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A fixed point approach to the semi-linear
Stokes problem

David Brumar

Abstract. The aim of this paper is to study the Dirichlet problem for semi-linear
Stokes equations. The approach of this study is based on the operator method,
using abstract results of nonlinear functional analysis. We first study the problem
using Schauder’s fixed point theorem and we prove the existence of a solution in
case that the nonlinear term has a linear growth. Next we establish whether the
existence of solutions can still be obtained without this linear growth restriction.
Such a result is obtained by applying the Leray-Schauder fixed point theorem.
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1. Introduction

The field of fluid dynamics does not only engage the attention of mathematicians
and physicists but also of astrophysicists, oceanographers and many others and this
is due to the fact that it addresses real-world natural phenomena and tries to come
up with mathematical models that help us to understand them.

An inertial fluid flow that is Newtonian, incompressible and homogeneous follows
the Navier-Stokes equations, which are essentially derived from Newton’s second law
of motion applied to the fluid and the law of mass conservation in the context of
constant density flow. If the velocity field is not time-dependent, then the flow is
called steady, and it means that the fluid particles follow the streamlines, which do
not change in time. Neglecting the nonlinear term in the Navier-Stokes system we get
the Stokes system, which is in fact, the one that we are here interested in.
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The aim of this paper is to study the existence of solutions of the semi-linear
Dirichlet problem for the steady Stokes system

−µ∆u+∇p = f(x, u(x)) in Ω

div u = 0 in Ω

u = 0 on ∂Ω.

(1.1)

2. Preliminaries

In this section we briefly recall without proof, some important results from func-
tional analysis and some basic results regarding the Stokes system that are used in
the forthcoming material. For additional details, we refer the reader to the following
works [1, 2, 3, 4, 7, 8, 9, 10].

2.1. The Nemytskii operator

First we recall some properties of the Nemytskii superposition operator (see,
e.g., [6]).

Definition 2.1 (Nemytskii operator). Let Ω ⊂ RN , N ≥ 1, be an open set and let
f : Ω×Rn → Rm, n,m ≥ 1. By the Nemystkii operator associated to f we understand
the operator Nf which, to each function u : Ω→ Rn, assigns f ◦ u, that is

Nfu(x) = (f ◦ u)(x) = f(x, u(x)), for x ∈ Ω.

Definition 2.2 (Carathéodory function). Let Ω ⊂ RN , N ≥ 1, be an open set. We say
that f : Ω×Rn → Rm, n,m ≥ 1 is a Carathéodory function if it satisfies the following
conditions:

(i) x 7→ f(x, y) is measurable in Ω for every y ∈ Rn;
(ii) y 7→ f(x, y) is continuous on Rn for a.e. x ∈ Ω.

Proposition 2.3 (see [7, Proposition 9.1]). If f is a Carathéodory function, then the
Nemystkii operator associated to the function f maps measurable functions into mea-
surable functions.

Theorem 2.4 (see [7, Theorem 9.1]). Let Ω ⊂ RN be an open set, f : Ω × Rn → Rm
and 1 ≤ p, q < +∞. If f satisfies the Carathéodory conditions and there exists a ∈ R+

and h ∈ Lq(Ω;R+) such that

||f(x, y)|| ≤ a||y||
p
q + h(x)

for every y ∈ Rn and a.e. x ∈ Ω, then the operator

Nf : Lp(Ω;Rn)→ Lq(Ω;Rm) given by Nf (u) = f(·, u)

is well defined, continuous and bounded. Moreover, the following inequality holds:

||Nf (u)||Lq ≤ a||u||
p
q

Lp + ||h||Lq for all u ∈ Lp(Ω;Rn).
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2.2. Embedding results

The purpose of our work, namely the study of the existence of solutions for a semi-
linear boundary valued problem, is achieved by looking for a weak solution which lead
us to use continuous or compact embeddings of function spaces. In particular, we use
the following embedding results due to Sobolev and Rellich-Kondrachov regarding the
continuous and compact embeddings of Sobolev spaces into Lebesgues spaces.

