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New subclasses of bi-univalent functions
connected with a q-analogue of convolution
based upon the Legendre polynomials

Sheza M. El-Deeb and Bassant M. El-Matary

Abstract. In this paper, we introduce new subclasses of analytic and bi-univalent
functions connected with a q-analogue of convolution by using the Legendre poly-
nomials. Furthermore, we find estimates on the first two Taylor-Maclaurin coef-
ficients |a2| and |a3| for functions in these subclasses and obtain Fekete-Szegő
problem for these subclasses.
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1. Introduction, Definitions and Preliminaries

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
k=2

akz
k, z ∈ E := {z ∈ C : |z| < 1}, (1.1)

and S be the subclass of A which are univalent functions in E.

If h ∈ A is given by

h(z) = z +

∞∑
k=2

bkz
k, z ∈ E, (1.2)
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then, the Hadamard (or convolution) product of f and h is defined by

(f ∗ h)(z) := z +

∞∑
k=2

akbkz
k, z ∈ E. (1.3)

If f and F are analytic functions in E, we say that f is subordinate to F , written
f ≺ F , if there exists a Schwarz function w, which is analytic in E, with w(0) = 0,
and, |w(z)| < 1 for all z ∈ E, such that f(z) = F (w(z)), z ∈ E. Furthermore, if the
function F is univalent in E, then we have the following equivalence (see [5] and [17]):

f(z) ≺ F (z)⇔ f(0) = F (0) and f(E) ⊂ F (E).

In [23] Srivastava presented and motivated about brief expository overview of
the classical q-analysis versus the so-called (p, q)-analysis with an obviously redun-
dant additional parameter p. We also briefly consider several other families of such
extensivelyand widely-investigated linear convolution operators as (for example) the
Dziok–Srivastava, Srivastava–Wright and Srivastava–Attiya linear convolution oper-
ators, together with their extended and generalized versions. The theory of (p, q)-
analysis has important role in many areas of mathematics and physics. Our usages
here of the q-calculus and the fractional qcalculus in geometric function theory of com-
plex analysis are believed to encourage and motivate significant further developments
on these and other related topics (see [1, 14, 15, 21, 22, 26]).

Srivastava [23] made use of various operators of q-calculus and fractional q-
calculus and recalling the definition and notations. The q-shifted factorial is defined
for λ, q ∈ C and n ∈ N0 = N ∪ {0} as follows

(λ; q)k =

{
1 k = 0,
(1− λ) (1− λq) ...

(
1− λqk−1

)
k ∈ N.

By using the q-gamma function Γq(z), we get(
qλ; q

)
k

=
(1− q)k Γq (λ+ k)

Γq (λ)
, (k ∈ N0) ,

where (see [13])

Γq(z) = (1− q)1−z (q; q)∞
(qz; q)∞

, (|q| < 1) .

Also, we note that

(λ; q)∞ =

∞∏
k=0

(
1− λqk

)
, (|q| < 1) ,

and, the q-gamma function Γq(z) is known

Γq(z + 1) = [z]q Γq(z),

where [k]q denotes the basic q-number defined as follows

[k]q :=


1−qk
1−q , k ∈ C,

1 +
k−1∑
j=1

qj , k ∈ N.
(1.4)
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Using the definition formula (1.4), we have the next two products:
(i) For any non negative integer k, the q-shifted factorial is given by

[k]q! :=


1, if k = 0,
k∏

n=1
[n]q, if k ∈ N.

(ii) For any positive number r, the q-generalized Pochhammer symbol is defined by

[r]q,k :=


1, if k = 0,
r+k−1∏
n=r

[n]q, if k ∈ N.

It is known in terms of the classical (Euler’s) gamma function Γ (z), that

Γq (z)→ Γ (z) as q → 1−.

Also, we observe that

lim
q→1−

{(
qλ; q

)
k

(1− q)k

}
= (λ)k .

For 0 < q < 1, the q-derivative operator for f ∗ h is defined by

Dq (f ∗ h) (z) = Dq

[
z +

∞∑
k=2

akbkz
k

]

=
(f ∗ h) (z)− (f ∗ h) (qz)

z(1− q)

= 1 +

∞∑
k=2

[k, q]akbkz
k−1, z ∈ E,

where

[k, q] :=
1− qk

1− q
= 1 +

k−1∑
j=1

qj , [0, q] := 0. (1.5)

Using the definition formula (1.5), we will define the next two products:
(i) For any non negative integer k, the q-shifted factorial is given by

[k, q]! :=


1, if k = 0,
k∏
i=1

[i, q] , if k ∈ N.

