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Existence of solutions for fractional boundary
value problems with Riesz space derivative and
nonlocal conditions
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Abstract. By using the fixed point theorems, we give sufficient conditions for
the existence and uniqueness of solutions for the nonlocal fractional boundary
value problem of nonlinear Riesz-Caputo differential equation. The boundedness
assumption on the nonlinear term is replaced by growth conditions or by a contin-
uous function. Finally, some examples are presented to illustrate the applications
of the obtained results.
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1. Introduction

Fractional differential equations can be thought as an extension of the ordinary
differential equation of real order. Fractional calculus is as old as differential calculus
which goes back to Leibniz and Newton. In recent years, there has been an active
movement in fractional differential equations which have been used for modelling real
world phenomena in different fields. The reason is that they represent better these
phenomena than ordinary differential equations. Geometric and physical interpreta-
tion of fractional differentiation and integration can be found in the paper [23]. Very
recently, the existence of the solutions for fractional differential equations have at-
tracted a good deal of attention and have been developed by many authors; see the
books [17, 22, 19] and papers [1, 2, 3, 12, 11, 16, 33, 25, 26, 27, 30, 28, 29] and the
references therein. A large number of studies on fractional differential equations has
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been presented for the existence and uniqueness of initial value problems. Multi-point
and nonlocal boundary value problems for fractional differential equation are sparse
and have received attention in the last decades [3, 20, 14, 18].

It should be pointed out that the most of the papers and monographs on frac-
tional calculus have focused on the fractional differential equations involving Riemann-
Lioville and Caputo derivatives in the literature. Both two fractional operators are
one sided operator and thus, they hold either past or future memory effects. In con-
trast, the main feature of the Riesz fractional operator is that it is both left and right
sided operator which holds both the history and future non-local memory effects. This
property of the Riesz fractional operator is important in the mathematical modelling
for physical processes on a finite domain because the present states depend both on
the past and future memory effects. As an example, the Riesz fractional derivative
has been used for the memory effects in both past and future concentrations in the
anomalous diffusion problem [7, 24].

A variety of papers are devoted to numerical solutions of the fractional calculus,
specifically in the anomalous diffusion that involves the Riesz derivative [13, 32, 24,
24, 7, 4, 21, 31]. Recently, there are papers on existence and positive solutions for the
fractional boundary value problems of the Riesz-Caputo derivative [8, 15].

To the best of our knowledge, there does not exist a paper on the fractional
boundary value problems (FBVP) of the Riesz-Caputo differential equations with non-
local boundary conditions. In this paper, we investigate the existence and uniqueness
of solutions for the following nonlocal boundary value problems of the Riesz-Caputo
fractional differential equations

RC
0D

ν
Tu(η) = F (η, u(η)) ν ∈ (1, 2], 0 ≤ η ≤ T,
u(0) = g(u), u(T ) = uT ,

(1.1)

where RC
0D

ν
T is the Riesz-Caputo derivative defined below and F : [0, T ]× R→ R is

a continuous function, g : C[0, T ]→ R is a continuous function and uT ∈ R.

Byszewski [6] first time investigated the existence and uniqueness of a solution
of nonlocal Cauchy problems. It should be noted that some psychical processes can be
better described by the nonlocal boundary conditions than the usual initial/boundary
conditions [5]. For instance, the initial condition g(u) can be taken as

g(u) =

n∑
k=1

aku(tk)

where ak, k = 1, 2, . . . , n constant and 0 < t1 < t2 < · · · < tn ≤ T .

The remainder of paper is organized as follows. Section 2 introduces some pre-
liminaries, definitions and lemmas which are useful in proving main results. Section 3
provides some sufficient conditions for the existence and the uniqueness of solutions
of the problem (1.1) with nonlocal boundary conditions. We establish these results
by using the contraction principle in the Banach space and Schaefer’s fixed point the-
orem and Leray-Schauder fixed point theorem, respectively. Finally, some numerical
examples are given to illustrate the applications of the main results.
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2. Preliminaries

In this section, we give some useful definitions and lemmas that will be used in
this paper.

