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Certain geometric properties of generalized
Bessel-Maitland function

Amit Soni and Deepak Bansal

Abstract. In the present study, we first introduce Generalized Bessel-Maitland
function Jéa(z) and then derive sufficient conditions under which the General-

ized Bessel-Maitland function JE’ .(%) have geometric properties like univalency,
starlikeness and convexity in the open unit disk 2.
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1. Introduction and preliminaries

Let 27 denote the class of all functions analytic in the open unit disk
2 ={z€C:|z| <1}
and & be the class of all functions f € S which are normalized by f(0) = 0 and
f'(0) = 1. Each f(z) € & has a Maclaurin series expansion of the form:
f(2) =2+ agz® +azz” + ... (1.1)

Let g, h € 5, we say that g is subordinated to h in 2, and write g(z) < h(z), if there
exists a function w € # with |w(z2)| < |z|, z € Z, such that g(z) = h(w(z)) in 2. In
particular, if h is univalent in &, then we have:

g(z) < h(z) < ¢(0) = h(0) and g(2) C h(2).
For a given 0 < § < 1, a function g € o7 is called starlike function of order 5,

if R(z¢'(2)/9(2)) > B,z € 2 class of such functions denoted by .*(3). Simi-
larly, for 0 < 8 < 1, a function g € & is called convex function of order (3 if
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R(1+2¢9"(2)/g'(2)) > B,z € P, class of such function denoted by J£(3). It is
customary that .7*(0) = .* and .#(0) = J#. Moreover, a function g € &/ is said
to be close-to-convex with respect to a fixed starlike function h, denoted by Cp, if
R (zg'(2)/h(2)) >0, z € @. For more details one can refer [6].

In the present perusal, we study some geometric properties of Generalized
Bessel-Maitland function (see, e.g., [9], Eq.(8.3)), Jg(z) This function is defined by
the following series representation:

JE(z) = (—8‘% >0, R()>—-1and z € 2). 1.2
It has many application in various research fields of Science and Engineering. For a
comprehensive description of applications of Bessel functions and its generalization,
the reader may be referred to [20]. Here in the present paper, we define a new (prob-
ably) generalization of Bessel-Maitland function called generalized Bessel-Maitland

function Jéc(z), given by:

¢ B 0 (_a>nzn B B
JEo(2) = ;—nlr(5n+c+ 5 (aeC—{0},6>0,(>—landz€ 2).  (1.3)
It can be easily seen that

oo n

¢ B B z
Jo1(2) = Wecha(z) = nz:% W@ T (1.4)
where W ¢11(2) is called Wright function and
SRV TR o S Gl D 1
Teal2) = Je(2) = ngo nl(én+¢+1) (15)

Observe that the Generalized Bessel-Maitland function Jéa(z) ¢ <. We can consider
the following two types of normalization of the Generalized Bessel-Maitland function:

¢ nI‘\ €_|_1) n+1
T2 (2) = 2T (C+1)J¢ Z+Z nT T (1.6)

and

r 1 1
13- S5 0 )

- a)"T(E+ ¢+ 1)z
; n+1'F§n+§+cj+1) (L7)
(£>0,(+(>-1,aeC—-{0}, z€ 2)
Also note that
X 1\ n+1
TEi(2) = Je() = T(C+ 1) 52 2y) = 3 DN TE £ e (1)

nll'(n+¢+1)

n=0
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where J¢(z) is well known Bessel function of order ¢ and J¢(z) is the normalized
Bessel function, studied recently for the various geometric properties (see [14]-[18]).
Conversely, it can be easily seen that

2\C2 (22 2 (=1)"(2/2)2 ¢
Telz) = F(<1+1) (5) Jea (4) :; (nlll“)(n(+/g2‘+1) '

Additionally, we observe that

J.z) 1 > (—a)"T(C + 1)z"+!
Vi) === =2 Z+; nT(En+ ¢+ 1)
_ — (—a)"T(¢+1)z"
_1+n§::1 nIT(én+ ¢+ 1)
and
Z(Vga(z))/ _ Z (_a) F(C + 1)”’2

nT(En+¢+1)

The following identity relations can be easily established:

n=1

€2(J5 ,(2)) = (C+ DI ,(2) + (6 = ¢ = 1T, 4 (2) (1.9)
A(TEa(2)) = Tescal2) (1.10)
and
! —a)['((+1
(VE.(2)) = WV§+W(Z). (1.11)

Lately, several researchers have studied innumerable special functions belonging to
class & and found sufficient conditions such that the special functions belonging to
class &7 have certain properties like univalency, starlikeness or convexity in &. For the
generalized hypergeometric functions one can refer [10, 13, 16], Bessel functions [3, 1,
2, 4] and Wright function [15]. In the present paper, we derive sufficient conditions
for the same geometric properties for the functions nga(z) and jéa(z) .

