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Reducing the complexity of equilibrium problems
and applications to best approximation problems

Valerian-Alin Fodor and Nicolae Popovici�

Abstract. We consider the scalar equilibrium problems governed by a bifunction
in a finite-dimensional framework and we characterize the solutions by means of
extreme or exposed points.
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1. Introduction

In this article, we focus on scalar equilibrium problems governed by a bifunction
within a finite-dimensional framework. Through the use of classical arguments and
techniques from Convex Analysis, we show that under suitable generalized convexity
assumptions imposed on the bifunction, the solutions of the equilibrium problem
can be characterized by means of extreme points (Corollary 4.13) or exposed points
(Corollary 4.16) of the feasible domain. Our findings have significant implications
for various particular instances, including variational inequalities and optimization
problems, and are particularly relevant to best approximation problems, as seen in
the examples of Section 4.

This paper is organized as follows. In Section 2, we introduce our general nota-
tions and we recall some useful facts from Convex Analysis, primarily focused on the
best approximation problem. In Section 3, following up on the same problem, from
a geometric point of view, we proved that if S is a nonempty convex subset of Rn,
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then the elements of best approximation to an arbitrary element in Rn from S, can
be characterized by means of the Gauss map (Remark 3.2). In fact, if S is also closed,
then it is known that x0 is the element of best approximation to an arbitrary element
x∗ from S, if and only if x∗ is an element of the translated normal cone to S at x0 by
the vector x0 (Proposition 3.3). This led us to Proposition 3.4, where we have proved
that the set {x+NS(x) \ {0} | x ∈ bdS} is a partition of Rn \ S, where NS(x) is the
normal cone to S at x.

In Section 4, we move onto equilibrium problems and reducing their complexity
(Theorem 4.7), as follows. For an arbitrary nonempty set A and an arbitrary nonempty
subset M of Rn, we consider the bifunction g : A × convM → R, which is assumed
to be quasiconvex in the second argument. For such a bifunction, we show that the
equilibrium points of g are precisely the equilibrium points of the restriction g|A×M .
A consequence of this is Corollary 4.13, which for a nonempty convex and compact
subset S of Rn, and a bifunction g : A×S → R, also assumed to be quasiconvex in the
second argument, shows that the equilibrium points of g are precisely the equilibrium
points of g|A×extS . We also point out the particular case, when M = extS for some
Minkowski set S, which shows that the previous hypothesis of boundedness of S is not
crucial. Finally, Theorem 4.7 led us to our main result, Corollary 4.16, where we have
obtained that for a nonempty convex and compact subset S of Rn, if g : A× S → R
is quasiconvex and lower semicontinous in the second argument, then the equilibrium
points of g are precisely the equilibrium points of g|A×expS .

2. Notations and preliminaries

Throughout this paper Rn stands for the n-dimensional real Euclidean space,
whose norm ‖ · ‖ is induced by the usual inner product 〈·, ·〉. For any points x, y ∈ Rn,
we use the notations

[x, y] := {(1− t)x + ty | t ∈ [0, 1] },
]x, y[ := {(1− t)x + ty | t ∈ ]0, 1[ }.

Recall that a set S ⊆ Rn is called convex if [x, y] ⊆ S, for all x, y ∈ S. Of course, this
is equivalent to say that ]x, y[⊆ S, for all x, y ∈ S.

Given a convex set S ⊆ Rn we denote the set of extreme points of S by

extS = {x0 ∈ S | ∀x, y ∈ S : x0 = 1
2 (x + y) ⇒ x = y = x0}.

A point x0 is said to be an exposed point of S if there is a supporting hyperplane H
which supports S at x0 such that {x0} = H ∩S. We denote the set of exposed points
of S by

expS = {x0 ∈ S | ∃c ∈ Rn \ {0} such that argmin
x∈S

〈c, x〉 = {x0}}.

It is well-known that expS ⊆ extS.
The convex hull of a set M ⊆ Rn, i.e., the smallest convex set in Rn containing

M is denoted by convM .
Next, we recall the following well-known theorems (see for example [5] and [7]):
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Theorem 2.1 (Minkowski (Krein-Milman)). Every compact convex set in Rn is the
convex hull of its extreme points.

Theorem 2.2 (Straszewicz). Every compact convex subset M of Rn admits the
representation:

M = cl(conv(expM)).