Definition 2.1. [17] Let ν > 0. The left-sided and right-sided Riemann-Liouville frac-
tional integral of a function f ∈ C[a, b] of order ν defined as, respectively

Iνaf(x) =
1

Γ(ν)

∫ x

a

(x− s)ν−1f(s) ds, x ∈ [a, b].

bI
νf(x) =

1

Γ(ν)

∫ b

x

(s− x)ν−1f(s) ds, x ∈ [a, b].

Definition 2.2. (Riesz Fractional Integral) Let ν > 0. The Riesz fractional integral of
a function f ∈ C[a, b] of order ν defined as

bI
ν
af(x) =

1

2Γ(ν)

∫ b

a

|x− s|ν−1f(s) ds, x ∈ [a, b].

Note that the Riesz fractional integral operator can be written as

bI
ν
af(x) =

1

2

(
Iνaf(x) +b I

νf(x)
)

(2.1)

Definition 2.3. [17] Let ν ∈ (n, n + 1], n ∈ N. The left-sided and right-sided Caputo
fractional derivative of a function f ∈ Cn+1[a, b] of order ν defined as, respectively

C
aD

ν
xf(x) =

1

Γ(n+ 1− ν)

∫ x

a

(x− s)n−νf (n+1) ds = (In+1−ν
a Dn+1)u(x).

C
xD

ν
b f(x) =

(−1)n+1

Γ(n+ 1− ν)

∫ b

x

(s− x)n−νf (n+1) ds = (−1)n+1(bI
n+1−νDn+1)u(x).

where D is ordinary differential operator.

Definition 2.4. Let ν ∈ (n, n+1], n ∈ N. The Riesz-Caputo fractional derivative RCaD
ν

of order ν of a function f ∈ Cn+1[a, b] defined by

RC
aD

ν
bf(x) =

1

Γ(n+ 1− ν)

∫ b

a

|x− s|n−νf (n+1)(s) ds

=
1

2

(
C
aD

ν
xf(x) + (−1)n+1C

xD
ν
b f(x)

)
=

1

2

(
(In+1−ν
a Dn+1)u(x) + (−1)n+1(bI

n+1−νDn+1)u(x)
)
.

In the case when ν ∈ (1, 2] and f(x) ∈ C2(a, b) we then have

RC
aD

ν
bf(x) =

1

2

(
C
aD

ν
xf(x) + C

xD
ν
b f(x)

)
. (2.2)
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Lemma 2.5. [17] Let f ∈ Cn[a, b] and ν ∈ (n, n + 1]. Then we have the following
relations

Iνa
C
aD

ν
xf(x) = f(x)−

n−1∑
k=0

f (k)(a)

k!
(x− a)k,

bI
νC
xD

ν
b f(x) = f(x)−

n−1∑
k=0

(−1)kf (k)(b)

k!
(b− x)k.

Lemma 2.6. [8] Assume that u ∈ C[0, T ] satisfies

|u(t)| ≤c1 + c2

∫ T

0

|t− s|ν−1|u(s)|β ds+ c3

∫ T

0

(T − s)ν−2|u(s)|β ds,

where ν ∈ (1, 2], β ∈ (0, σ) for some 0 < σ < ν − 1 and ci, (i = 1, 2, 3) are positive
constants. Then there is a positive constant C such that

|u(t)| ≤ C.

Lemma 2.7. [10] Let X be a Banach space and B be a closed and convex subset of
X. If C is a open subset of B and T : C → C is a continuous and compact operator,
then one of the following hols:

1. The operator has a fixed point in C,
2. There is a point c ∈ ∂C with 0 < µ < 1 such that c = µT (c).

3. Existence results

Let E = C[0, T ] denote the Banach space with the norm defined as ‖u‖ =
sup{|u(t)| : t ∈ J = [0, T ]}.

We say that u ∈ C2(J) with RC
0D

ν
Tu exists on J is a solution of the problem

(1.1) if u solves the equation RC
0D

ν
Tu(t) = F (t, u(t)) for each t ∈ J and the conditions

u(0) = g(u) and u(T ) = uT are fulfilled.
In order to prove the existence results for the problem (1.1), the following lemmas

are useful.

