g′1(z))
1−ρ

, g1 ∈ Vm.

Also, for g1 ∈ Vm, it is known [3] that there exists a starlike function s such that

g′1(z) =

(
s(z)

z

)
(h(z))(

m
2 −1) , m > 2, h ∈ P. (2.15)

From (2.14) and (2.15), we can write

f ′(z) =

(
s(z)

z

)1−ρ

(h(z))
(1−ρ)(m2 −1) (p1(z))

α
, p1 ∈ P. (2.16)

Logarithmic differentiation of ([19]) yields to us

zf ′′(z)

f ′(z)
= (1− ρ)

(
zs′(z)

s(z)
− 1

)
(1− ρ)

(m
2
− 1
) zh′(z)
h(z)

+ α
zp′(z)

p(z)
.

Now, for h, p and h1 in P, we have

1 +
zf ′′(z)

f ′(z)
= ρ+ (1− ρ)

{
h1(z) +

(m
2
− 1
) zh′(z)
h(z)

}
+ α

zp′(z)

p(z)
.

That is,

<
[

(zf ′(z))
′

f ′(z)
− ρ
]
≥ (1− ρ)

[
< (h1(z))−

(m
2
− 1
) ∣∣∣∣zh′(z)h(z)

∣∣∣∣− α ∣∣∣∣zp′(z)p(z)

∣∣∣∣]
≥ (1− ρ)

[
1− r
1 + r

−
(m

2
− 1
) 2r

1− r2

]
− 2αr

1− r2

= (1− ρ)

[
1− 2r + r2 − (m− 2) r

1− r2

]
− 2αr

1− r2
,

where we have used Lemma 1.6 with A = 1 and B = −1. Therefore, we get

1

(1− ρ)
<
[

(zf ′(z))
′

f ′(z)
− ρ
]
≥

1−
(
m+ 2α

1−ρ

)
r + r2

1− r2
=

T (r)

1− r2
.
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We note T (0) = 1 > 0 and T (1) = 1−m− 2α
1−ρ + 1 = 2−

(
m+ 2α

1−ρ

)
< 0. This shows

r∗ ∈ (0, 1). Solving T (r) = 0 gives us the value of r∗ which is

r∗ =
2(

m+ 2α
1−ρ

)
+

√(
m+ 2α

1−ρ

)2
− 4

. �

When A = 1, B = −1, α = 1, then ρ = 0 and g ∈ Vm. This gives radius of
convexity for f ∈ Tm for |z| < r∗ = 2

(m+2)+
√
m2+4m

. Furthermore, the case m = 2

gives us r∗ = 1
2+
√
3

and this is the well-known radius of convexity for the class

K of close-to-convex functions, see [7]. By assigning other permissible values to the
parameters α, A, B and m, we obtain several new and known results.

Theorem 2.7. Let f ∈ T2,α [A,B]. Let, for b > −1,

F (z) =
b+ 1

zb

∫ z

0

tb−1f(t)dt. (2.17)

Then F ∈ T2,α [A,B] in D.

Proof. Since f ∈ T2,α [A,B], f ′

g′ ≺
(

1+Az
1+Bz

)α
, for some g ∈ V2,α [1,−1]. We can write

(2.17) as
F (z) = φb(z) ∗ f(z),

where ∗ represents convolution and φb(z) =
∞∑
n=1

b+1
b+nz

n, see [23].

We define

G(z) =
b+ 1

zb

∫ z

0

tb−1g(t)dt, g ∈ V2,α [1,−1] .

Then

G(z) = φb(z) ∗ g(z)

zG′(z) = φb(z) ∗ zg′(z)

z (zG′(z))
′

= φb(z) ∗
(zg′(z))

′

g′(z)
.zg′(z).

So

(zG′(z))
′

G′(z)
=
φb(z) ∗

(zg′(z))
′

g′(z) .zg′(z)

φb(z) ∗ .zg′(z)
.