Let 1 ≤ q ≤ +∞. Then the critical exponent associated to q is denoted by q∗

and is defined by 
1

q∗
=

1

q
−

1

n
, q < n

q∗ = +∞, q ≥ n,
where by n is denoted the dimension of the space.

Theorem 2.5 (Sobolev). Let Ω ⊂ Rn be an open set of class C1 (or Ω = Rn). Then
the following continuous embeddings hold:

a) H1(Ω) ⊂ Lq(Ω) for every q ∈ [2, 2∗], where n ≥ 3.
b) H1(Ω) ⊂ Lq(Ω) for every q ∈ [2,+∞), if n = 2.

Theorem 2.6 (Rellich-Kondrachov). Let Ω ⊂ Rn be a bounded open set of class C1.

a) If n ≥ 3, then the embedding H1(Ω) ⊂ Lq(Ω) is compact for q ∈ [1, 2∗), where
2∗ := 2n/(n− 2).

b) If n = 2, then the embedding H1(Ω) ⊂ Lq(Ω) is compact for every q ∈ [1,+∞).

We recall that a real number λ is said to be an eigenvalue of the Dirichlet problem
for −∆ if the problem {

−∆u = λu in Ω

u = 0 on ∂Ω

has nonzero weak solutions.

Theorem 2.7 (Poincaré’s inequality). Let Ω be a bounded open set of Rn. Then there
exists a constant C that depends on Ω such that

||u||L2(Ω) ≤ C||∇u||L2 , for every u ∈ H1
0 (Ω).

Due to this result, the Sobolev space H1
0 (Ω) can be endowed with an equivalent norm

||u||H1
0

:= ||∇u||L2 =

(∫
Ω

||∇u||2
)1/2

that comes from the scalar product in H1
0 (Ω)

(u, v)H1
0

= (∇u,∇v)L2 =

∫
Ω

∇u · ∇v.

Hence in terms of the new norm, Poincaré’s inequality can be written as

||u||L2 ≤ C||u||H1
0
, u ∈ H1

0 (Ω).
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Since the first eigenvalue of the Dirichlet problem for −∆ is

λ1 = inf
u∈H1

0 (Ω)\{0}

||u||2
H1

0

||u||2L2

,

it follows that the smallest constant C for which the Poincaré’s inequality holds, is in

fact
1
√
λ1

. Therefore,

||u||L2 ≤
1
√
λ1

||u||H1
0
, for all u ∈ H1

0 (Ω).

Moreover, the Poincaré’s inequality also holds for the embedding L2(Ω) ⊂ H−1(Ω)
with the same constant, namely

||u||H−1 ≤
1
√
λ1

||u||L2 , for all u ∈ L2(Ω).

For a more detailed exposition of these results we refer the reader to [7, Chapter 3].

Remark 2.8. Since we are concerned with n-dimensional vector-valued functions, we
shall use the notations

Lp(Ω) := (Lp(Ω))
n
, Hm(Ω) := (Hm(Ω))

n
, Hm

0 (Ω) := (Hm
0 (Ω))

n
.

2.3. The variational form of the Stokes system

Let us consider the Dirichlet problem for the steady non-homogeneous Stokes
system 

−µ∆u+∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω.

(2.1)

Here Ω ⊂ Rn is a bounded open set, µ > 0 is a constant representing the kinematic
viscosity, u : Ω → Rn is the velocity field, p is the pressure and f ∈ L2(Ω) is the
external force. In this subsection we give the variational formulation of problem (2.1).
For a very detailed way of getting to the variational form of the Stokes equation we
refer the reader to [10].

We define the Hilbert space

V := {v ∈ H1
0 (Ω) : div v = 0},

endowed with the scalar product

(u, v)V =

∫
Ω

∇u · ∇v, for u, v ∈ V

and the corresponding norm

‖u‖V =

(∫
Ω

|∇u|2
) 1

2

.