Lemma 3.1. [8] Assume that h ∈ C[0, T ] and ν ∈ (1, 2]. Then the following boundary
value problem of Riesz-Caputo fractional differential equation{

RC
0D

ν
Tu(t) = h(t), 0 ≤ t ≤ T,

u(0) = g(u), u(T ) = uT ,

has a unique solution u(x) given by

u(t) =
1

Γ(ν)

∫ T

0

|t− s|ν−1h(s) ds+
T − 2t

TΓ(ν)

∫ T

0

(T − s)ν−1h(s) ds

−
T − t

Γ(ν − 1)

∫ T

0

(T − s)ν−2h(s) ds+ (1− t

T
)g(u) +

t

T
uT . (3.1)
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Proof. From the above definitions and Lemma 2.5 we have for ν ∈ (1, 2]

bI
ν
a
RC

0D
ν
Tu(t) = u(t)− 1

2
(u(0) + u(T ))− t

2
(u′(0) + u′(T )) +

T

2
u′(T ).

This implies that

u(t) =
1

2
(u(0)+u(T ))+

t

2
(u′(0)+u′(T ))− T

2
u′(T )+

1

Γ(ν)

∫ T

0

|t−s|ν−1h(s) ds. (3.2)

We compute the first derivative of u

u′(t) =
1

2
(u′(0) + u′(T )) +

1

Γ(ν − 1)

∫ t

0

(t− s)ν−2h(s) ds (3.3)

−
1

Γ(ν − 1)

∫ T

t

(s− t)ν−2h(s) ds.

The equation (3.2) can be rewritten as follows

u(t) = u(0) +
T

2
(u′(0)− u′(T )) +

t

2
(u′(0) + u′(T )) (3.4)

+
1

Γ(ν)

∫ T

0

[(T − s)ν−1 + |t− s|ν−1]h(s) ds.

From the equation (3.3), we have

u′(T ) = u′(0) +
2

Γ(ν − 1)

∫ T

0

(T − s)ν−2h(s) ds. (3.5)

We plug the equation above (3.5) into the equation (3.4) to obtain

u(t) = u(0) + tu′(0)− T − t
Γ(ν − 1)

∫ T

0

(T − s)ν−2h(s) ds (3.6)

+
1

Γ(ν)

∫ T

0

[(T − s)ν−1 + |t− s|ν−1]h(s) ds.

Applying the boundary conditions to the equation (3.6) yields the desired result (3.1).
�

By making use of Lemma 3.1, we consider the operator K : C[0, 1] → C[0, 1]
defined as

K(u)(t) =
1

Γ(ν)

∫ T

0

|t− s|ν−1F (s, u(s)) ds+
T − 2t

TΓ(ν)

∫ T

0

(T − s)ν−1F (s, u(s)) ds

−
T − t

Γ(ν − 1)

∫ T

0

(T − s)ν−2F (s, u(s)) ds+ (1− t

T
)g(u) +

t

T
uT . (3.7)

We now state and prove the first existence result by using Banach contraction
principle.

Theorem 3.2. Assume that the following assumptions hold
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A1. The function F is Lipschitz continuous in the second variable, that is, there is a
positive constant C1 such that

|F (t, z)− F (t, y)| ≤ C1|z − y|, for each t ∈ J, and ∀z, y ∈ R.

A2. The function g is Lipschitz continuous, that is, there is a positive constant C2

such that

|g(z)− g(y)| ≤ C2|z − y|, for each t ∈ J, and ∀z, y ∈ C(J).

Assume also that
(3 + ν)T ν

Γ(ν + 1)
C1 + C2 < 1. (3.8)

Then the problem (1.1) has a unique solution.

Proof. Obviously, the solutions of the problems (1.1) are the fixed point of the opera-
tor K. We will show that the operator K is a contraction. To this end, let u, v ∈ C(J).
Then for t ∈ J we get

|K(u)(t)−K(v)(t)| ≤
1

Γ(ν)

∫ t

0

(t− s)ν−1|F (s, u(s))− F (s, v(s))| ds

+
1

Γ(ν)

∫ T

t

(s− t)ν−1|F (s, u(s))− F (s, v(s))| ds

+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))− F (s, v(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))− F (s, v(s))| ds+ |g(u)− g(v)|

≤
C1‖u− v‖

Γ(ν)

∫ t

0

(t− s)ν−1 ds+
C1‖u− v‖

Γ(ν)