2. Lemmas
To prove main results, we requisite the following results:
Lemma 2.1. (see [7]). Let g € o7 satisfy the inequality
[(9(2)/2) =1 <1 (2 € Z)
then g is starlike in the disk 9o = {z : |2| < 1/2}.
Lemma 2.2. (see [8]). Let g € & salisfy the inequality
/() =1/ <1(: € 9)

then g is convex in the disk 9 5.
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Lemma 2.3. (see [11]). Let g € &7 satisfy

l9'(z) =11 < 2/V5 (z € 2)
then g is starlike in the disk 9.
Lemma 2.4. (see [21]). Let g € &7 satisfy the inequality

29'(2)
9(2)
where L is solution of the equation cos L = L, then R(¢'(2)) > 0.

—1‘<L, z €9,

Lemma 2.5. (see [12]). Let § € C with () > 0,d € C with |d| <1, d # —1. Ifh € &
satisfies

zh"(2)
N (2)

’d|z|2‘5 + (1 —12]*) <1, 2€9

then the integral operator

z 1/6
Cs(z) = {6/ t‘”h’(t)dt} L, 2E€ED
0

is analytic and univalent in 9.

For § =1 and d = 0, Lemma 2.5 is equivalent to Becker’s criterion for univalency
[5], which shows that, if f € & satisfy the inequality (1 — |z|?)[zf"(2)/f'(2)] < 1 for
each z € 9, then f is one-to-one (univalent) in 2.

3. Main results

3(Ja] = 1) + v/9]al? + 2|a| + 1

Theorem 3.1. (i)Let & > 1 and ¢ > 5

n 9.
(ii) Let&>1andE+¢ >

, then ,]Ig,a is starlike

3(lal — 1) + /9]al]? + 2|a] + 1

, then VE . 15 convex in 9.

2
(la] — 1) + +/9]a|? + 2]|a| + 1
2

3
(iii) Let € > 1 and £+ > , then jéa is conver in 9.
Proof. Let q(z) be a function defined by the equality g(z) = z(Jf’a(z))’/nga(z) z € 9.

Since Jga(z)/z #0, z € 2, the function ¢ is analytic in 2 and ¢(0) = 1. To prove
the result, we need to show that R(¢(z)) > 0 which follows if we show |¢(z) — 1| < 1.

For £ > 1, it is easy to see that T'({ +n+ 1) <T(én+ ¢+ 1), n € N, holds and
is equivalent to

1 o P+
(CH+D)(C+2)..(CH+n) T T(én+C+1)

n € N. (3.1)
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If z € 9, then using (1.6) and (3.1), we obtain

Jeal®) | _ | (a)"na"T(C +1)
B nl(En+ ¢+ 1)

(3 () — =5

la|"n

(¢ +1)(C+2)(C+n)

(c+1>,§,(c|j—|2>n

_ Jal€+2)
C+ D2 Ja]

- HMz

<

and

— (—a)"2"T(C+1)
Z TEn+¢+1)

n=1

oo
n
la|

=1~ ; AT DC+2)..C+n)

oo

- <<|i|1>,§<<i|2)n

B lal(¢ +2)
€+ D(C+2—al)
_ D¢ +2~a]) —lal(¢ +2)
(€ +1)(¢+2—]a])
From (3.2) and (3.3), we have for z € 2

It ,(2)

@ty - B

U ()

z

la(¢ +2)
(C+1D(¢+2~]a]) —lal(C+2)

<

793

(3.2)

(3.3)

(3.4)

This implies that if (( 4+ 1)(¢ +2 — |a]) — |a[({ 4+ 2) > |a|(¢ + 2), then R(q(2)) > 0,
hence Jéa(z) is starlike in 2, but the inequality ((+1)((+2—]a|) —2|a|(¢+2) > 0 is

3(Ja] = 1) + v/9]al? + 2|a| + 1
2

a consequence of the hypothesis ¢ >
J¢ ,(2) is starlike in 2.