We can now state the variational formulation of problem (2.1):
Given f ∈ L2(Ω) find u ∈ V such that

µ(u, v)V = (f, v)L2 , for all v ∈ V. (2.2)
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Definition 2.9 (Weak solution). Let f ∈ L2(Ω). By the weak solution of the Stokes
problem (2.1) we mean a function uf ∈ V that satisfies (2.2).

One has the following embeddings:

V ⊂ H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω) ⊂ V ′.

Then, by the Riesz’s representation theorem, we can extend (2.2) so that for any
f ∈ V ′ there exist a unique uf ∈ V such that

µ(uf , v)V = (f, v), for all v ∈ V. (2.3)

Notice that the notation (f, v), for f ∈ V ′ and v ∈ V, stands for the value at v of the
linear functional f .

Definition 2.10 (Solution operator). The operator S : V ′ → V defined by Sf := uf
for any f ∈ V ′ is called the solution operator.

If in (2.3) we take in particular v := uf we obtain

‖uf‖2V =
1

µ
(f, uf ) ≤

1

µ
‖f‖V ′‖uf‖V .

Hence we have ‖uf‖V ≤ µ−1‖f‖V ′ , that is

‖Sf‖V ≤
1

µ
‖f‖V ′ .

Thus the linear operator S is continuous from V ′ to V.

Remark 2.11. Note that the existence of the pressure p is guaranteed as a consequence
of De Rham’s Lemma.

3. Main results

Let us now turn back to the semi-linear problem (1.1), where Ω ⊂ Rn, n ≥ 2 is
a bounded open set, f : Ω× Rn → Rn, p : Ω→ R.
We seek weak solutions, i.e., functions u ∈ V such that

f(·, u(·)) ∈ H−1(Ω)

and

µ(u, v)V = (f(·, u), v) for all v ∈ V.
The system (1.1) can be written as an equivalent fixed point equation

u = T (u), u ∈ V,

where

T := S ◦ F,
where F : V → V ′, F (u) = f (·, u (·)) .
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3.1. Application of Schauder’s fixed point theorem

In this section we find sufficient conditions that assure the existence of a solution
of problem (1.1), having in mind Schauder’s fixed point theorem on the space V .

First we show that T is a completely continuous operator. In order to do so we
would like to have the representation of F = I ◦Nf ◦ P, where

• P : V → L2(Ω), Pu = u;
• Nf : L2(Ω)→ L2(Ω), Nf (w) = f(·, w(·));
• I : L2(Ω)→ V ′, I(v) = (v, ·)L2 .

Let us observe that by the Theorem 2.6, the embedding H1
0 (Ω) ⊂ L2(Ω) is

continuous. Then it follows that P is a continuous linear operator, hence bounded.
Also, since the embedding L2(Ω) ⊂ H−1(Ω) is compact it follows that operator I
is a completely continuous linear operator. It remains to see whether the operator
Nf : L2(Ω) → L2(Ω) is well-defined. For this purpose let us assume that f is a
Carathéodory function. Hence, for any w ∈ L2(Ω), Nf (w) is also measurable. We
impose a linear growth condition on f , that is

||f(x, u)|| ≤ a||u||+ k(x), for all u ∈ Rn and a.e. x ∈ Ω, (3.1)

for some k ∈ L2(Ω,R+) and a ∈ R+. Then, we have

||Nf (w)(x)|| ≤ a||w(x)||+ k(x), for a.e. x ∈ Ω.

Hence, by these assumptions over f , it follows that Nf is well-defined, continuous and
bounded.

Due to the boundedness of the operators P and Nf , it follows that Nf ◦ P is
bounded too. Therefore, since I is completely continuous, it follows that the operator
F is completely continuous from V to V ′. Next, by the linearity and continuity of the
solution operator S we have that T = S ◦F is completely continuous from V to itself.

