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Radius problems for certain classes of analytic
functions

Yao Liang Chung, Maisarah Haji Mohd and Shamani Supramaniam

Abstract. Radius constants for functions in three classes of analytic functions
to be a starlike function of order «, parabolic starlike function, starlike func-
tion associated with lemniscate of Bernoulli, exponential function, cardioid, sine
function, lune, a particular rational function, and reverse lemniscate are obtained.
One of these classes are characterized by the condition Re g/(ze*) > 0. The other
two classes are defined by using the function g and they consist respectively of
functions f satisfying Re f/g > 0 and |f/g — 1| < 1.
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1. Introduction

Let A denote the class of all analytic functions f in the unit disk D := {z € C:
|z| < 1} with normalization f(0) = 0 and f’(0) = 1. The subclass of A consisting of
univalent functions is denoted by S. Let P be the class of functions with positive real
part consisting of all analytic functions p : D — C satisfying p(0) = 1 and Re (p(z)) >
0. For 0 < a < 1, let S*(«) be the subclasses of S consisting of starlike functions
of order a.. Analytically, we have f € §*(«) if and only if Re (z2f/(2)/f(2)) > «. For
a = 0, we have §*(0) := S* which is the starlike functions. For analytic functions
f and g on D, we say that f is subordinate to g, denoted f < g, if there exists
a Schwarz function w in D such that f(z) = g(w(z)),z € D. Several subclasses of
starlike functions defined by subordination were discussed in the literature. We shall
be interested in the following classes:
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For more information on the subclasses, refer [1, 2, 4, 6, 10, 11, 12, 13, 17, 18].

The radius problems is an important area of study in geometric function theory
(see [1, 9]). Let F and G be two subclasses of A. If for every f € F,r~!f(rz) € G for
r < g, and 1 is the largest number for which this holds, then rg is the G radius (or the
radius of the property connected to G) in F'. For example, the radius of starlikeness
for the class S is tanh(w/4). Recently, Asha and Ravichandran [14] consider some
analytic functions and obtained the radii for these functions to belong to various
subclasses of starlike functions. See also [3, 5, 7, 8]. Motivated by the aforementioned
works, three subclasses of analytic functions are introduced below:

Ey={feA: f/ge P for some g € A with g/(ze*) € P},
Ey,={feA:|f/g—1| <1 for some g € A with g/(ze*) € P},
Es={feA: f/(ze*) € P}.
The main objective of the paper is to compute radius constants of the above functions
for several subclasses of A such as starlike functions of order «, parabolic starlike func-

tions, starlike functions associated with lemniscate of Bernoulli, exponential function,
cardioid, sine function, lune, a particular rational function, and reverse lemniscate.

2. Main results
Our first theorem gives several radius results for the class F;. Recall that F; is

defined by

{fE.A Ref§;>0forsomeg€.,4vv1th Re (e)>0 ZG]D)}

The function f; : D — C defined by
2
1+2 .
ne = (122) = (21)

1—2z
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belongs to E; and acts as an extremal function.

Theorem 2.1. For the class E1, the following results hold:

(i) For 0 < a <1, the 8 radius is the smallest positive real root of the equation
3 —ar® —5r4+a=0.
(i) The S} -radius is the smallest positive real root of the equation
P+ (1=V2)r? —=5r+ V2 —1=0, ie. Rs: ~0.0824.
(i) The S,-radius is the smallest positive real root of the equation
2r% —r? —10r +1 =0 i.e. Rs: ~ 0.09921.
(iv) The S -radius is the smallest positive root of the equation
er® + (1 —e)r? —5er+e—1=0ie Rs: ~0.1248.
(v) The SF-radius is the smallest positive root of the equation
3r® —2r? =157 +2 =0 i.e. Rs; ~0.13148.
(vi) The 8%, -radius is the smallest positive root of the equation
> —r?sinl —5r +sinl =0 i.e. Rs: ~ 0.1646.
(vii) The S}, -radius is the smallest positive root of the equation
™ —1r2(2—v2) =5 +2—V2=0i.e. Rs: =~ 0.1159.
(viii) The S§-radius is the smallest positive root of the equation
r —r?(2—2v2) —5r +3—2v2 =0 i.e. Rs; ~ 0.0345.

