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New subclasses of bi-univalent functions
connected with a g-analogue of convolution
based upon the Legendre polynomials

Sheza M. El-Deeb and Bassant M. El-Matary

Abstract. In this paper, we introduce new subclasses of analytic and bi-univalent
functions connected with a g-analogue of convolution by using the Legendre poly-
nomials. Furthermore, we find estimates on the first two Taylor-Maclaurin coef-
ficients |az| and |as| for functions in these subclasses and obtain Fekete-Szegd
problem for these subclasses.
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1. Introduction, Definitions and Preliminaries

Let A denote the class of analytic functions of the form

f(z):z+2akzk, zeE:={z€C:|z| <1}, (1.1)
k=2
and S be the subclass of A which are univalent functions in E.
If h € Ais given by

h(z)=z+ ) bpz*, z €E, (1.2)
k=2
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then, the Hadamard (or convolution) product of f and h is defined by
(f*=h)(2) ::z—&-Zakbkzk, z € E. (1.3)
k=2

If f and F' are analytic functions in E, we say that f is subordinate to F', written
f =< F, if there exists a Schwarz function w, which is analytic in E, with w(0) = 0,
and, |w(z)|] < 1 for all z € E, such that f(z) = F(w(z)), z € E. Furthermore, if the
function F is univalent in E, then we have the following equivalence (see [5] and [17]):

f(2) < F(z) & f(0) = F(0) and f(E) C F(E).

In [23] Srivastava presented and motivated about brief expository overview of
the classical g-analysis versus the so-called (p, ¢)-analysis with an obviously redun-
dant additional parameter p. We also briefly consider several other families of such
extensivelyand widely-investigated linear convolution operators as (for example) the
Dziok—Srivastava, Srivastava—Wright and Srivastava—Attiya linear convolution oper-
ators, together with their extended and generalized versions. The theory of (p,q)-
analysis has important role in many areas of mathematics and physics. Our usages
here of the g-calculus and the fractional qcalculus in geometric function theory of com-
plex analysis are believed to encourage and motivate significant further developments
on these and other related topics (see [1, 14, 15, 21, 22, 26]).

Srivastava [23] made use of various operators of g-calculus and fractional ¢-
calculus and recalling the definition and notations. The ¢-shifted factorial is defined
for A,q € C and n € Ny = NU {0} as follows

1 k=0,
(A @)k = { (I=X)(1—=Ag)...(1=Ag*1) keN.

By using the ¢g-gamma function I'y(z), we get

(1-q)" Ty (A +k)

(¢%59), = ey , (keNy),
where (see [13]) )
(1) DD
Ly(z) =(1—q) @) (Jgl <1).
Also, we note that
Moo =T (=2, (al <),
k=0

and, the g-gamma function I';(2) is known
Ly(z+1) = [2], Tq(2),

where [k] ; denotes the basic g-number defined as follows

1—gk

1_qq, k e C,

kl, = k=1

[Fla 1+ > ¢, keN.
j=1
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Using the definition formula (1.4), we have the next two products:
(i) For any non negative integer k, the g-shifted factorial is given by

1, it k=0,
| .— k
o' =90 [T, it ke
n=1

(ii) For any positive number r, the g-generalized Pochhammer symbol is defined by

1, if k=0,
[y =4 "t :
@ IT [y, if kel
n=r

It is known in terms of the classical (Euler’s) gamma function T (z), that

Iy(z) =T (2) asq— 17.

A
lim (q’i‘])/z =\,
=17 | (1-q)
For 0 < ¢ < 1, the g-derivative operator for f * h is defined by
z+ Z akbkzk]
k=2

(f*h)(2) = (f*Dh)(g2)
z(1—q)

[kﬂ q]akbkzk_lv z e E7

Also, we observe that

Dy (f *h)(2) = Dy

M2

ol
[|

2

where

lqu k—1 .
=1 J =0. 1.
. +;q, [0,q] =0 (1.5)

[k, q] ==

Using the definition formula (1.5), we will define the next two products:
(i) For any non negative integer k, the g-shifted factorial is given by

1, if k=0,
1. k
[k, q]! : l:[l[i,qL if keN.