Secondly, we show that T is a self-map of a closed ball of V . To this purpose,
let u ∈ V . Notice that for every h ∈ H−1(Ω) one has

||h||V ′ ≤ ||h||H−1 .

Indeed, since V ⊂ H1
0 (Ω) we have that

||h||V ′ = sup
v∈V

|(h, v)|
||v||V

≤ sup
v∈H1

0 (Ω)

|(h, v)|
||v||H1

0

= ||h||H−1 .

Then, since the operator S is linear and continuous and also by the Poincaré´s in-
equality we have

‖T (u)‖V = ‖S ◦ F (u)‖V ≤
1

µ
‖F (u)‖V ′ ≤

1

µ
||F (u)||H−1

≤
1

µ
√
λ1

‖F (u)‖L2 =
1
√
µλ1

‖f(·, u(·))‖L2 .

By the growth condition (3.1), we deduce that

||T (u)||V ≤
a

µ
√
λ1

||u||L2 +
1

µ
√
λ1

· ||k||L2 .
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Since u ∈ V , we can apply again the Poincaré inequality and we obtain that

||T (u)||V ≤
a

µλ1
||u||V +

1

µ
√
λ1

· ||k||L2 .

In the end, we assume that
a

µλ1
< 1 so that there exists a radius r > 0 such that if

||u||V ≤ r then ||T (u)||V ≤ r. Indeed, from
a

µλ1
< 1 and ||u||V ≤ r we have that

||T (u)||V ≤
a

µλ1
r +

1

µλ1
||k||L2 ≤ r for r > 0 large enough.

Hence, ||T (u)||V ≤ r.
Therefore, based on Schauder’s fixed point theorem we can state the following result:

Theorem 3.1. Let Ω ⊂ Rn be a bounded open set and f : Ω×Rn → Rn be a mapping
such that:

(a) f is a Carathéodory function;
(b) there is a positive constant a and k ∈ L2(Ω,R+) such that

||f(x, u)|| ≤ a||u||+ k(x) for all u ∈ Rn and a.e. x ∈ Ω.

Also, assume that
a

µλ1
< 1. Then the semi-linear Stokes problem (1.1) has at

least one solution (u, p) with u ∈ V.

3.2. Application of Lerray-Schauder’s fixed point theorem

In this section we consider more generally that the right hand side of the problem
(1.1) is of the form f0 + f1(·, u(·)), where f0 ∈ H−1(Ω) and f1 : Ω× Rn → Rn. As
before, the problem can be written as an equivalent fixed point equation

u = T (u),

where this time

T = S ◦ (F + f0),

with

F : V → V ′, F (u) = f1(·, u(·)).
We are now interested if one can still obtain the existence of the solution of the new
problem without a linear growth restriction. We shall see this is possible due to the
Lerray-Schauder’s fixed point theorem (see [5]).

We first guarantee the complete continuity of the operator T . The idea we follow
here is similar to the one in the previous section: since the operator S is linear and
bounded, in order for T = S◦F to be completely continuous, we need that the operator
F is completely continuous. To this end, we write the operator F as F = I ◦Nf1 ◦P ,
where

• P : V → L2∗(Ω), Pu = u;
• Nf1 : L2∗(Ω)→ Lq(Ω), Nf1(ω) = f1(·, ω);
• I : Lq(Ω)→ V ′, I(v) = (v, ·)L2 , for some q ∈ ((2∗)′,+∞).
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Due to Theorem 2.6 it follows that the embedding (V ⊂)H1
0 (Ω) ⊂ L2∗(Ω) is con-

tinuous. Therefore the operator P is a continuous linear operator, hence bounded.
Since H1