In the book by Breckner and Popovici [1, C 5.2.7, p. 82] we have the following
remark:

Remark 2.3 (Minkowski). Let S ⊆ Rn be a compact convex set. Then, for each subset
M of S, the following equivalence holds:

S = convM ⇐⇒ extS ⊆M.

Definition 2.4. Let S be a nonempty subset of Rn and let x∗ ∈ Rn. A point x0 ∈ S
is said to be an element of best approximation to x∗ from S (or a nearest point to x∗

from S) if

‖x0 − x∗‖ ≤ ‖x− x∗‖, for all x ∈ S.

The problem of best approximation of x∗ by elements of S consists in finding all
elements of best approximation to x∗ from S. The solution set

PS(x∗) := {x0 ∈ S | ‖x0 − x∗‖ ≤ ‖x− x∗‖, for all x ∈ S}
is called the metric projection of x∗ on S.

Remark 2.5. The problem of best approximation is an optimization problem,{
f(x) −→ min
x ∈ S,

whose objective function f : Rn → R is defined for all x ∈ Rn by

f(x) := ‖x− x∗‖.
Actually, we have

PS(x∗) = argmin
x∈S

f(x).

Definition 2.6. Let S be a nonempty subset of Rn and let x∗ ∈ Rn, we say that x0 ∈ S
is a farthest point from S to x∗ if

‖x0 − x∗‖ ≥ ‖x− x∗‖, for all x ∈ S,

i.e.,
x0 ∈ argmax

x∈S
‖x− x∗‖.

In this paper we will use the following well known results from Convex Analysis
(see for example [1]).

Proposition 2.7. Any farthest point from a nonempty set S ⊆ Rn to a point x∗ ∈ Rn

is an exposed point of S, i.e.,

argmax
x∈S

‖x− x∗‖ ⊆ expS.
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Theorem 2.8 (existence of elements of best approximation). If S is a nonempty closed
subset of Rn, then for every x∗ ∈ Rn there is an element of best approximation to x∗

from S. In other words, we have

PS(x∗) 6= ∅, i.e., card(PS(x∗)) ≥ 1.

Theorem 2.9 (unicity of the element of best approximation). If S ⊆ Rn is a nonempty
convex set and x∗ ∈ Rn, then there exists at most one element of best approximation
to x∗ from S. In other words, we have

card(PS(x∗)) ≤ 1.

Theorem 2.10 (characterization of elements of best approximation). Let S ⊆ Rn, let
x0 ∈ S, and let x∗ ∈ Rn. Then the following hold:

(a) If 〈x−x0, x∗−x0〉 ≤ 0 for all x ∈ S, then x0 is an element of best approximation
to x∗ from S.

(b) If S is convex and x0 is an element of best approximation to x∗ from S, then we
have that 〈x− x0, x∗ − x0〉 ≤ 0 for all x ∈ S.

Corollary 2.11. Let S ⊆ Rn be a nonempty convex set and let x∗ ∈ Rn. Then

PS(x∗) = {x0 ∈ S | 〈x− x0, x∗ − x0〉 ≤ 0, for all x ∈ S}.

3. The inverse images of the metric projection

Our main results from Section 4 generate some interesting examples with regard
to the best approximation problem. A further analysis of the characterization of the
elements of best approximation (Theorem 2.10) led us to a geometric approach in-
volving the inverse images of the metric projection, which will be presented in this
section.

Remark 3.1. From a geometric point of view, the property 〈x− x0, x∗ − x0〉 ≤ 0 for
all x ∈ S in assertion (b) of Theorem 2.10 shows that x∗−x0 belongs to the so-called
normal cone to S at x0, i.e.,

NS(x0) = {d ∈ Rn | 〈x− x0, d〉 ≤ 0, for all x ∈ S}.

For S ⊆ Rn a nonempty convex set, we recall the Gauss map of S, introduced
in [4], which is a set-valued map, defined as follows:

GS : Rn ⇒ Sn−1, GS(x) := NS(x) ∩ Sn−1,

where Sn−1 is the unit sphere in Rn.

Remark 3.2. Let S ⊆ Rn be a nonempty convex set and let x∗ ∈ Rn \ S. Then x0 is
an element of best approximation to x∗ from S if and only if

x∗ − x0

‖x∗ − x0‖
∈ GS(x0).