(ii) For any positive number r, the q-generalized Pochhammer symbol is defined by

[r, q]k :=


1, if k = 0,
k∏
i=1

[r + i− 1, q] , if k ∈ N.

For λ > −1 and 0 < q < 1, El-Deeb et al. [12] defined the linear operatorHλ,qh : A → A
as follows

Hλ,qh f(z) ∗Mq,λ+1(z) = z Dq (f ∗ h) (z), z ∈ E,
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where the function Mq,λ+1 is given by

Mq,λ+1(z) := z +

∞∑
k=2

[λ+ 1, q]k−1

[k − 1, q]!
zk, z ∈ E.

A simple computation shows that

Hλ,qh f(z) := z +

∞∑
k=2

φkakz
k, (λ > −1, 0 < q < 1, z ∈ E), (1.6)

where

φk =
[k, q]!

[λ+ 1, q]k−1
bk. (1.7)

Remark 1.1. [12] From the definition relation (1.6), we can easily verify that the next
relations hold for all f ∈ A:

(i) [λ+ 1, q]Hλ,qh f(z) = [λ, q]Hλ+1,q
h f(z) + qλ zDq

(
Hλ+1,q
h f(z)

)
, z ∈ E;

(ii) lim
q→1−

Hλ,qh f(z) = Hλ,1h f(z) := Iλhf(z)

= z +

∞∑
k=2

k!

(λ+ 1)k−1
akbkz

k, z ∈ E. (1.8)

Remark 1.2. By taking special cases bk in the operator Hλ,qh , we obtain

(i) Taking bk = (−1)k−1Γ(υ+1)
4k−1(k−1)!Γ(k+υ)

(υ > 0), we get the operator N λ
υ,q studied by

El-Deeb and Bulboaca [8] and El-Deeb [7], as follows:

N λ
υ,qf(z) = z +

∞∑
k=2

(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
· [k, q]!

[λ+ 1, q]k−1
akz

k, z ∈ E,

= z +

∞∑
k=2

ψk akz
k, (υ > 0, λ > −1, 0 < q < 1), (1.9)

where

ψk =
[k, q]!

[λ+ 1, q]k−1

(−1)k−1Γ(υ + 1)

4k−1(k − 1)!Γ(k + υ)
; (1.10)

(ii) Taking bk =
(
n+1
n+k

)δ
(δ > 0, n ≥ 0) ,we find the operator N λ,δ

n,1,q =Mλ,δ
n,q studied

by El-Deeb and Bulboaca [9] and Srivastava and El-Deeb [24] as follows:

Mλ,δ
n,qf(z) := z +

∞∑
k=2

(
n+ 1

n+ k

)δ
· [k, q]!

[λ+ 1, q]k−1
akz

k, z ∈ E; (1.11)

(iii) Taking bk = 1, we have the operator Jλq studied by Arif et al. [2] and Srivastava
et al. [27] as follows:

Jλq f(z) := z +

∞∑
k=2

[k, q]!

[λ+ 1, q]k−1
akz

k, z ∈ E; (1.12)
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(iv) Taking bk = mk−1

(k−1)!e
−m (m > 0) (see [19]), we get a q-analogue of poission operator

Iλ,mq studied by El-Deeb et al. [12] as follows:

Iλ,mq f(z) := z +

∞∑
k=2

mk−1

(k − 1)!
e−m · [k, q]!

[λ+ 1, q]k−1
akz

k, z ∈ E; (1.13)

(v) Taking bk =
[

1+`+δ(k−1)
1+`

]m
(m ∈ Z, ` ≥ 0, δ ≥ 0) (see [20]), we get a q-analogue

of Prajapat operator J λ,mq,`,δ as follows:

J λ,mq,`,δf(z) := z +

∞∑
k=2

[
1+`+δ(k−1)

1+`

]m
· [k, q]!

[λ+ 1, q]k−1
akz

k, z ∈ E; (1.14)

(vi) Taking bk =
(
k+m−2
m−1

)
θk−1 (1− θ)m (m ≥ 1, 0 ≤ θ ≤ 1) (see [10, 11]), we get a

q-analogue of Pascal distribution series Ψλ,m
q,θ defined by Srivastava and El-deeb [25]

as follows:

Ψλ,m
q,θ f(z) := z +

∞∑
k=2

(
k+m−2
m−1

)
θk−1 (1− θ)m · [k, q]!