(iz) The Sy -radius is Rs:, which is root of the equation

(5r —r?)? 2 2\y2\1/2 2 2112
m=(1—(\/§—(1+7‘ )/(L=r* N2 — (1= (V2= (1+77)/(1=7%))*).
Proof. Let f € Fq and g : D — C be chosen such that
RGM>O and R6M>0 for all z € D. (2.2)
9(2) ze”
Define the functions p1,p2 : D — C by
pi(z) = ;8 and  pa(z) = gZ (:Z). (2.3)

By equations (2.2) and (2.3), we have p; and ps are in P. Also, equation (2.3) yields
f(z) = ze"p1(2)p2(2).

Further computations then yields

')y, ) ()
f(z) B p1(2) P2(Z). @4
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For p € P(a) :={p € P:Re(p(z)) > a, z € D}, by [15, Lemma 2], we have

2p'(2) 2(1 — a)r
<. 2.
pG) | =m0+ -2y =7 29)
By using (2.4) and setting a = 0 in (2.5), we have
z2f'(2) 5r — 3
75 g (2.6)
Hence, by (2.6), we have
/ _ 2 3
Re zf'(2) S 1-6r—r+4r >0

flz) — 1—17r2 -

Thus the function f € Ej is starlike in |z] < 0.1939. Hence, all the radius estimate
here will be less than 0.1939.

(i)

(i)

The function m(r) = (1 — 5r — 72 +7r3)(1 —72)7!, 0 < r < 1 is a decreasing
function. Let ¢ = Rg«(q) be the smallest positive root of the equation m(r) = a.
From (2.6), it follows that

/ _ 2 3
Rezf(z)zl 5r—ri+4r
f(z) 1—r2

This shows that Rgs-(4) is at least 0. At 2 = Rgs+(o) = 0, the function f; defined
in (2.1) satisfies

— m(r) > m(o) = a

Re A1) _1=8p—p*+p° _
fi(z) 1 —p?
Thus the radius is sharp.
The function m(r) = (5r —r3)(1—r?)"14+1, 0 < r < 1 is an increasing function.
Let o = Rsz be the root of the equation m(r) = V2. For0<r< RS?J we have
m(r) < /2. That is,

5r — 3
- +1<V2=m(o).

For the class E7, the centre of the disc in (2.6) is 1. Using [1, Lemma 2.2], the
disc obtained in (2.6) is contained in the region bounded by lemniscate. For the
function f; defined in (2.1), at z = Rs: = —p,

<zf{(2))2 <1+5p—pz+p3>2
= (222 )

fi(z) 1—p

The function m(r) = (1 —5r —r2 +r3)(1 —r?)71, 0

function. Let o = Rsx be the root of the equation m(r)

we have m(r) > 1/2. That is,

= V2 -1 =1

< r < 1is a decreasing
=1/2.For 0 <r < Rs;,

M<1_ (p)
-2~ "
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Using [16, Lemma 1], we see that the disc obtained in (2.6) is contained in the
region bounded by parabola. For the function f; defined in (2.1), at z = Rs: =p,

Re2f12) _ 1=5p— pPtp’ 1 Zf{()_l"
f1(z) 1—p? 2 | f?)
The function m(r) = (1 —5r —r2 +r3)(1 —72)71, 0 < r < 1 is a decreasing
function. Let ¢ = Rs: be the root of the equation m( ) =1/e. For 0 <r < Rsy,

we have m(r) > 1/e. That is,

Using [11, Lemma 2.2], the disc obtained in (2.6) is contained in the region
bounded by exponential function. For the function f; defined in (2.1), at z =
RS; =P,

Ju—y

/ 1— 2 3
‘1 ngl(z)’:‘lo 5p—p°+p°| _
fi(2) L—p
The function m(r) = (1 —5r —r2 +r3)(1 —r?)71, 0 < r < 1 is a decreasing
):

function. Let ¢ = Rs» be the root of the equation m( / 3. For 0 <r < Rs:,
we have m(r) > 1/3. That is,

.3
5r —r <1-

1—72 —

wl

Using [17, Lemma 2.5], the disc obtained in (2.6) is contained in the region
bounded by the cardioid. For the function f; defined in (2.1), at z = Rsx = p,

2fiz) _1=5p—p*+p° 1
f1(2) 1—p? 3

where h(2) = 1+ (4/3)z + (2/3)2? is the superordinate function in the class S*.
The function m(r) = (1 —5r —r2 +r3)(1 —r?)~1, 0 < r < 1 is a decreasing
function. Let ¢ = Rs+ ~be the root of the equation m(r) = 1 — sinl. For
0 <r < Rs:, , we have m(r) > 1 —sin 1. That is,

- hc(_l)a

5r — 13
1— 72

<sinl.