. This shows that

O

(ii) In view of the hypothesis the inequality 'n+£+(+1) < T(¢n+&+(¢+1)

holds. If z € 2, then a calculation similar to (3.2) and (3.3) gives

¢ lal(§ +¢+2)
(Vs | < Erc s car =
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and

[v¢ )k>@+c+w@+<+2—MD lal€+¢+2)
ércal €+ CHDE+C+2—al)
From these inequalities and (1.11), we obtain

z (Véa(z))u z (Vgﬂ.’a(z))/
(ve.@) | | (Vica®)
- lal(€ + ¢ +2)
€+C+DE+C+2—a]) = lal(§+(+2)

This means that, if (£ + ¢+ 1)*+ (£ + ¢+ 1)(1 — 3|a|) — 2]a] > 0, then by definition
Vg ., Is convex in 2. But this inequality is true under the condition

(z € 2).

3(la] = 1) + v/9]al? + 2|a| + 1

§+¢> -

Hence, Vg . is convex in .
(iii) The function jéa(z) is convex iff z(jfa(z))’ is starlike, but from (1.10)

AT o(2)) =Tt cal2)-

This in view of part (i) of the theorem completes the proof.

Remark 3.2. If we put a = 1 and £ = 1, then we obtain part(a) and part(b) of
Corollary 2.8 of [15]. Similarly if we put a = —1 and £ = 1 and using Lemma 2.4, we
obtain part(c) of Corollary 2.8 of [15].

Theorem 3.3. (i) Let € > 1 and ( > % VH_W, then Jéa(z) is starlike in the

disk Dy /2.

3(la] = 1) + /9]al? + 2|a| + 1
2

(ii) Let £ > 1 and ¢ >

disk @1/2.

(iii) Let &€ > 1 and ¢ > ¢*, where (* is positive oot of the equation
¢ +CB =1+ Vb)lal) + (2 (1 +2V5)lal) =0,

then Jg)a(z) is starlike in the disk 9.

hen Jg o(2) is convex in the

Proof. On performing calculations, we have
J§ n n+1
7a( ) .t Z I'((+1)z 1
n'I‘ (En+¢+1)

3l 1 IIR-YAIRY
D B S (<+n><<<+1>;<<+2)

ol (c+2)
C+D)(C+2la])
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In view of Lemma 2.1, J]E o Is starlike in 2y o, if (¢ +1)? + (¢ +1)(1 —2|a]) — |a| > 0,
but this is true in view of the hypothesis. Hence, the result is proved.

(ii) Using Lemma 2.2, we obtain

/ o~ (—a)"(n+ DI(¢+1)2"
‘(Jg,a(z)) - 1‘ = |;1 nl(én + ¢ +1) o

= Jalal(C+1) X Ja"T(C + 1)
= Zln!F(§n+C+1) Jr;nlf(fn—&—(—&—l)
& 2al” 2al(¢ +2)
D R e

This shows that nga(z) is convex in % 5.

<1. (3.6)

(iii) Using the Lemma 2.3 and equation (3.6), we see that Jg)a(z) is starlike in 2, /5,
if

C+¢B-1+V5)al) + (2 (1+2V5)[a]) > 0.
This proves the result. O

Remark 3.4. Setting &€ = 1, and a = 1 in Theorem 3.3, we obtain Part (a), (b) and
(c) of Corollary 2.10 of [15].

Theorem 3.5. Let £ > 1 and 0 < 1n < 1. Suppose also that

(3lal = 1) = n(2lal = 1) + v/n*(4]al? + 1) — 2n(6]al® + |a[ + 1) + (9[a]? + 2]a] + 1)
2(1—n)

¥(n) =

(i)Let ¢ > 1(n), then waa(z) € S*(n).
(ii) Let ¢+ & > (n), then VE (2) € 2 *(n).
(iii) Let ¢ + & > (1), then J¢ ,(2) € A (n).