Since g ∈ V2,α [1,−1], this implies zg′ ∈ R2,α [1,−1] ⊂ S∗, we use Lemma 1.5 and it
follows that G ∈ V2,α [1,−1].
Now,

F ′

G′
=
φb(z) ∗ f

′(z)
g′(z) .zg

′(z)

φb(z) ∗ zg′(z)
,

and this proves F ′(z)/G′(z) ≺ ((1 +Az)/(1 +Bz))
α

. Hence the class T2,α [A,B] is
preserved under the integral operator given by (2.17). This operator is known as
Bernardi operator, see [1]. �
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Theorem 2.8. Let f ∈ Tm,α [0,−1]. Then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π∫ θ2

θ1

<
{

(zf ′(z))
′

f ′(z)

}
dθ > βπ,

where β = (1− ρ1) (m/2− 1) + α, with ρ1 = (1/2)
α
.

Proof. It can easily be seen that

Vm,α [0,−1] ⊂ Vm (ρ1) , for ρ1 = (1/2)
α
.

So, for g ∈ Vm (ρ1), there exists g1 ∈ Vm such that

g′(z) = (g′1(z))
1−ρ1 . (2.18)

Also, for g1 ∈ Vm, we have∫ θ2

θ1

<
{

(zg′1(z))
′

g′1(z)

}
dθ > −

(m
2
− 1
)
π. (2.19)

We have h ∈ Pα which implies h(z) ≺ ((1 + z)/(1− z))α and so h(z) = (h1(z))
α

,
h1 ∈ P .
We observe, for h1 ∈ P

∂

∂θ
arg h1(reiθ) =

∂

∂θ
<
{
−i lnh1(reiθ)

}
= <

{
reiθh′1(reiθ)

h1(reiθ)

}
.

Therefore ∫ θ2

θ1

<
{
reiθh′1(reiθ)

h1(reiθ)

}
dθ = arg h1(reiθ2)− arg h1(reiθ1),

and

max
h1∈P

∣∣∣∣∣
∫ θ2

θ1

<
{
reiθh′1(reiθ)

h1(reiθ)

}
dθ

∣∣∣∣∣ = max
h1∈P

∣∣arg h1(reiθ2)− arg h1(reiθ1)
∣∣ .

Since h1 ∈ P, it is known [25] that∣∣∣∣h1(z)− 1 + r2

1− r2

∣∣∣∣ ≤ 2r

1− r2
,

and so

|arg h1(z)| ≤ sin−1
(

2r

1− r2

)
.

This gives us

max
h1∈P

∣∣∣∣∣
∫ θ2

θ1

<
{
reiθh′1(reiθ)

h1(reiθ)

}
dθ

∣∣∣∣∣ ≤ 2 sin−1
(

2r

1− r2

)
≤ π − 2 cos−1

(
2r

1− r2

)
. (2.20)
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For f ∈ Tm,α [0,−1] we can write

f ′(z) = (g′1(z))
1−ρ1 (h1(z))

α
, ρ1 =

(
1

2

)α
, g1 ∈ Vm, h1 ∈ P. (2.21)

Hence, from (2.18), (2.19), (2.20) and (2.21) together with some computations, it
follows that

max
h1∈P

∣∣∣∣∣
∫ θ2

θ1

<
{
zf ′(z)

f ′(z)

}
dθ

∣∣∣∣∣ > −{(1− ρ1)
(m

2
− 1
)

+ α
}
π, z = reiθ, (r → 1) .

(2.22)
�

Remark 2.9. It has been proved in [10] by Kaplan that f satisfying (2.22) is close-to-
convex in D if and only if β =

{
(1− ρ1)

(
m
2 − 1

)
+ α

}
≤ 1. Thus f ∈ Tm,α [0,−1] is

univalent in D for 2 ≤ m ≤ 2 + 2(1−α)
(1−ρ1) , with ρ1 =

(
1
2

)α
.

We shall now discuss the rate of growth of qth Hankel determinant Lq(n) of

f(z) = z +
∞∑
n=2

anz
n ∈ Tm,α [0, B], B ∈ [−1, 0), α ∈ (0, 1], and Lq(n), q ≥ 1, n ≥ 1 is

defined as

Lq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 ... an+q−1
an+1 an+2 ... .
.
.

.

.
.
.

.

.
an+q−1 an+q ... an+2q−2

∣∣∣∣∣∣∣∣∣∣
, (2.23)

Hankel determinant problem has been studied by several prominent researchers
in the past, see [4, 5, 12, 13, 14, 16, 20, 21].