Using [2, Lemma 3.3], the disc obtained in (2.6) is contained in the region
Qs bounded by the sine function. For the function f; defined in (2.1), at
z=—Rg= = —p,

sin

2fiz) _1=5p—p*+p°
h(z) 1—p?

where hs(z) =1+ sin z is the superordinate function in the class %,

=1+sinl = hg(1),
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(vii) The function m(r) = (1 —5r — 72 +r3)(1 —72)71, 0 < r < 1 is a decreasing
function. Let ¢ = Rs: be the root of the equation m(r ) V2—-1.For0<r<
Rs: , we have m(r) > V2 — 1. That is,

or — 1
<2-vV2.
1—r2 — V2
Using [4, Lemma 2.1], the disc obtained in (2.6) is contained in the region
bounded by the intersection of disk {w : |w — 1| < v/2} and {w : |w + 1| < V2}.
For the function f; defined in (2.1), at z = —Rg» = —p,
1-5p—p*+p°

2f1(2)\° 1-50—p*+p%\
U=z ) 1 >
fi(2) 1-p 1—p
(viii) The function m(r) = (1 —5r —r2 +73)(1 —r?)71, 0 < r < 1 is a decreasing

function. Let ¢ = Rs: be the root of the equation m(r) = 2(v/2 — 1). For
0 <r < Rs;, we have m(r) > 2(v/2 — 1). That is,

3

5r — 73

1—1r2
Using [6, Lemma 2.2], the disc obtained in (2.6) is contained in the region
bounded by the rational function. For the function f; defined in (2.1), at
z = 7RS}*% = —p,

2fi(z) _1-5p— p +p°
=2(vV2 - 1) = hp(-1
e o~ (V2 1) = hi(-1)
where hp(z) =1+ (zk+22)/(lc2 —kz), k= 1++/2 is the superordinate function
in the class Sg.
(ix) The function m(r) = ((5r — r3)(1 —r?)71) +1, 0 < r < 1 is an increasing
function. Let ¢ = Rsy, be the root of the equation
m(r)=((1-(V2-DH? - (1 - (V2-1))"2
Using [10, Lemma 3.2], the disc obtained in (2.6) is contained in the region
{w: |(w—v2)*-1| < 1}.

For the function f; defined in (2.1), at 2 = —Rs;,, = —p,
/ 2 2 3 2
1—5p—
<Zf1(2)> _1| = (W _ \/5) 1
f1(2) L—p
Recall that the class Fo was defined by

{fEA f()—l‘<1forsomeg€flw1th Re%>0 ZGID)}
The function f; defined by

<1-2(v2-1).

=1 O

9(2)
f2(2) = (11t'zz) ze* (2.7)

belongs to the class Fo and is an extremal function.
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Theorem 2.2. For the class E, the following results hold:
(i) For 0 < a <1, the S -radius is the smallest positive real root of the equation

3 —(a+1)r? —4r +a=0.
(i) The S} -radius is the smallest positive root of the equation
r+1%(2-V2) —4r+ V2 —-1=0i.e. Rs; ~ 0.1055.
(iii) The S, -radius is the smallest positive root of the equation
2r® —3r? —8r 41 =0 i.e. Rs; ~ 0.1200.
(iv) The S -radius is the smallest positive root of the equation
er® +1%(1 —2e) —der + e — 1 =10 i.e. Rs+ ~ 0.1497.
(v) The SE-radius is the smallest positive oot of the equation
3r —5r® —12r +2 =0 i.e. Rs; ~ 0.1573.
(vi) The 8%, -radius the smallest positive root of the equation
> —r?sinl —5r +sinl =0 i.e. Rs: =~ 0.00349.
(vii) The S}, -radius is the smallest positive root of the equation
r* — 13— V2) —dr+2—v2=0ie Rs: ~0.1394.
(viii) The Sy-radius is the smallest positive root of the equation
r —1r?(3—2v2) —4r +3—2v2 =0 i.e. Rs; ~ 0.0428.
(iz) The Sy -radius is Rs;, which is root of the equation

r2 r—r3)2
A =) (1= (VE— (L) /(=22 — (1= (VE— (1+12) /(1 —1))?).