(ii) For any positive number r, the g-generalized Pochhammer symbol is defined by

1, if k=0,
— k
"=\ [Tr+i-t,q, it ken
i=1
For A > —1and 0 < ¢ < 1, El-Deeb et al. [12] defined the linear operator ’Hi’q A= A
as follows

Myt f(2) * Mgagi(z) = 2 Dy (f x 1) (2), z € E,
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where the function Mg 41 is given by

Nt [A + 17q}k)—1 k

Mgar+i1(z) = Z+Z = 1,q] 2", z € E.
k=2
A simple computation shows that
H 9 f(2) —z+z¢kakz >-1,0<q<1, z€R), (1.6)
where . q]
k,ql!
=t 1.7
" R L (47

Remark 1.1. [12] From the definition relation (1.6), we can easily verify that the next
relations hold for all f € A:

() D+ LT () = gm0 1 () + 0 2D, (K1) 2 e B

(i) Lm Hpy'f(2) =Hy' f(2) = Tp f(2)

qg—1—
_ k
- ;: o e R (1.8)

Remark 1.2. By taking special cases by in the operator 7-[2"1, we obtain

k—1
(i) Taking by = % (v > 0), we get the operator N},

El-Deeb and Bulboaca [8] and El-Deeb [7], as follows:

)e= 1F(v+1) [k, q]!
A _ ’ k
NoJ(z) = 2+ E 4k = DI+ 0) [/\+1,q]k_lakz , 2 €E,

studied by

z+zwk arz®, (>0, A>—-1,0<q<1), (1.9)

where

PR L0 (RN € Vil VURS )

TP+ Lk (k- 1)IT(k+v) (1.10)

4
(ii) Taking by = ("—H> (6 >0, n>0),we find the operator /\/,/L\”f,q = M%ZZ studied

n+k
by El-Deeb and Bulboaca [9] and Srivastava and El-Deeb [24] as follows:
A8 n+l £, q]! k
E; 1.11
Mg f(z +Z(n+k> A+ 1, q)r— 1akz,z€ ’ (1.11)

(iii) Taking by = 1, we have the operator J studied by Arif et al. [2] and Srivastava
et al. [27] as follows:

k
= g apz”, z € E; 1.12
P )‘+1Qk1 k (1.12)
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(iv) Taking by, = %e_m (m > 0) (see [19]), we get a g-analogue of poission operator
Z)»™ studied by El-Deeb et al. [12] as follows:

k,q]!
Z—)\m — [ ? k E’ 11
f(z) =2+ E [A+1,q]k71akz , z € E; (1.13)

(v) Taking by, = [%} (meZ, £>0, §>0) (see [20]), we get a g-analogue
of Prajapat operator Tt A’m as follows:

Lo (k—1) 1™ [k, q]! k .
qu,; —z—i—Z{ T ] D Ll 1akz,z€E, (1.14)

(vi) Taking by = (*7772) 051 (1 —0)™ (m >1, 0< 60 < 1) (see [10, 11]), we get a
g-analogue of Pascal distribution series \112‘,’(7;1 defined by Srivastava and El-deeb [25]
as follows:

> k,q]!
WM F(2) = 2 4 k+m29k11—9m-[’7azk,z€]E. 1.15
kZZQ ( ) A+ 1,qlk—1 g (1.15)

Definition 1.3. Let Py (z) be the Legendre polynomials of the first kind of order k =
0,1,2,... for which, the recurrence formula is

2k+1 k
Piyi(z) = ) xPy(x) — T 1Pk_1(x), (1.16)

with
Py(z)=1 and Pi(z) ==

For |z| < 1. The generating function for Legendre Polynomials is given by (see [16])

Gla,2) = V1-—2xz+ Vi—2zz+ 22 Z Prla

The Koebe one quarter theorem (see [6]) proves that the image of E under every
univalent functlon f € S contains a disk of radlus . Therefore, every function f € S
has an inverse f~! satisfied

@) =2 (2€E)
and .
st ) = (Il <m0 m() = 7).
where
fHw) = w — asw® + (243 — az) w* — (5a3 — basaz + as) w' + ... . (1.17)