Now, we prove

Theorem 2.10. Let f given by f(z) = z+
∞∑
n=2

anz
n and let f

′

g′ ∈ Pα [0, B], B ∈ [−1, 0)

with g ∈ Vm,α [0, B], m > 2. Then, for k = 0, 1, 2, · · · , there are numbers γk and ckµ
(µ = 0, 1, 2, · · · , k) that satisfy |ck0| = |ckk| = 1 and

∞∑
l=0

γl ≤ 3, 0 ≤ γk ≤
2

k + 1
(2.24)

such that
∞∑
µ=0

ckµan+µ = O(1)nβ1 , β1 = γk +
(m

2
− 1
)

(1− ρ1) + α− 2, (n→∞) .

The bounds (2.24) are the best possible.

Proof. We can write
f ′ (z) = g′ (z)h (z) ,

where g ∈ Vm [0, B] with B ∈ [−1, 0) and h(z) ≺
(

1
1+Bz

)α
. Since g ∈ Vm,α [0, B]

implies g ⊂ Vm (ρ1), where ρ1 =
(

1
1−B

)α
.
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Thus, we have

f ′ (z) = (g′1 (z))
1−ρ1 (h1 (z))

α
, g1 ∈ Vm, h1 ∈ P. (2.25)

It is shown [3] that, for all m > 2, there exists a starlike function s and p ∈ P such
that

zg′1 (z) = s(z)(p(z))(
m
2 −1). (2.26)

From (2.25) and (2.26), it follows that

f ′ (z) =

[
s(z)

z
(p(z))(

m
2 −1)

](1−ρ1)
(h1 (z))

α
. (2.27)

Now s(z) can be represented by as

s(z) = z exp

∫ 2π

0

log
1

1− ze−it
dυ(t),

where υ(t) is an increasing function and υ (2π) − υ(0) = 2. We here note the jumps
of υ(t) as α1 ≥ α2 ≥ · · · at t = t1, t2, . . . and assume t1 = 0. Then α1 + α2+ . . . ≤ 2
also α1 + α2+ . . .+ αq = 2, for some q, if and only if s(z) is of the form

s(z) = z

q∏
j=1

(
1− eitjz

)−2
q . (2.28)

Following the similar arguments given in [21], we define

φk(z) =

k∏
µ=1

(
1− eitµz

)−2
q =

k∑
µ=0

Ckµz
k−µ,

and consider three cases. It is shown in [21] that the bounds (2.24) are the best
possible.

We use Lemma 1.7 to complete the proof. We write

φk.zf
′(z) =

k∑
n=0

bknz
n+k +

∞∑
n=1

(n+ k) aknz
n+k, (2.29)

where

bkn =

n∑
υ=0

(n+ υ)Ck−υan−υ,

akn =
∑
µ=0

Ckµan+µ, |Ckn| = |Ckk| = 1.

Let s(z) in (2.27) be not of the form (2.28). Then α1 + α2+ . . . + αq < 2 for q ≥ 1
and in particular α1 < 2

0 ≤ γk <
2

1 + l
, η0 + η1 + . . . < 3.

It can easily be shown [21] that, in each of three cases considered in [21],

Max
|z|=r

|φk.s(z)| = O(1) (1− r)−ηk−δk , (2.30)
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where

ηk <
2

1 + k
, η1 + η2 + . . . < 3

and

δk =
1

3
min

 2

1 + k
− ηk,

1

21+k

3−
k∑
j=0

ηj

 ,

Thus, from (2.27), (2.29) and Cauchy integral formula, we proceed with m >(
2 + 2−α

1−ρ1

)
for ρ1 =

(
1

1−B

)
and B ∈ [−1, 0).