Reducing the complexity of equilibrium problems 653

Indeed, x0 is an element of best approximation to x∗ from S if and only if for all
x ∈ S

〈x− x0, x∗ − x0〉 ≤ 0 ⇔

〈
x− x0,

x∗ − x0

‖x∗ − x0‖

〉
≤ 0

⇔
x∗ − x0

‖x∗ − x0‖
∈ NS(x0)

⇔
x∗ − x0

‖x∗ − x0‖
∈ GS(x0).

Let S ⊆ Rn be a nonempty closed convex set. By Theorems 2.8 and 2.9 it follows
that, for all x∗ ∈ Rn, PS(x∗) is a singleton. So, in this case, PS can be considered as
a single valued mapping.

The following result is well-known, yet we include it because it is one of the main
ingredient of our main result of this section, Proposition 3.4.

Proposition 3.3. Let S ⊆ Rn be a nonempty closed convex set. Then, for all x∗ ∈ Rn,
we have that PS(x∗) = x0 if and only if x∗ ∈ x0 + NS(x0).

Proof. Let x∗ ∈ Rn. Since S is closed and convex, there exists x0 ∈ S such that
PS(x∗) = x0. It follows by Corollary 2.11 that

〈x− x0, x∗ − x0〉 ≤ 0, for all x ∈ S

which, by Remark 3.1, is equivalent to

x∗ − x0 ∈ NS(x0) ⇐⇒ x∗ ∈ x0 + NS(x0),

and the statement is completely proved. �

Proposition 3.4. Let S ⊆ Rn be a nonempty closed convex set. Then, the family

{x + NS(x) \ {0} | x ∈ bdS}
is a partition of Rn \ S.

Proof. We need to show that,

Rn \ S =
⋃

x∈bdS

(x + NS(x) \ {0})

and (x + NS(x) \ {0}) ∩ (y + NS(y) \ {0}) 6= ∅ implies x = y.
Let x∗ ∈ Rn \ S and x0 ∈ S such that PS(x∗) = x0. By Proposition 3.3, we

obtain that x∗ ∈ x0 + NS(x0) \ {0}, yet

x0 + NS(x0) \ {0} ⊆
⋃
x∈S

(x + NS(x) \ {0}).

Subsequently, we get that

Rn \ S ⊆
⋃
x∈S

(x + NS(x) \ {0}).

In order to prove the opposite inclusion, let us consider x ∈ S and u ∈ NS(x) \
{0}. If we assume that x + u ∈ S then, by the definition of NS(x) \ {0},

〈x + u− x, u〉 = 〈u, u〉 ≤ 0 =⇒ u = 0
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which contradicts the fact that u ∈ NS(x) \ {0}. Thus x + NS(x) \ {0} ⊆ Rn \ S, for
all x ∈ S, i.e., ⋃

x∈S
(x + NS(x) \ {0}) ⊆ Rn \ S.

Therefore, we have proved that

Rn \ S =
⋃
x∈S

(x + NS(x) \ {0}).

However, since x + NS(x) \ {0} is nonempty if and only if x is an boundary point of
S, we obtain that

Rn \ S =
⋃

x∈bdS

(x + NS(x) \ {0}).

If (x + NS(x) \ {0}) ∩ (y + NS(y) \ {0}) 6= ∅, then there is an u ∈ NS(x) \ {0}
and v ∈ NS(y) \ {0}) such that x + u = y + v. Furthermore, since u ∈ NS(x) \ {0},
we obtain 〈y − x, u〉 = 〈u − v, u〉 ≤ 0, therefore ‖u‖2 ≤ 〈u, v〉. By similar reasoning,
since v ∈ NS(y) \ {0}, we obtain ‖v‖2 ≤ 〈u, v〉. Thus,

0 ≤ ‖x− y‖2 = ‖u− v‖2 = ‖u‖2 − 2〈u, v〉+ ‖v‖2 ≤ 0

Henceforth, ‖x− y‖ = 0, which implies x = y.

�

Remark 3.5. Alternatively, one may argue as follows. By Proposition 3.3, we have
that for all x ∈ S, the set x + NS(x) is the inverse image P−1S (x), of x through PS .
If we consider the restriction PS |Rn\S of the mapping PS , then for all x ∈ S, we have
that the set x+NS(x)\{0} is the inverse image of x through the restriction PS |Rn\S .
By the equivalence relation induced by kerPS |Rn\S , we obtain that the family

{x + NS(x) \ {0} | x ∈ bdS}

is a partition of Rn \ S.