A function f € A is said to be bi-univalent in E if both f(z) and f~!(z) are univalent
in E. Let ¥ denote the class of bi-univalent functions in E given by (1.1). For a
brief history and interesting examples in the class ¥ (see [3]). Brannan and Taha
[4] (see also [28]) introduced certain subclasses of the bi-univalent functions class ¥
similar to the familiar subclasses S* (8) and K () of starlike and convex functions
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of order 8 (0 < 8 < 1), respectively (see [3]). Thus, following Brannan and Taha [4]
a function f € A is said to be in the class S%, (5) of strongly bi-starlike functions of
order 8 (0 < 8 < 1) if each of the following conditions is satisfied:

fex and |arg (ﬁé’?) <% (0<B<1; 2 cE) (1.18)
and
zg (w) B ,
arg(g(w)>|<2(0<ﬁgl,w€E), (1.19)

where h is the extension of f~! to [ is given by (1.17). The classes S% (3) and Ky (8)
of bi-starlike functions of order 8 and bi-convex functions of order 8 (0 < 8 < 1),
corresponding to the function classes S* (8) and K (8), were also introduced anal-
ogously. For each of the function classes S (8) and Ks (8), they found non-sharp
estimates on the first two Taylor-Maclaurin coefficients |as| and |as| (for details, see
[4] and [28]).

The object of the present paper is to introduce new classes of the function class
3} involving the g—analogue of convolution based upon the Legendre polynomials pre-
vious defined classes, and find estimates on the coefficients |as|, and |as| for functions
in these new subclasses of the function class X.

Definition 1.4. Let i # 0 be a complex number and f(z) given by (1.1) and h(z) given
by (1.2), then f(z) is said to be in the class ]-'g’)‘ (n, a, h, x) if the following conditions
are satisfied:

fex,
1+1 az Dq (Dq (Hg’qf(z))) +aD, (Hivqf(z)) +1-a 1) <6e.), (120)
7 D, (Hi’qf (2)>
and
1 awD, (Dq (H27Qg(w))) +aD, (Hﬁvqg(w)) ti-a Y Clow)
n Dq (’H})‘L’qg(w))
(1.21)

with @ > 0, A > —1; 0 < ¢ < 1; n € C* = C\ {0}, where the function g = = is
given by (1.17).

Remark 1.5. (i) For ¢ — 1~ we obtain that 111{1 fg’A (n, o, h,z) =2 N& (n,a, h, @),
q—1-

where NQ (1, a, h, ¥) represents the functions f € ¥ that satisfies (1.20) and (1.21)
for H'? replaced with Z;* (see (1.8)).

(ii) For by = % (v > 0), we obtain the class B%’A (n, , v, x), that repre-

sents the functions f € ¥ that satisfies (1.20) and (1.21) for H,"? replaced with N2,
(see (1.9)).
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5
(iii) For by, = (Z—ii) (6 >0, n>0), we obtain the class Ig’A (n, o, d,n,x), that rep-

resents the functions f € X that satisfies (1.20) and (1.21) for 7—[2”1 replaced with
MQ:Z (see (1.11)).

(iv) For b, = %e‘m (m > 0) we obtain the class 772’)‘ (n, o, m, x), that
represents the functions f € ¥ that satisfies (1.20) and (1.21) for ’Hi’q replaced with
I3, (see (1.13)).

(v) For b, = [%ﬁ_l)] (meZ, £>0,6>0), we obtain the class

qu’)‘ (n,,m, £, 6, x), that represents the functions f € X that satisfies (1.20) and
(1.21) for ' replaced with jq)fg (see (1.14)).

(vi) For by = (kjn”zf) F=1(1—-0)™ (m>1, 0< 60 < 1), we obtain the class
\I/qz’/\ (n, a,m, 0, ), that represents the functions f € ¥ that satisfies (1.20) and (1.21)

for H? replaced with \112"(;" (see (1.15)).
The following Lemma will be needed later.
Lemma 1.6. [18, p. 172] If w(z) = Y. prz® is a Schwarz function for z € E, then
k=1
Il <1 Ipel <1 =paf*, k> 1L

2. Coefficient bounds for the function class ]—"g’)‘ (n,a, h, x)

Unless otherwise mentioned, we shall assume in the reminder of this paper that
a>0,A>-1,0<qg<1 neC* xR and h is given by (1.2), the powers are
understood as principle values.