(1—-172)2
Proof. Let f € F5 and g : D — C such that
1@ 4 o1 and reZE) S, (2.8)
9(2) ze?

Using the fact |w — 1] < 1 if and only if Re(l/w) > 1/2, it follows that
Re(g(z)/f(2)) > 1/2. Define the functions py,ps : D — C by

p1(z) = % and po(z) = ?22 (2.9)
By (2.8) and (2.9), we have p; € P and ps € P(1/2). Also, from (2.9), we have
_ zefpi(z)
fz) = pa(2)
and eventually
) L e )
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Hence,

e s (2.10)

zf'(z) _1‘ < r2 4+ 4r — 3

and

zf'(z) S 1—4r —2r2 4¢3

f(z) — 1—r2

Thus the function f € FEs is starlike in |z] < 0.2271. Hence, all the radius estimate

here will be less than 0.2271.

(i) The function m(r) = (1 —4r — 2r2 +73)(1 —r?)~1 0 < r < 1 is a decreasing

function. Let ¢ = Rg-(q) is the smallest positive root of the equation m(r) = a.
From (2.10), it follows that

2f'(2) 1 —dr—2r2 493
>
A TP R

This shows that Rs-(q) is at least 9. At 2 = Rgs+(o) = 0, the function fo defined
n (2.7) satisfies

Re > 0.

=m(r) > m(p) = a.

2f3(2) _ 1—4p—2p"+p°
R = B =
f2(2) I—p
Thus the radius is sharp.

(ii) The function m(r) = (4r +r2 —r3)(1 —r?)"L + 1, 0 < r < 1 is an increasing
function. Let o = Rs: be the root of the equation m(r) = V2. For0<r< Rs:,
we have m(r) < v/2. That is,

dr + 72 =93
—41< .
1< va=m(o)
For the class Es, the centre of the disc in (2.10) is 1. Using [1, Lemma 2.2], the

disc obtained in (2.10) is contained in the region bounded by lemniscate. For the
function fo defined in (2.7), at z = Rs: = —p,

25N (1t dp =202+ 0%\
() - ()
(iii) The function m(r) = (1 — 4r — 2r%2 + 73)(1 — r2)~1

)
function. Let o = Rs: be the root of the equation m(r
we have m(r) > 1/2. "That i is,

1 =|(v2?-1/=1

< 1 is a decreasing

0<r
r)=1/2.For 0 <r < Rs:,

dr+r2 -3 1
- <= .
1—r2 2 = mip)
Using [16, Lemma 1], we see that the disc obtained in (2.10) is contained in the
region bounded by parabola. For the function fy defined in (2.7), at 2z = Rs: = p,

ReZ2(2) _1=dp=2"+p° 1 _|2/5(2) _1"

“hi) 1—p? 2| f(2)




(iv)

(vii)
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The function m(r) = (1 —4r —2r2 +73)(1 —r?)71, 0 <7 < 1 is a decreasing
function. Let ¢ = Rs» be the root of the equation m(r) = 1/e. For 0 < r < Rs-,
we have m(r) > 1/e. That is,

R < 1_1.

1—-r2 = e

Using [11, Lemma 2.2], it follow that the disc obtained in (2.10) is contained in
the region bounded by exponential function. For the function fo defined in (2.7),
at z = Rs: = p,

2f3(2)
f2(2)

—_

‘log

B 1—dp—2p>+p%|
= 2 =
< 1 is a decreasing

The function m(r) = (1 —4r — 2r2 +73)(1 —r?)"1, 0 < r
=1/3.For 0 <7 < Rs-,

function. Let ¢ = Rs- be the root of the equation m(r)
we have m(r) > 1/3. That is,
2 _ .3
rtr”—r 1
1-r2 - 3

Using [17, Lemma 2.5], we see that the disc obtained in (2.10) is contained in
the region bounded by the cardioid. For the function fo defined in (2.7), at
z = RS: =P,

2f3(2) _1—=4p=2p"+p* 1
fa(2) 1—p? 3

where h.(z) = 1+ (4/3)z+(2/3)2? is the superordinate function in the class S;.
The function m(r) = (1 —4r — 2r2 +73)(1 —r?)~1, 0 < r < 1 is a decreasing
function. Let ¢ = Rs+ be the root of the equation m(r) = 1 — sinl. For
0<r<Rs:, ,we have m(r) > 1 —sin 1. That is,