Example 3.6. For n = 2, consider the set

M = {x1 = (1, 1), x2 = (−1, 1), x3 = (−1,−1), x4 = (1,−1)} ⊆ R2

and

S = convM = [−1, 1]× [−1, 1],

as in Figure 1. Obviously, S is a nonempty closed convex subset of R2 and

bdS =]x1, x2[∪ ]x2, x3[∪ ]x3, x4[∪ ]x1, x4[∪{x1, x2, x3, x4}.

On the four vertices of the square, we have

NS(x1) \ {0} = {(v1, v2) | v1 ≥ 0, v2 ≥ 0} \ {(0, 0)}
NS(x2) \ {0} = {(v1, v2) | v1 ≤ 0, v2 ≥ 0} \ {(0, 0)}
NS(x3) \ {0} = {(v1, v2) | v1 ≤ 0, v2 ≤ 0} \ {(0, 0)}
NS(x4) \ {0} = {(v1, v2) | v1 ≥ 0, v2 ≤ 0} \ {(0, 0)}.
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On the other points of the boundary, we have

NS(x) \ {0} =


{(0, v) | v > 0}, for all x ∈]x1, x2[
{(v, 0) | v < 0}, for all x ∈]x2, x3[
{(0, v) | v < 0}, for all x ∈]x3, x4[
{(v, 0) | v > 0}, for all x ∈]x1, x4[.

It is easy to see that Rn \ S =
⋃

x∈bdS

(x + NS(x) \ {0}).

Figure 1. Proposition 3.4 applied for the particular case of a square
in R2

4. Equilibrium problems

The equilibrium problem, introduced in [6], has been formulated in a more gen-
eral way in [2, p. 18]. We propose a slightly modified definition. Let g : A × B → R
be a “bifunction”, where A and B are nonempty sets.
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Definition 4.1. The equilibrium problem with respect to g : A×B → R and a couple
of subsets A′ ⊆ A and B′ ⊆ B, consists in finding the elements x0 ∈ A′ satisfying

g(x0, x) ≤ 0 for all x ∈ B′.

The set of all solutions of the equilibrium problem will be denoted by

eq(g | A′, B′) := {x0 ∈ A′ | g(x0, x) ≤ 0, ∀x ∈ B′}.

Remark 4.2. It is easy to see that

eq(g | A′, ∅) = A′

and that

eq(g | A′, B′) ⊆ eq(g | A′, B′′), ∀B′′ ⊆ B′

Example 4.3 (optimization problems). Consider a minimization problem{
f(x) −→ min
x ∈ S,

where f : Rn → R is a function and S ⊆ Rn is a nonempty set. By defining the
bifunction g : Rn × Rn → R as

g(u, v) := f(u)− f(v), ∀ (u, v) ∈ Rn × Rn,

we obtain

eq(g | S, S) = argmin
x∈S

f(x).

Example 4.4 (variational inequalities). Let T : S → Rn be a function defined on a
nonempty set S ⊆ Rn. The problem of finding x0 ∈ S such that

〈T (x0), x− x0〉 ≥ 0,∀x ∈ S

is called a variational inequality. Denote by sol(VI) the set of its solutions. By defining
the bifunction g : S × S → R as

g(u, v) := 〈T (u), u− v〉, ∀ (u, v) ∈ S × S,

we obtain

eq(g | S, S) = sol(VI)

Example 4.5 (the best approximation problem).

1. The problem of best approximation of x∗ by elements of S fits the model de-
scribed in Example 4.3, where

f(x) = ‖x− x∗‖ and g(u, v) := f(u)− f(v)

hence

eq(g | S, S) = argmin
x∈S

‖x− x∗‖.
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2. Another way of seeing the best approximation problem as an equilibrium prob-
lem is to consider the bifunction g : Rn × Rn → R defined by

g(u, v) := 〈v − u, x∗ − u〉, ∀ (u, v) ∈ Rn × Rn.

According to Theorem 2.10,

eq(g | S, S) = {x0 ∈ S | 〈x− x0, x∗ − x0〉 ≤ 0, ∀x ∈ S} ⊆ PS(x∗),

the equality being true whenever S is convex, i.e.,

eq(g | S, S) = PS(x∗).