Theorem 2.1. Let the function [ given by (1.1) belongs to the class ]-'g’)‘ (n,a, h, x),
then

[nll|ve

las] <
V@0 -+ @ — e + C52 (302 — )20 - 1)1+ )23

)

and

|| |] || 2
a+q)-1)(1+ag+¢*)ds  (1+4¢)22a—1)"¢2’
where ¢y, k € {2,3}, are given by (1.7).

las| <
(

Proof. Since f € ]-'%”\ (n, @, h,x). Then there exist two analytic functions R and S in
E with R(0) = S(0) =0, and |R(2)| < 1, |S(w)| < 1 for all z,w € E given by

R(z) = Zrkzk and S(w) = Zskwk, z,w € A,
k=1 k=1

from Lemma 1.6 we have

|ril <1 and |sg] <1, keN. (2.1)
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In view of (1.20) and (1.21), we get
az D, (Dq (Hz’q (z))) +aD, (Hz’qf(z)) floa
Dy (Hyf(2))

1=9(Gla,R(2)) - 1),

and
awD, (Dq (’Hz’qg(w))) +aD, (’H;t’qg(w)) +1l-a
D, (’H;\L’qg(w))

—1=n(G(z,S(w)) —1).

Since
az Dy (Dq (’Hiqf(z))) +aDy (Hz’qf(z)) +1-a
D, (H;»q f(z))

= (14+¢)(2a —1) ¢2a22
+ [(a(2 +q)—1) (1 +q+ q2) ¢saz — (2o —1) (1 + q)%%a%] 224,

-1

awD, <Dq (Hz’qg(w») +wDy (’H;"qg(w)) +1l-«a

D, (H}’)’qg(w))
= —(1+4q)(2a—1)¢aw
+[(@@+q) = 1) (1+q+4¢°) ¢3 (205 —a3) — (2a — 1) (1 + q)*¢Fa3] w? + ...,

-1

and
1 (G(x, R(2)) — 1) = nPy(2)r12 + (Pi(x)ry + Paz)ri) n2® + ...,

n(G(z,S(w)) — 1) = nP(2)s1w + (P (x)s2 + Pa(z)s]) nw® + ...

Next, equating the corresponding coefficients of z and w in (2.2) and (2.3), we get

(14 q) (2a — 1) poay = nPy(x)ry, (2.4)

(@(2+9) = 1) (1 +q+¢*) ¢sa3— (2a — 1) (1+q)*¢3a3 = nPi(z)ra+nPa(x)r (2.5)
— (14 9q) (2a — 1) ¢2as = nPi(x)s1, (2.6)
(@(2+9)~1)(1+q+¢*)¢3(2a3—az)— (2a—1)(1+q)*¢3a3 = NP1 (2)s2+nPa(z)s]. (2.7)

From (2.4) and (2.6), we have

r = —81 (28)
By squaring (2.4) and (2.6), then adding the new relations we get
2(1 +q)* (2a —1)* a3¢3 = * PP (x) (r] + 57) . (2.9)

If we add (2.5) and (2.7) we obtain
2[(a(2+4¢) - 1)(1+q+¢*)¢3— (2a—1)(1+q)*d3]a3 = nPi(z)(r2+s2) +nPa(x) (1§ +57).
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We can rewrite (2.9) as

2(1+¢)2 (20 — 1)
2 2 2,2
i +si = 7)2P12(33) a505.