[λ+ 1, q]k−1
akz

k, z ∈ E. (1.15)

Definition 1.3. Let Pk(x) be the Legendre polynomials of the first kind of order k =
0, 1, 2, ... for which, the recurrence formula is

Pk+1(x) =
2k + 1

k + 1
xPk(x)− k

k + 1
Pk−1(x), (1.16)

with
P0(x) = 1 and P1(x) = x

For |x| < 1. The generating function for Legendre Polynomials is given by (see [16])

G(x, z) =
1√

1− 2xz + z2
=

∞∑
k=0

Pk(x)zk.

The Koebe one quarter theorem (see [6]) proves that the image of E under every
univalent function f ∈ S contains a disk of radius 1

4 . Therefore, every function f ∈ S
has an inverse f−1 satisfied

f−1(f(z)) = z (z ∈ E)

and

f(f−1(w)) = w

(
|w| < r0 (f) ; r0 (f) ≥ 1

4

)
,

where

f−1(w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + ... . (1.17)

A function f ∈ A is said to be bi-univalent in E if both f(z) and f−1(z) are univalent
in E. Let Σ denote the class of bi-univalent functions in E given by (1.1). For a
brief history and interesting examples in the class Σ (see [3]). Brannan and Taha
[4] (see also [28]) introduced certain subclasses of the bi-univalent functions class Σ
similar to the familiar subclasses S∗ (β) and K (β) of starlike and convex functions
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of order β (0 ≤ β < 1), respectively (see [3]). Thus, following Brannan and Taha [4]
a function f ∈ A is said to be in the class S∗Σ (β) of strongly bi-starlike functions of
order β (0 < β ≤ 1) if each of the following conditions is satisfied:

f ∈ Σ and

∣∣∣∣∣arg

(
zf
′
(z)

f(z)

)∣∣∣∣∣ < βπ

2
(0 < β ≤ 1; z ∈ E) (1.18)

and ∣∣∣∣∣arg

(
zg
′
(w)

g(w)

)∣∣∣∣∣ < βπ

2
(0 < β ≤ 1; w ∈ E) , (1.19)

where h is the extension of f−1 to E is given by (1.17). The classes S∗Σ (β) and KΣ (β)
of bi-starlike functions of order β and bi-convex functions of order β (0 < β ≤ 1) ,
corresponding to the function classes S∗ (β) and K (β) , were also introduced anal-
ogously. For each of the function classes S∗Σ (β) and KΣ (β) , they found non-sharp
estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3| (for details, see
[4] and [28]).

The object of the present paper is to introduce new classes of the function class
Σ involving the q−analogue of convolution based upon the Legendre polynomials pre-
vious defined classes, and find estimates on the coefficients |a2|, and |a3| for functions
in these new subclasses of the function class Σ.

Definition 1.4. Let η 6= 0 be a complex number and f(z) given by (1.1) and h(z) given

by (1.2), then f(z) is said to be in the class Fq,λΣ (η, α, h, x) if the following conditions
are satisfied:

f ∈ Σ,

1+
1

η

αz Dq

(
Dq

(
Hλ,qh f(z)

))
+ αDq

(
Hλ,qh f(z)

)
+ 1− α

Dq

(
Hλ,qh f(z)

) − 1

 ≺ G(x, z), (1.20)

and

1 +
1

η

αwDq

(
Dq

(
Hλ,qh g(w)

))
+ αDq

(
Hλ,qh g(w)

)
+ 1− α

Dq

(
Hλ,qh g(w)

) − 1

 ≺ G(x,w),

(1.21)
with α > 0, λ > −1; 0 < q < 1; η ∈ C∗ = C\ {0} , where the function g = f−1 is
given by (1.17).

Remark 1.5. (i) For q → 1− we obtain that lim
q→1−

Fq,λΣ (η, α, h, x) =: N λ
Σ (η, α, h, x),

where N λ
Σ (η, α, h, x) represents the functions f ∈ Σ that satisfies (1.20) and (1.21)

for Hλ,qh replaced with Iλh (see (1.8)).

(ii) For bk = (−1)k−1Γ(υ+1)
4k−1(k−1)!Γ(k+υ)

(υ > 0), we obtain the class Bq,λΣ (η, α, υ, x), that repre-

sents the functions f ∈ Σ that satisfies (1.20) and (1.21) for Hλ,qh replaced with N λ
υ,q

(see (1.9)).
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(iii) For bk =
(
n+1
n+k

)δ
(δ > 0, n ≥ 0) , we obtain the class Iq,λΣ (η, α, δ, n, x), that rep-

resents the functions f ∈ Σ that satisfies (1.20) and (1.21) for Hλ,qh replaced with

Mλ,δ
n,q (see (1.11)).