(k + n) |akn| ≤
1

rn+k

[
1

2π

∫ 2π

0

∣∣∣φk. (s(z))1−ρ1∣∣∣ |p(z)|(m2 −1)(1−ρ1) |h(z)|α dθ
]

≤ 4ρ1

rn+k
max |φk.s(z)|

[
1

2π

∫ 2π

0

|p(z)|
(

(m−2)(1−ρ1)
2−α

)] 2−α
2

×(
1

2π

∫ 2π

0

|h1(z)|2 dθ
)α

2

. (2.31)

Where we have used distortion result for starlike function s(z) along with the Holder’s
inequality. Now using Lemma 1.8 and (2.30), we obtain from (2.31)

(l + n) |akn| ≤ C(m,α) (1− r){−ηk−γk−(m2 −1)(1−ρ1)−1+α} , (r → 1) ,

where C(m,α) is a constant m >
(

2 + 2−α
1−ρ1

)
with ρ1 =

(
1

1−B

)α
.

This implies, with r = 1− 1
n , n→∞

akn = O(1).n{γk+(m2 −1)(1−ρ1)+α−2},
where O(1) represents a constant.

The case when s(z) is of the form (2.28) follows on similar lines. �

We can now easily prove the following.

Theorem 2.11. Let the function f satisfy the conditions given in Theorem 2.10. Then,

for q ≥ 1, n ≥ 1 and m > 2 + 2−α
1−ρ1 with ρ1 =

(
1

1−B

)α
.

Lq(n) = O(1).n2+{(
m
2 −1)(1−ρ1)+α−2}q.

We note some special cases:

(i) B = −1, ρ1 =
(

1
1−B

)α
=
(
1
2

)α
, α = 1. Then, for m > 4

Lq(n) = O(1).n2+{(
m
4 −

1
2 )−1}q.

(ii) Also L1(n) = an and, from Theorem 2.5, we have

L1(n) = O(1).n{(
m
2 −1)(1−ρ1)+α},

for m >
(

2 + 2−α
1−ρ1

)
with ρ1 =

(
1

1−B

)α
.

For the case m = 2, we solve this problem separately as follows.
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Corollary 2.12. Let f ′

g′ ∈ Pα with g ∈ V2,α [−1, 0], α ∈ ( 1
2 , 1]. Then, for q ≥ 1, n ≥ 1

and m = 2,

Lq(n) = O(1).n2+(α−2)q.

Proof. Let f ′

g′ ∈ Pα with g ∈ V2,α [−1, 0], α ∈ ( 1
2 , 1]. Then

f ′(z) = (g′1(z))
1−ρ2 hα(z), g1 ∈ V2, h ∈ P.

We take s(z)
z = g′1(z), and s(z) of the form (2.28) and in the case α1 + α2+ · · · = 2,

∞∑
l=0

γl ≤ 3, 0 ≤ γk ≤ 2
k+1 . Also γk = 2

k+1 implies that k = q− 1, α1 = α2 = · · · = αq.

So using distortion result for s(z) together with Cauchy’s theorem, we can write

(k + n) |akn| ≤
4ρ2

2πrn+k

∫ 2π

0

|φk.s(z)| |h(z)|α dθ,

by Holder’s inequality, this implies

(k + n) |akn| ≤
4ρ2

rn+k

[
1

2π

∫ 2π

0

|φk.s(z)|2 dθ
] 1

2
(

1

2π

∫ 2π

0

|h(z)|2α dθ
) 1

2

. (2.32)

When we write |φk.s(z)|2 in the form (1.3) the exponent (−λj) satisfy

λj ≤ 2γk, (k = 1, 2, . . . , q : k > 0) .

Hence, using Lemma 1.7, we have∫ 2π

0

|φk.s(z)|2 dθ ≤ C1n
2γk−1, (n→∞) . (2.33)

Also, for α ∈ ( 1
2 , 1], it follows from Lemma 1.8∫ 2π

0

|h1(z)|2α dθ ≤ C2n
2α−1, (n→∞) . (2.34)

Hence, from (2.32) to (2.34), we obtain

(n+ k) |akn| ≤ C3n
γk+α−1. (2.35)

From (2.35), we have

akn = O(1).nγk+α−2, (n→∞) .

Thus, for q ≥ 1, n ≥ 1

Lq(n) = O(1).n2+(α−2)q. �

Particularly, when α = 1, Lq(n) = O(1).n2−q, and the exponent (2−q) is best possible,
see [13]. Ci, (i = 1, 2, 3), O(1) represents constants, and f is close-to-convex in D.
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