∫ T

t

(s− t)ν−1 ds

+
C1‖u− v‖

Γ(ν)

∫ T

0

(T − s)ν−1 ds+
TC1‖u− v‖

Γ(ν − 1)

∫ T

0

(T − s)ν−2 ds+ C2‖u− v‖

≤
( C1t

ν

Γ(ν + 1)
+
C1(T − t)ν

Γ(ν + 1)
+

C1T
ν

Γ(ν + 1)
+
C1T

ν

Γ(ν)
+ C2

)
‖u− v‖

≤
( (3 + ν)T ν

Γ(ν + 1)
C1 + C2

)
‖u− v‖.

Therefore we arrive at

‖K(u)−K(v)‖ ≤
(3 + ν)T ν

Γ(ν + 1)
C1 + C2

)
‖u− v‖.

This shows that K is a contraction operator. Banach fixed point theorem implies that
K has at least one fixed point u which is a unique solution of the problem (1.1). �

Next we present the second existence theorem in the next theorem.

Theorem 3.3. Assume that the following conditions are satisfied

A3 F ∈ C([0, T ]× R), that is, F is a continuous function.
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A4 There is a positive constant L1 and β ∈ (0, σ) for some 0 < σ < ν − 1 such that

|F (t, z)| ≤ L1(1 + |z|β) for each t ∈ J and ∀z ∈ R.

A5 There exists a positive constant L2 such that

|g(z)| ≤ L2 ∀z ∈ C[0, T ].

Then the problem (1.1) has at least one solution on J .

Proof. We will show that K has a fixed point by using the Schaefer fixed point
theorem. We first show K is continuous operator. To show this, consider a sequence
{un} with the limit un → u ∈ C[0, 1]. Then for t ∈ J , we get

|K(un)(t)−K(u)(t)| ≤
1

Γ(ν)

∫ t

0

(t− s)ν−1|F (s, un(s))− F (s, u(s))| ds

+
1

Γ(ν)

∫ T

t

(s− t)ν−1|F (s, un(s))− F (s, u(s))| ds

+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, un(s))− F (s, u(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, un(s))− F (s, u(s))| ds+ |g(un)− g(u)|

≤
( tν

Γ(ν + 1)
+

(T − t)ν

Γ(ν + 1)
+

T ν

Γ(ν + 1)
+

T ν

Γ(ν)

)
‖F (s, un(s))− F (s, u(s))‖

+ ‖g(un)− g(u)‖ ≤
(3 + ν)T ν

Γ(ν + 1)
‖F (s, un(s))− F (s, u(s))‖+ ‖g(un)− g(u)‖.

The continuity of the functions F and g yields

‖K(un)−K(u)‖ → 0, as n→∞,

which shows that K is continuous.

Secondly we will show that K transforms bounded sets to bounded sets in
C[0, T ]. Let M` = {u ∈ C[0, T ] : ‖u‖ ≤ `} be a bounded subset of C[0, T ]. Our
goal is to show that ‖K(z)‖ ≤ m for some constant m. For each t ∈ J and u ∈ M`

we have

|K(u)(t)|

≤
1

Γ(ν)

∫ T

0

|t− s|ν−1|F (s, u(s))| ds+
T − 2t

TΓ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
T − t

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ |(1− t

T
)g(u)|+ | t

T
uT |
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≤
1

Γ(ν)

∫ t

0

(t− s)ν−1|F (s, u(s))| ds+
1

Γ(ν)

∫ T

t

(s− t)ν−1|F (s, u(s))| ds

+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ 2|g(u)|+ |uT |

≤
( tν

Γ(ν + 1)
+

(T − t)ν

Γ(ν + 1)
+

T ν

Γ(ν + 1)
+

T ν

Γ(ν)

)
L1(1 + `β) + 2L2 + |uT |

≤
(3 + ν)T ν

Γ(ν + 1)
L1(1 + `β) + 2L2 + |uT |.

Therefore we get

‖K(z)‖ ≤
(3 + ν)T ν

Γ(ν + 1)
L1(1 + `β) + 2L2 + |uT | := m,

which proves the desired result.