= hc(_1)7

4 2 _ .3
Lgsinl.
1—172

Using [2, Lemma 3.3|, the disc obtained in (2.10) is contained in the region
25 bounded by the sine function. For the function f defined in (2.7), at z =

7R5:in = 7/)7

2f5(2) _ 1—4p—2p> +p°
f2(z) 1—p?
where hy(z) =1+ sin z is the superordinate function in the class S7;,,.
The function m(r) = (1 —4r —2r2 +73)(1 —r?)71, 0 <7 < 1 is a decreasing
function. Let ¢ = Rs: be the root of the equation m(r) = V2—-1.For0<r<
Rs: , we have m(r) > V2 — 1. That is,

=1+sinl = hg(1),

4 2 _ .3
ugg_\/i
1—172
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Using [4, Lemma 2.1], the disc obtained in (2.10) is contained in
the region bounded by the intersection of disks {w:|w —1] <2} and
{w:|w+1| < V/2}. For the function f, defined in (2.7), at z = —Rs: = —p,

(zéé(ii))Ql <1_4p_292+p3>21

1—p2
The function m(r) = (1 —4r —2r2 +73)(1 —r?)71, 0 <7 < 1 is a decreasing
function. Let ¢ = Rs; be the root of the equation m(r) = 2(v/2 — 1). For
0 <r < Rs:, we have m(r) > 2(v/2 — 1). That is,

1—4p—2p*+p?
1 — p? '

2’

73@—2(\/2—1).

Using [6, Lemma 2.2], the disc obtained in (2.10) is contained in the region
bounded by the rational function. For the function f; defined in (2.7), at z =

_RSE = =P,

zf3(2)| _ ‘ 1—4p—2p° +p°
fa(2) 1—p?
where hg(z) = 1+ (zk +22)/(k? — kz), k = 1+ /2 is the superordinate function
in the class S§.
The function m(r) = ((4r + r2 —r3)(1 —r?)71) + 1, 0 < r < 1 is an increasing
function. Let ¢ = Rsy, be the root of the equation

m(r) = (1- (V2= - (1 - (vV2-1)%))"2
Using [10, Lemma 3.2], the disc obtained in (2.10) is contained in the region {w :
|(w —+/2)? — 1| < 1}. For the function f, defined in (2.7), at z = —Rs;, = —p,

1—4p—2p2 + p ?
( p—2p*+p _ﬂ> 1
1—p?

— 2(V2 - 1) = hg(-1),

()1

Recall that the class F5 is defined by

=1. U

Eg—{f:A:Ref(ZZ)>(),z€]D)}.
ze
An extremal function in the class F3 is
ze*(1+ 2)
fe) = 22

For this class F3, we have the following result:

Theorem 2.3. For the class E3, the following results hold:
(i) For 0 < a <1, the S*-radius is the smallest positive real root of the equation

4+ (a—1)r* —4r +a=0.

(i) The S -radius is the smallest positive root of the equation

r +1%(1—V2) —3r+v2—-1=0ie Rs; ~ 0.1363.
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(iii) The S, -radius is the smallest positive oot of the equation
2r% —r? —6r+1=0i.e Rs. ~0.1637.
(iv) The S -radius is the smallest positive root of the equation
er® +1%(1—e) —3er +e—1=0 i.e. Rs» ~ 0.2047.
(v) The S&-radius is the smallest positive root of the equation
3 —2r® —9r4+2 =0 i.e. Rsy ~ 0.2153.
(vi) The 8%, -radius the smallest positive root of the equation
r® —r?sinl = 3r +sinl =0 i.e. Rs: ~ 0.005817.

(vii) The S}, -radius is the smallest positive root of the equation

™ —r2(2—v2) = 3r+2—V2=0i.e Rs: =~ 0.1905.

viii e Sy,-radius is the smallest positive root of the equation
43) The Sp-radius is th llest 24} th )
r —1r?(2—2v2) = 3r+3—2v2 =0 i.e. Rs; ~ 0.0428.
(iz) The Sky-radius is Rs;, which is root of the equation

r— T3 2
O = (- (V= (14 )/ = PP = (L= (VB = (14 )1 = ).

Proof. We can conclude the hypothesis appropriately adopting the similar technique
as in the previous proof. O
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