From above equation, we get
2[((2+q) = D)1 +q+¢*)nPf (2)¢3 — P] (2) + (2a — 1) Pa(2)] (20— 1) (1 + ¢)*¢3]a3

= n? P} (x)(r2 + s2),
it follows that

% B n? P (x)(ro+s2) (2.10)

92 = e+ - D) (I +a+a®)nPE (@) ds—(nP(2)+(2a—1) Pa(2)) 2a—1)(1+q)? 43

Then taking the absolute value to the above equation and from (1.16) and (2.1), we
obtain

lag| < In|lz|v= 7
= Vle@+o -1 (+ata®)na2és—[nP? (@) + 252 (322 -1))(2a—1) (1+9)263|

which gives the bound for |as| as we asserted in our theorem. To find the bound for
|as|. Using (2.5) from (2.7), we have

2(02+q) = 1) (1+q+¢*) d3 (as — a3) =0 [Pr(2) (r2 = s2) + Pa(z) (r] — 57)] -

(2.11)
Form (2.8), (2.9) and (2.11), we obtain
0y — NPy () (re — 52) n?PE(z) (rf + %) (2.12)
2(@2+¢)-1)(1+qg+¢*)ds  2(1+q)2(2a —1)° ¢3
Using (1.16) and (2.1), we get
ol ol = .

o5l S T DT @ s (1102 (2 17al

In view of Theorem 2.1 we obtain the following results.
Putting ¢ — 1~ we get the following corollary:

Corollary 2.2. Let the function f given by (1.1) belongs to the class f € N@ (n,a, h, x),

then
ol < [l lz|vz :
\/‘W ~ 16 {nﬂ + ol (322 — 1)} S
and

el A+ 1)y [0 (= (A +1))°

az| < .
930 < TS Ba Dby T 16 (20 - 1702

(=D} 'D(v+1)

Considering b, = Ik DIT (kt0)

(v > 0), we obtain the following result.
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Corollary 2.3. Let the function [ given by (1.1) belongs to the class f €
qu’)‘ (n,a,v,x), then

|nl|z|v/Z
V(@@ +a) = 1) (gt nais —[na2+ 2570 (322 1)| 2a-1) (1+0)243|

lag| <

and
2
7] || In|”
(a2+q)—1D(A+q+¢*)s  (1+¢)2Q2a—1)"¢2
where P, k € {2,3}, are given by (1.10).

|a3| =

s
For b, = (Z—]:i) (6 >0, n>0), we obtain the following corollary.

Corollary 2.4. Let the function f given by (1.1) belongs to the class f €
I%”\ (n,a, 8, n,x), then

laz| <
lnlle| V&
\/] (e(2+0) 1) (1 a+a?)me? G (253)° o2+ @20 (322 -1)) (20— 1) (149)? {2002, (21)20|
and
las| < [nlle|[A+1,q]2(n+3)° 4 InPEhi1g)?(nd2)?

(a(2+9)—1)(1+g+4¢)[3,q]!(n+1)° (1+9)%(2a-1)%([2,4])* (n+1)*°

If we take by = (’Zi;l;e_m (m > 0) we get the following special case.
Corollary 2.5. Let the function [ given by (1.1) belongs to the class f €
772’/\ (n,a,m,x), then

las] <

|n|z|VZ
\/|<a<2+q>—1><1+q+q2>nz22[;15?;]2mzew—[nz2+(2“—;“(31271)]<2a71><1+q>2%mzﬂm ’
and

2[n||x|[A+1,q] [n|*2? ([A+1,q])2
93] < EErg DT BT T TrPGe DA R T

Putting by, = [%&C*l)}m (meZ, £>0, § >0) we get the following result.

Corollary 2.6. Let the function f given by (1.1) belongs to the class f €
BqE’)‘ (n,a,m, 0, 6,x), then

lag| <
lnllz|v/E 7
\/\ (o)1) (1+g-+a2)ne? Ll (RO [502 4 29D (352 1)) (20— 1)(1-4+q)2 (2422 (LD j2m
and
o A e + e Gt

For by, = (k+m ) -1 (1-0)" (m>1, 0< 6 <1), we obtain the following
corollary.
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Corollary 2.7. Let the function f given by (1.1) belongs to the class f €
\I/qz’/\ (n,a,m,0,z), then