Finally we will show that K transforms bounded sets to equicontinuous sets in
C[0, T ]. Again, let M` = {u ∈ C[0, T ] : ‖u‖ ≤ `} be a bounded subset of C[0, T ]. We
give a bound on the derivative of K(u)′(t) for each t ∈ J and u ∈M` as follows

|K(u)′(t)| ≤
1

Γ(ν − 1)

∫ t

0

(t− s)ν−2|F (s, u(s))| ds+
1

Γ(ν − 1)

∫ T

t

(s− t)ν−2|F (s, u(s))| ds

+
2

TΓ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
1

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ |g(u)|+ 1

T
|uT |

≤
( tν−1

Γ(ν)
+

(T − t)ν−1

Γ(ν)
+

2T ν−1

Γ(ν + 1)
+
T ν−1

Γ(ν)

)
L1(1 + `β) + 2L2 +

1

T
|uT |

≤
(2 + 3ν)T ν−1

Γ(ν + 1)
L1(1 + `β) + L2 +

1

T
|uT |.

Set L :=
(2 + 3ν)T ν−1

Γ(ν + 1)
L1(1 + `β) + L2 + 1

T |uT |. Let t1, t2 ∈ J with t1 < t2, then we

have

|K(u)(t1)−K(u)(t2)| =
∫ t2

t1

|K(u)′(s)| ds ≤ L(t2 − t1).

Thus, K(M`) is equicontinuous in C[0, T ]. Sp far we have shown that the operator K
is completely continuous.

Lastly, we will show that the set

E(K) = {u ∈ C[0, T ] : u = µK(u), µ ∈ (0, 1)}
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is bounded. Let u = µK(u) for µ ∈ (0, 1). Then we have for t ∈ J

|u(t)| ≤
1

Γ(ν)

∫ T

0

|t− s|ν−1|F (s, u(s))| ds+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ 2|g(u)|+ |uT |

≤
1

Γ(ν)

∫ t

0

(t− s)ν−1|F (s, u(s))| ds+
1

Γ(ν)

∫ T

t

(s− t)ν−1|F (s, u(s))| ds

+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ 2|g(u)|+ |uT |

≤
(3 + ν)T ν

Γ(ν + 1)
L1 + 2L2 + |uT |+

L1

Γ(ν)

∫ t

0

(t− s)ν−1|u(s)β | ds

+
L1

Γ(ν)

∫ T

t

(s− t)ν−1|u(s)β | ds+
L1

Γ(ν)

∫ T

0

(T − s)ν−1|u(s)β | ds

+
L1T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|u(s)β | ds.

Lemma 2.6 implies that there is a positive constant C such that

‖u‖ ≤ C.

This concludes that E(K) is bounded. By using Schaefer’s fixed point theorem, we
infer that K has a fixed point which is a solution of the problem (1.1). �

Theorem 3.4. Assume the condition A5 in the previous theorem and the following
condition hold

A6 There are φ ∈ C[0, T ] and Φ : [0,∞)→ R+ continuous and increasing functions
such that |F (t, z)| ≤ φ(t)Φ(|z|) for each t ∈ J and ∀z ∈ R.

Assume also that there is a positive constant Cm such that

( (3 + ν)T ν

Γ(ν + 1)

)φsΦ(Cm)

Cm
+

2L2 + |uT |
Cm

< 1, where φs = sup
t∈J

φ(t). (3.9)

Then The problem (1.1) has at least one solution on [0, T ].

Proof. Define Mc = {u ∈ C(0, T ] : ‖u‖ ≤ Cm}. Clearly, Mc is closed, convex and
bounded subset of C[0, T ]. For each t ∈ J and u ∈Mc using the assumptions A5 and
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A6 we have

|Ku(t)| ≤
1

Γ(ν)

∫ T

0

|t− s|ν−1|F (s, u(s))| ds+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ 2|g(u)|+ |uT |

≤
1

Γ(ν)

∫ t

0

(t− s)ν−1|F (s, u(s))| ds+
1

Γ(ν)

∫ T

t

(s− t)ν−1|F (s, u(s))| ds

+
1

Γ(ν)

∫ T

0

(T − s)ν−1|F (s, u(s))| ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2|F (s, u(s))| ds+ 2|g(u)|+ |uT |

≤
1

Γ(ν)