Actually, by considering the function T : S → Rn defined by T (x) = x− x∗ for
all x ∈ S, we recover

g(u, v) = 〈T (u), u− v〉,∀ (u, v) ∈ S × S,

hence, under the convexity assumption on S we can reduce the best approxima-
tion problem to a variational inequality:

PS(x∗) = sol(VI).

Example 4.6 (the farthest point problem). Let S ⊆ Rn be a nonempty set and let
x∗ ∈ Rn. The problem of finding the farthest points from S to x∗ fits the model
described in Example 4.3, where

f(x) = −‖x− x∗‖ and g(u, v) := f(u)− f(v),

hence
eq(g | S, S) = argmax

x∈S
‖x− x∗‖

Theorem 4.7. Let A be a nonempty set, let S = convM for some nonempty set
M ⊆ Rn and let g : A × S → R be a bifunction. If for every u ∈ A, the function
h = g(u, ·) : S → R is quasiconvex, i.e.,

h((1− t)v′ + tv′′) ≤ max{h(v′), h(v′′)}
for all v, v′ ∈ S and t ∈ [0, 1], then

eq(g | A,S) = {x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈M},
i.e.,

eq(g | A,S) = eq(g | A,M).

Proof. We denote by

E := {x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈M}.
It is obvious that eq(g | A,S) ⊆ E. In order to prove the converse, let x0 ∈ E and
x ∈ S, arbitrary chosen. Since x ∈ S = convM , this implies that there exists k ∈ N,

x1, x2, ..., xk ∈M and t1, t2, ..., tk ≥ 0 such that
∑k

i=1 ti = 1 and that x =
∑k

i=1 tix
i.

Therefore, given that g(x0, ·) is quasiconvex, we have

g(x0, x) = g(x0,

k∑
i=1

tix
i) ≤ max{g(x0, xi) | i = 1, . . . , k} ≤ 0,

since x1, x2, ..., xk ∈M . �
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Remark 4.8. Consider the minimization problem described in Example 4.3, where
g(u, v) = f(u)−f(v) for allu, v ∈ S. Since for every u ∈ S we have g(u, ·) = f(u)−f,
the quasiconvexity of g(u, ·) for some u ∈ S reduces to the the quasiconcavity of f.
Thus we deduce from the Theorem 4.7 the following result.

Corollary 4.9. Assume that S = convM for some nonempty set M ⊆ Rn. If f : S → R
is a quasiconcave function, then

argmin
x∈S

f(x) = {x0 ∈ S | f(x0) ≤ f(x),∀x ∈M} ⊇ argmin
x∈M

f(x).

Moreover, argmin
x∈S

f(x) is nonempty if and only if so is argmin
x∈M

f(x), hence

min f(S) = min f(M).

The assumptions on quasiconvexity of g(u, ·) in Theorem 4.7 and quasiconcavity
of f in Corollary 4.9 are essential, as shown by the next example (Example 4.10).
Moreover, under the hypothesis of Corollary 4.9, the inclusion

argmin
x∈S

f(x) ⊆ argmin
x∈M

f(x)

does not hold in general, as shown by Example 4.11.

Example 4.10. Let n = 1, M = {−1, 1}, S = convM = [−1, 1]. Consider the function{
f : S → R
f(x) = x2

and the bifunction {
g : R2 → R
g(u, v) = f(u)− f(v), ∀ (u, v) ∈ R2.

Clearly, the f is not quasiconcave, hence function g(u, ·) : S → R is not quasiconvex
for any u ∈ S, in view of Remark 4.8. It is easy to see that

eq(g | S, S) = argmin
x∈S

f(x)

= {0}
+ eq(g | S,M)
= {x0 ∈ S | g(x0, x) ≤ 0,∀ x ∈M}
= S.

Of course, this example also shows that the quasiconcavity assumption imposed on f
in Corollary 4.8 is essential, because

argmin
x∈S

f(x) = {0} + argmin
x∈M

f(x) = M.

Example 4.11. Let n = 1, M = {−1, 1}, S = convM = [−1, 1]. Consider the function
f : S → R defined as f(x) = max{0, x}, for all x ∈ S. Obviously, f is nondecreasing,
hence quasiconcave. However,

argmin
x∈S

f(x) = [−1, 0] * argmin
x∈M

f(x) = {−1}.
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Corollary 4.12. Assume that S = convM for some nonempty set M ⊆ Rn. and let
T : S → Rn be an arbitrary function. Then the set of solutions

sol(VI) := {x0 ∈ S | 〈T (x0), x− x0〉 ≥ 0,∀x ∈ S}

to the variational inequality introduced in Example 4.4, admits the following repre-
sentation

sol(VI) = {x0 ∈ S | 〈T (x0), x− x0〉 ≥ 0,∀x ∈M}.