< DlloyE
VA
where
A=|(a24+q¢) — 1)1 +q+ qQ)anMm(m +1)6*(1 - o)™
2[)‘ + 17Q]2
2, 2a-1) 2 2 ([2a(J]!)2 2,2 2m
— —— 3z —-1)|2a—1)(1 ————m0*(1 -0
e + g 30— D20~ D1+ 0 T m 01— 6)
and
2|n||=|[A+1,q] [n[*? ([A+1,q))*
‘ag‘ S (a(2+q)—1)(1+q-7-q2)[37q]!;fll(2m+1)92(1—9)m + (1+q)2(2aj1)2m202(139)27”([2,(1]!)2‘

3. Fekete-Szego problem for the function class ]—"g’A (n; a, h; x)

Theorem 3.1. If the function f given by (1.1) belongs to the class .7-'%’)‘ (n,a, h, x),
and n € C*, then

|ag — pas| < |nf|z| (K + L]+ |K - L|), (3.1)
where ,
K = (A—p)nz 9
2[(a(2+49)—1) (1+q+q2)nz2 ¢35 —[na? + E%52 (322 - 1)] (2a—1) (1+q)2¢3] | (3.2)
and

1
S 2(a2+q) -1 (A +q+e)ds
where u € C, and ¢y, k € {2,3}, are given by (1.7).

Proof. If f € ]-"%’A (n,a, h,x). As in the proof of Theorem 2.1, from (2.8) and (2.11),
we have

2 nPi(z) (r2 — s2)
as —a; = , 3.3
P S - D et )0 (33)
and multiplying (2.10) by (1 — u) we get
o 2 _ (1—p)n> P (z)(r2+s2)
(1=p)a; = 2[(a(24+9)—1)(1+q+¢2)n P2 (x)p3— [n P2 () +(2a—1) Py ()] (2a—1) (1+4)243] " (3.4)
Adding (3.3) and (3.4) leads to
ag — pay = nha [(K + L) r2 + (K — L) s2], (3.5)
where K and L are given by (3.2), and taking the absolute value of (3.5), from (2.1)
we obtain the inequality (3.1). The proof is complete. O

Remark 3.2. A simple computation shows that the inequality |K| < L is equivalent
to

na? + 295 (322 — 1)] (20 - 1) (1 + 0)203
ne?(a2+q) —1) (1+q+¢?) s

lp—1<|1—

Y
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therefore, from Theorem 3.1 we get the next result. If the function f given by (1.1)
belongs to the class ]-'%”\ (n; a, h; ), and i € C*, then

nx
24+¢)—1)(1+aq+¢)¢s’

2
— <
’as Maz{ = (af
where p € C, with
[mz b Racbge 1)} (20 — 1) (1 + q)%63
ne2(a(2+q) —1) (1 +q+ q¢?) ¢3

and ¢, k € {2,3}, are given by (1.7).

lp—1] <|1—

Y

We conclude our result with the following consequence of Theorem 3.1. Putting
q — 17, we obtain the following corollary.

Corollary 3.3. If the function f given by (1.1) belongs to the class ]-'g’)‘ (n; a, h; x),
and p € C, n € C*, then

|as — pa3| < Inllz| (1K + L| + |K - L),

where
_ (1 — p) pa?
36(35\111))2736%3 - 32 {771:2 + 4(2@2—1) (3x2 — 1)} (2((;‘:))53 7
and
I — n (A + 1)2
36 (3a— 1) b3

_ (=DM (vt ; ;

If we put b, = T =D (v > 0), we obtain the following result.
Corollary 3.4. If the function f given by (1.1) belongs to the class B%’A (n,a,v,x),
and n € C*, then

|ag — pa3| < |nllx| (|K + L| + |K — L),
where

K= (A—p)nz®
2[((24a)~1) (1+a+a?na s — [ne? + B2 (322~ 1)] (20—1) (1+9) 23]

and
1

2(@2+q)—1)(1+q+q*) s’
where p € C, and ¢y, k € {2,3}, are given by (1.10).

5
Considering by = (Z—i}c) (6 >0, n>0), we get the following corollary.

Corollary 3.5. If the function f given by (1.1) belongs to the class I%’)‘ (n,a,6,n,x),
and € C, n € C*, then
|ag — paz| < |nllz| (K + L| + |K — L),
where
_ (1—p)na®

- ! S a—: .q]")2 ) 257
2| (2t)1) (1ata? ne? st (53 ) [na?+ B52 (322 1)) (20 -1) (10)? {24105 (553) ™
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and
A +1,q) (n+3)°

L= .
2(¢2+q9)—1)(14+q+4¢*)[3,q'(n+1)

If we take by, = (’Zk 1),6’7" (m > 0), we get the following case.