∫ t

0

(t− s)ν−1φ(s)Φ(|u(s)|) ds+
1

Γ(ν)

∫ T

t

(s− t)ν−1φ(s)Φ(|u(s)|) ds

+
1

Γ(ν)

∫ T

0

(T − s)ν−1φ(s)Φ(|u(s)|) ds

+
T

Γ(ν − 1)

∫ T

0

(T − s)ν−2φ(s)Φ(|u(s)|) ds+ 2|g(u)|+ |uT |

≤
(3 + ν)T ν

Γ(ν + 1)
φsΦ(‖u‖) + 2L2 + |uT |

≤
(3 + ν)T ν

Γ(ν + 1)
φsΦ(Cm) + 2L2 + |uT |

≤Cm (from the condition (3.9)).

We have shown that the operator K : Mc → Mc is continuous and completely con-
tinuous. If there is u ∈ ∂Mc with µ ∈ (0, 1) satisfying u = µKu, then the we would
get a contradiction from the discussion above. As a consequence of Leray-Schauder
fixed point theorem (see Lemma (2.7) ), K has a fixed point u ∈ Mc. This implies
that there exists one solution of the equation (1.1). Thus we complete the proof. �

4. Numerical examples

This section is devoted to numerical examples to illustrate the application of the
results presented in this paper.

Example 4.1. Consider the following differential equation with the Riesz-Caputo frac-
tional derivative of order ν ∈ (1, 2]

RC
0D

ν
1u(t) =

1

12
u(t) + (1− t)(1

6
+ t), t ∈ [0, 1], ν ∈ (1, 2],

u(0) =
1

2
u(

1

2
), u(1) = 0,

(4.1)
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Let F (t, w) = 1
12u(t) + (1 − t)( 1

6 + t), (t, w) ∈ [0, 1] × R, and g(u) = 1
2u( 1

2 ).
Then for any u,w ∈ R and t ∈ [0, 1] we have

|F (t, u)− F (t, w)| ≤ 1

12
|u− w|.

Moreover, we have

|g(u)− g(w)| ≤ 1

2
|u− w|.

Thus, the conditions A1 and A2 are satisfied with C1 = 1
12 and C2 = 1

10 . Taking
T = 1, we observe that

1

12

(3 + ν)

Γ(ν + 1)
+

1

2
< 1

if and only if
(3 + ν)

6
< Γ(ν + 1) which holds true since Γ(ν + 1) > 5

6 when ν ∈ (1, 2].

So, the condition (3.8) is satisfied. Theorem 3.2 implies that the problem (4.1) has a
unique solution in [0, 1].

In general, the exact solutions of nonlinear fractional differential equation (even
ordinary nonlinear differential equations) are not available. Thus, we use the method
in [7] to plot the numerical solutions of problems. We report the numerical solution
of problem (4.1) with ν = 3

2 in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

u
nu

m
(t

)

Numerical solution u
num

(t) to the problem (13)

Figure 1. The numerical trajectory of the solution for Example 4.1
with ν = 3

2 .
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Example 4.2. Consider the following boundary value problem of the fractional Riezs-
Caputo derivative,

RC
0D

ν
1u(t) =

|u(t)|
(8 + t2)(1 + |u(t)|)

, t ∈ [0, 1], ν ∈ (1, 2]

u(0) =

n∑
k=1

aku(tk), u(1) = 0,

(4.2)

where 0 < t1 < t2 < · · · < tn < 1, and ak > 0, k = 0, 1 . . . , n are constants satisfying

n∑
k=1

ak <
1

4
.

Let F (t, w) =
w

(8 + t2)(1 + w)
, (t, w) ∈ [0, 1]× [0,∞), and

g(u) =

n∑
k=1

aku(tk).

Then for any u,w ∈ [0,∞) and t ∈ [0, 1] we have

|F (t, u)− F (t, w)| = 1

8 + t2
|
u

1 + u
−

w

1 + w
| = 1

8 + t2
|u− w|

(1 + u)(1 + w)

≤ 1

8
|u− w|.

Moreover, we have

|g(u)− g(w)| ≤
n∑
k=1

ak|u− w|.