Proof. Following the proof of Theorem 3.1, we find that Jg,a(z) € S*(n)ii, if

lal(¢ +2)
< (1 - 77);
€+ D +2—al]) —al(¢ +2)
but this inequality is a direct consequence of hypothesis. Hence the result. Remaining
part can be shown similarly. O

Theorem 3.6. Let £ > 1 and (* be the positive root of the cubic equation
¢? +¢*(2 = 3lal) = 3¢(1 + 2lal) — (6 + |a]) > 0,
then J¢ _ is close-to-convex with respect to Jc in 9, provided ¢ > max{C*, |a| —2,V/3}.

,a
Proof. Using definition, we need to show Jh € §*, such that

2(JE u(2)
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this can be easily shown by proving

2(JE o(2))’

W

<1l, z€e9.

If z € 2, then a computation gives

~L(C+1) ‘ (=a)"(n+1) (=n" ‘

z — Fén+¢+1) T(n+¢+1)
2T+ | (a)"(n+1) 1
S; ! ’F(§n+§+1) I‘(n+§+1)‘
o~ L(C+1) [la]"(n+1)+1
3; ! { RS ]
- i 2|a|" N i 1
T CHD)(CH)(CHn) A (CHD(CH2)-(CHn)
L o @la"™ +1)  (C+2)[Jal(2¢+1) +¢ +2]
- (<+1)n§ C+2» ¢+ 2—a)(C+1)? (37)
and
3G, v 1
’ z = ;n!(Cle)(CwLQ)...(CJrn)
I (1 \"_ +¢-1
>1_<+1,§(<+2> (S 38)
From (3.7) and (3.8)
ALy | |6y - K
Je(z) a Je(z)
(€+2)

< (<+2_|a|)(<2+<_1)[|a|(2C+1)+C+2]Sl, z€ 9.

This shows that R (Z(JEG(Z))//JQ(Z)) > 0 and hence Jg’a is close-to-convex in 2.
Starlikeness of J; can be deduced from Theorem 3.1 for a = 1 and it comes out { > 1
and ¢ > V3. O

For a non-zero complex number §, we define an integral operator F5 : 2 — C, by

: ;
/t‘s_Q,]Iéa(t)dt} , z€9. (3.9)

0

Fs(z) = {5

Note that Fs(z) € 7. In the next theorem, we find conditions so that F5 is univalent
in 9.
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lal(¢ +2)
Theorem 3.7. Let £ > —1,( > —1, k= and L € RT
€+ +2—a]) = |al(¢ +2)
such that ‘Jga(z)‘ < L in 9, then following results holds
(i) If k+ |0 — 1|+ L/ <1, then Fs is univalent in 2.
(ii) If d € C with |d] <1, d # —1 and |d| + k/|6| < 1, then Fs is univalent in 2.

Proof. (i) A simple calculation gives us

FYe) ALY
E N NE R

Since Jf’a € o/, so using Schwarz Lemma, we obtain ‘Jga(z)‘ < L|z| in 2.
Now using (3.4) and the triangle inequality (|21 + 22| < |21] + |#2]), we obtain
2FY(2) 2(J¢.a ()’ J¢.a(2)
F5(2) 32 4(2)

|§R(5)
9]

|z

(1= 21

z

<(1- ZIQ){|5—1|+

}

This implies that Fj satisfy Becker’s criterion for univalence, hence Fj is univalent
in 9.
(ii) Let us consider the function

“TEa®)
G(z) :/ ’t dt, z€ 9.
0

Observe that, G € 7. Using (3.4) and the triangle inequality, we get

1J’{a(z) +6-2, z€ 9. (3.10)
< (1—z|2){§+5—1+L} <1

€ ’
g"(z) 1 [ 2(J¢q(2))
d 25 1 _ 26\ % < |d 28 1— 25\~ ¢a -1
o (= )55 < [+ (- g (T
< |d| + % <1 (using the hypothesis of Theorem 3.7).

This in view of Lemma 2.5, implies that F5(z) defined by

Fs(2) = {5/02t5-1g’(t)dt}1/6 = {5/0 t“%ﬂ{a(t)dt}l/d (z € D). (3.11)

is univalent in 9. O
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