Corollary 3.6. If the function [ given by (1.1) belongs to the class Pg)‘ (n,a,m,x),
and € C, n € C*, then

lag — pa3| < Inlla| (1K + L] + K — L),

where
_ (1—p)nz?
2[(a(2ta)1) (1+g-+a2)na? sl me—m —[na2+ 251 (302 1)) (20-1) (1q)? (L2422 m2e—2m ]
and
[A + 17 Q}Z

T (@24 q) - 1) (A+q+ ) B, gmEe

Putting b, = [%ﬂﬁ_l)} (meZ, £>0,35>0), we obtain the following

result.

Corollary 3.7. If the function f given by (1.1) belongs to the class B%”\ (n,a,m, £,6,x),
and p € C, n € C*, then

|as — pa3| < Inllz| (1K + L| + |K - L),

where " | ,
_Ud=pnx
K= —5
where
b= [(a@ +0) =D (1+a+¢) 5 [if]'qb [52]”
2y Qo= l g s (2007 Tries]?
_ [773: + T(Sx -1 2a—-1)(1+¢q) Dot L a) [ 1@5} ]
and

_ M +1,q[1+4™
S 2(a24+q) 1)1 +q+¢)[3,q' [1 +£+20]"

For by, = (kjn”zf) P (1-0)" (m>1,0<0<1), we get the following spe-
cial case.

Corollary 3.8. If the function [ given by (1.1) belongs to the class \II%”\ (n,a,m, 0, ),
and p € C, n € C*, then

|as — pa3| < Inll=| (1K + L| + |K - L),

where )
- pna®

K =
C 9
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where

C =2[(a(2+q) ~ DL +q+ )’ Bl i+ 1620 — gy

A+1,4q]2
(2a—1)

5 (3z% — 1)](2a — 1)(1 + q)27([2’ al)” m262(1 — 0)>™]

LG D L)

and
— [)\ + 17 q}Q
2(a24+q)—1)(14+q+4¢?) [3,q)'m(m+1)62 (1 —0)™"
Now, the following examples are presented here to illustrate our results. For
n =1 and a = 1. Therefore, from Theorem 2.1 and Theorem 3.1.

Example 3.9. Let the function f given by (1.1) belongs to the class ]-'g)‘ (1;1, h; x),

then
0] < |z|/x
I+ 0) (14 g+ 2) 2205 — 1522 = 1)(1 +0)203]
la| < || n 2
N0+ +qg+¢)ds  (1+q)22
and
|lag — pa3| <|z| (/K + L| + |K — LJ),
with
_ (1—p)a®
2[(144q) 1+ g+ ¢?)a2¢3 — 5(5a2 — 1)(1 + q)2¢3]
and "

2(1+q)(1+q+¢°)¢s’
where 1 € C and ¢y, k € {2,3}, are given by (1.7).

For n =1 and a = 0. Therefore, from Theorem 2.1 and Theorem 3.1.
Example 3.10. Let the function f given by (1.1) belongs to the class ]—'%”\ (150, h; x),

then
las| < |lz|v/2
V= (4 +2) 2205 + 11— 22)(1 +)23] |
o <~
TS At gt)es | (1+q)%63
and
|las — pa3| < |z| (K + L| + |K — L),
with 5
K (I-—p=
2[-(1+q+q?) 223 + (1 — 22)(1 + ¢)%¢3]
and .

2(1+q+q?) p3’
where € C and ¢, k € {2,3}, are given by (1.7).
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Remark 3.11. We mention that all the above estimations for the coefficients |az|, |as|,
and Fekete-Szeg6 problem for the function class ]—'g)‘ (n; a, h; ) are not sharp. To
find the sharp upper bounds for the above functionals remains an interesting open
problem, as well as those for |a,|, n > 4.
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