0 (Ω) ⊂ Lp(Ω) is compact for p ∈ [1, 2∗), passing to duals, we get that
Lq(Ω) ⊂ H−1(Ω) is also compact for q ∈ ((2∗)′,+∞), where (2∗)′ = 2n/(n + 2)
is the conjugate of 2∗. Therefore, if q > (2∗)′, the inclusion operator I is completely
continuous. We now show the operator Nf1 is well-defined. For this purpose we will
make use of Theorem 2.4. In view of this result, we need to impose a growth condition
on the function f1, namely, for some a ∈ R+ and h ∈ Lq(Ω) to have

||f1(x, ω)|| ≤ a||ω||
2∗
q + h(x),

for every ω ∈ Rn and a.e. x ∈ Ω. To this aim, it sufficies to have

||f1(x, ω)|| ≤ a||ω||α + h(x). (3.2)

for some α ∈ [1, 2∗/q] and h ∈ Lq(Ω). Note that from α ≤ 2∗/q it follows that
q ≤ 2∗/α. Together with the condition q > (2∗)′, this shows that

(2∗)′ < q ≤
2∗

α
,

and so, such a q exists if

α <
2∗

(2∗)
′ =

n+ 2

n− 2
.

Thus, the condition (3.2) holds for α ∈ [1, (n+ 2)/(n− 2)); hence, we can let h ∈
L2∗/α(Ω).

Then from Theorem 2.4 it follows that the Nemytskii operatorNf1 is well defined,
continuous and bounded. Therefore, the operator F is well-defined and completely
continuous. Hence the operator T is completely continuous.

Finally, we carry on with the a priori bounds of solutions, that is to show there is
a positive constant R > 0 such that ||u||V < R for any solution u ∈ V of the equation
λT (u) = u and any λ ∈ (0, 1). Let u ∈ V be any solution of the equation λT (u) = u
for some λ ∈ (0, 1). Thus, u is a weak solution of the problem

−µ∆u = −∇p+ λf0(x) + λf1(x, u) in Ω

div u = 0 in Ω

u = 0 on ∂Ω.

(3.3)

Therefore

(u, v)V =
λ

µ
(f0(·) + f1(·, u(·)), v), for any v ∈ V.

If we take in particular v = u we obtain

||u||2V =
λ

µ
(f0 + f1(·, u), u) =

λ

µ
(f0, u) +

λ

µ
(f1(·, u), u).

Note that since f1(·, u(·)) ∈ L(2∗)′(Ω), one has

(f1(·, u), u) =

∫
Ω

u(x) · f1(x, u(x)).
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Let us now assume that there exists a positive constant k such that

y · f1(x, y) ≤ k||y||2, for all y ∈ Rn and a.e. x ∈ Ω.

Then (f1(·, u), u) ≤ k||u||2L2 and using Poincaré’s inequality we obtain

||u||2V =
λ

µ
(f0, u) +

λ

µ

∫
Ω

u(x) · f1(x, u(x))

≤
λ

µ

(
||f0||H−1 ||u||V + k||u||2L2

)
<

1

µ
||f0||H−1 ||u||V +

k

µ
||u||2L2

≤
1

µ
||f0||H−1 ||u||V +

k

µλ1
||u||2V .

Hence, we have

||u||V

(
1−

k

µλ1

)
≤

1

µ
||f0||H−1 .

Assuming that k < µλ1 it follows that

||u||V <
λ1

µλ1 − k
||f0||H−1 := R.

Therefore, we can state the following result:

Theorem 3.2. Let Ω ⊂ Rn be a bounded open set, f = f0 + f1 with f0 ∈ H−1(Ω) and
f1 a function such that

(a) f1 is a Carathéodory function;
(b) there is a positive constant a and α ∈ [1, (n+ 2)/(n− 2)) and a function h ∈

L2∗/α(Ω) such that

||f1(x, u)|| ≤ a||u||α + h(x),

for any u ∈ Rn and a.e. x ∈ Ω;
(c) there is a positive constant k < µλ1 such that the condition

y · f1(x, y) ≤ k||y||2

holds for any y ∈ Rn and a.e. x ∈ Ω.

Then the problem (3.3) has at least one solution (u, p) with u ∈ V and

||u||V ≤
λ1

µλ1 − k
||f0||H−1 .
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