Corollary 4.13. If S ⊆ Rn is a nonempty convex compact set and function g(u, ·) is
quasiconvex on S for every u ∈ A, then

eq(g | A,S) = {x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈ extS}

i.e.,

eq(g | A,S) = eq(g | A, extS).

Proof. Follows by Theorem 4.7 and Minkowski’s theorem (Theorem 2.1). �

Note that the conclusion of Corollary 4.13 still holds if S is a so-called
“Minkowski set” (sets which were introduced in [3], i.e., closed, possibly unbounded
sets which can be represented as the convex hull of their extreme points), yet the
hypothesis of closeness is crucial as it shown in the next example.

Example 4.14. Let n = 1, S =] − 1, 1[. Consider the function f : S → R defined by
f(x) = −x2 and the bifunction g : R2 → R defined by

g(u, v) := f(u)− f(v), ∀ (u, v) ∈ R2.

Clearly, ∀ u ∈ S the function g(u, ·) : S → R is quasiconvex (even convex). It is easy
to see that

eq(g | S, S) = argmin
x∈S

f(x) = ∅ 6= eq(g | S, extS) = eq(g | S, ∅) = S.

Theorem 4.15. Let A be a nonempty set, let S = cl(conv(M)) for some nonempty set
M ⊆ Rn and let g : A× S → R be a bifunction. If function g(u, ·) is quasiconvex and
lower semicontinous on S for every u ∈ A, then

eq(g | A,S) = {x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈M},

i.e.,

eq(g | A,S) = eq(g | A,M).

Proof. Let x0 ∈ A such that g(x0, x) ≤ 0,∀x ∈M. We prove that

g(x0, y) ≤ 0,∀ y ∈ S.

Let y ∈ S. By Theorem 4.7, it follows that

{x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈M}
= {x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈ convM}.

Hence

g(x0, x) ≤ 0, ∀x ∈ convM. (∗)
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Since S = cl(convM) and y ∈ S, it follows that there exists a sequence (yk)k∈N in
convM which converges to y.
According to (∗), we have g(x0, yk) ≤ 0,∀ k ∈ N, i.e.,

yk ∈ L := {z ∈ S | g(x0, z) ≤ 0}, ∀ k ∈ N.

On the other hand, the function g(x0, ·) : S → R is lower semicontinuous so, the level
set L is closed with respect to the induced topology in S from Rn and, since S is
closed, we deduce that L is a closed subset of Rn, hence

y = lim
k→∞

yk ∈ clL = L.

Thereby, g(x0, y) ≤ 0 and, since y was arbitrary chosen from S, we obtain that

eq(g | A,S) ⊇ {x0 ∈ S | g(x0, x) ≤ 0, ∀x ∈M}.
The reverse inclusion is obvious. �

An immediate consequence of Theorem 4.15 and Straszewicz’s theorem (Theo-
rem 2.2) is the following corollary (Corollary 4.16), where we characterize solutions
of an equilibrium problem by means of exposed points. Finally, another consequence
of Theorem 4.15, by also using Remark 4.8 is given in Corollary 4.17.

Corollary 4.16. Let A be a nonempty set, let S ⊆ Rn be a nonempty convex compact
set and let g : A×S → R be a bifunction. If function g(u, ·) is quasiconvex and lower
semicontinous on S for every u ∈ A, then

eq(g | A,S) = {x0 ∈ A | g(x0, x) ≤ 0, ∀x ∈ expS},
i.e.,

eq(g | A,S) = eq(g | A, expS).

Corollary 4.17. Assume that S = cl(convM) for some nonempty set M ⊆ Rn. If
f : S → R is a quasiconcave upper semicontinous function, then

argmin
x∈S

f(x) = {x0 ∈ S | f(x0) ≤ f(x),∀x ∈M} ⊇ argmin
x∈M

f(x).

Moreover, argmin
x∈S

f(x) is nonempty if and only if so is argmin
x∈M

f(x), hence

min f(S) = min f(M).
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