Thus, the conditions A1 and A2 are satisfied with C1 = 1
10 and C2 ≤ 1

4 . We also have
with T = 1

(3 + ν)

Γ(ν + 1)

1

8
+

2

8
≤ 5 + ν

8Γ(ν + 1)
≤ 1

Γ(ν + 1)
< 1

if and only if Γ(ν + 1) > 1 which holds true when ν ∈ (1, 2]. So, the condition (3.8) is
satisfied. Theorem 3.2 implies that the problem (4.2) has a unique solution in [0, 1]

Example 4.3. Consider the following fractional differential equation of the fractional
Riesz-Caputo derivative

RC
0D

8
5
1 u(t) =

|u(t)| 15
(1 + t2)(1 + |u(t)|)

, t ∈ [0, 1],

u(0) = sin(2πu(
1

2
)), u(1) = 0.

(4.3)

Let F (t, w) =
|u(t)| 15

(1 + t2)(1 + |u(t)|)
, (t, w) ∈ [0, 1] × [0,∞), and g(u) = sin(2πu( 1

2 ))

with ν = 8
5 . Let β = 1

5 and σ = 2
5 , then β ∈ (0, σ) and 0 < σ < ν − 1. Then for any
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u ∈ [0,∞) and t ∈ [0, 1] we have

|F (t, u)| =
|u(t)| 15

(1 + t2)(1 + |u(t)|)

≤ 1

2
(1 + |u(t)| 15 ).

Additionally, we have
|g(u)| ≤ 1 = L2.

Thus, the conditions A3−A4 and A5 are satisfied. Then we infer from Theorem 3.3
that the problem (4.3) has at least one solution on J .

Let φ(t) = 1
1+t2 and Φ(|u|) = |u(t)| 15 . Then we have F (t, u(t)) ≤ φ(t)Φ(|u|) with

φs = 1
2 . Let Cm = 81 and uT = 0. We find that( (3 + ν)T ν

Γ(ν + 1)

)φsΦ(Cm)

Cm
+

2L2 + |uT |
Cm

=
23

270Γ( 13
5 )

+
2

81
< 1.

So the condition (3.9) is satisfied. Theorem 3.4 tells us there exists at least one solution
to the problem (4.3).

Example 4.4. Consider the following three-point fractional boundary value problem

RC
0D

3
2
1 u(t) =

1

4
t2u2(t)e−u

2(t), t ∈ [0, 1],

u(0) =
1

32
e−u(η), η ∈ (0, 1], u(1) =

1

16
.

(4.4)

We will exhibit that the conditions A5−A6 and (3.9) are satisfied.

Let F (t, w) = 1
4 t

2u2(t)e−u
2(t), (t, w) ∈ [0, 1]×R, and g(u) = e−u(η), η ∈ (0, 1]

with ν = 3
2 . For each u ∈ R and t ∈ [0, 1] we have

|F (t, u)| = |1
4
t2u2(t)e−u

2(t)| ≤ 1

4
t2u2(t) = φ(t)Φ(u), (t, u) ∈ [0, 1]× R,

where φ(t) = 1
4 t

2 and Φ(u) = u2 with φs = supt∈[0,1] |φ(t)| = 1
4 . The function g(u) is

bounded, that is,

|g(u)| ≤ 1

32
= L2.

Lastly we check the condition (3.9). Let Cm = 1 and uT = 1
16 , then( (3 + ν)T ν

Γ(ν + 1)

)φsΦ(Cm)

Cm
+

2L2 + |uT |
Cm

=
9

8Γ( 5
2 )

+
1

8
< 1.

Again Theorem 3.3 implies that the problem (4.4) has at least one solution on [0, T ].
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[25] Toprakseven, Ş., The existence and uniqueness of initial-boundary value problems of the
fractional Caputo-Fabrizio differential equations, Universal Journal of Mathematics and
Applications, 2.2(2019), 100-106.
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[27] Toprakseven, Ş., Existence and uniqueness of solutions to Riesz-Caputo impulsive frac-
tional boundary value problems, Journal of Interdisciplinary Mathematics, 24.8(2021),
2071-2086.

[28] Toprakseven, Ş., Existence and uniqueness of solutions to anti-periodic Riezs-Caputo
impulsive fractional boundary value problems, Tbilisi Mathematical Journal, 14.1(2021),
71-82.
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