(iv) For bk = mk−1

(k−1)!e
−m (m > 0) we obtain the class Pq,λΣ (η, α,m, x), that

represents the functions f ∈ Σ that satisfies (1.20) and (1.21) for Hλ,qh replaced with
Iqλ,m (see (1.13)).

(v) For bk =
[

1+`+δ(k−1)
1+`

]m
(m ∈ Z, ` ≥ 0, δ ≥ 0) , we obtain the class

Bq,λΣ (η, α,m, `, δ, x), that represents the functions f ∈ Σ that satisfies (1.20) and

(1.21) for Hλ,qh replaced with J λ,mq,`,δ (see (1.14)).

(vi) For bk =
(
k+m−2
m−1

)
θk−1 (1− θ)m (m ≥ 1, 0 < θ < 1) , we obtain the class

Ψq,λ
Σ (η, α,m, θ, x), that represents the functions f ∈ Σ that satisfies (1.20) and (1.21)

for Hλ,qh replaced with Ψλ,m
q,θ (see (1.15)).

The following Lemma will be needed later.

Lemma 1.6. [18, p. 172] If w(z) =
∞∑
k=1

pkz
k is a Schwarz function for z ∈ E, then

|p1| ≤ 1, |pk| ≤ 1− |p1|2, k ≥ 1.

2. Coefficient bounds for the function class F q,λΣ (η, α, h, x)

Unless otherwise mentioned, we shall assume in the reminder of this paper that
α ≥ 0, λ > −1, 0 < q < 1, η ∈ C∗, x ∈ R and h is given by (1.2), the powers are
understood as principle values.

Theorem 2.1. Let the function f given by (1.1) belongs to the class Fq,λΣ (η, α, h, x),
then

|a2| ≤
|η||x|

√
x√∣∣∣(α(2+q)−1)(1+q+q2)ηx2φ3 − [ηx2 + (2α−1)

2 (3x2 − 1)](2α− 1)(1 + q)2φ2
2

∣∣∣ ,
and

|a3| ≤
|η| |x|

(α(2 + q)− 1) (1 + q + q2)φ3
+

|η|2 x2

(1 + q)2 (2α− 1)
2
φ2

2

,

where φk, k ∈ {2, 3}, are given by (1.7).

Proof. Since f ∈ Fq,λΣ (η, α, h, x). Then there exist two analytic functions R and S in
E with R(0) = S(0) = 0, and |R(z)| < 1, |S(w)| < 1 for all z, w ∈ E given by

R(z) =

∞∑
k=1

rkz
k and S(w) =

∞∑
k=1

skw
k, z, w ∈ ∆,

from Lemma 1.6 we have

|rk| ≤ 1 and |sk| ≤ 1, k ∈ N. (2.1)



534 Sheza M. El-Deeb and Bassant M. El-Matary

In view of (1.20) and (1.21), we get

αz Dq

(
Dq

(
Hλ,qh f(z)

))
+ αDq

(
Hλ,qh f(z)

)
+ 1− α

Dq

(
Hλ,qh f(z)

) − 1 = η (G(x,R(z))− 1) ,

(2.2)
and

αwDq

(
Dq

(
Hλ,qh g(w)

))
+ αDq

(
Hλ,qh g(w)

)
+ 1− α

Dq

(
Hλ,qh g(w)

) − 1 = η (G(x, S(w))− 1) .

(2.3)
Since

αz Dq

(
Dq

(
Hλ,qh f(z)

))
+ αDq

(
Hλ,qh f(z)

)
+ 1− α

Dq

(
Hλ,qh f(z)

) − 1

= (1 + q) (2α− 1)φ2a2z

+
[
(α(2 + q)− 1)

(
1 + q + q2

)
φ3a3 − (2α− 1) (1 + q)2φ2

2a
2
2

]
z2 + . . . ,

αwDq

(
Dq

(
Hλ,qh g(w)

))
+ wDq

(
Hλ,qh g(w)

)
+ 1− α

Dq

(
Hλ,qh g(w)

) − 1

= −(1 + q) (2α− 1)φ2a2w

+
[
(α(2 + q)− 1)

(
1 + q + q2

)
φ3

(
2a2

2 − a3

)
− (2α− 1) (1 + q)2φ2

2a
2
2

]
w2 + . . . ,

and

η (G(x,R(z))− 1) = ηP1(x)r1z +
(
P1(x)r2 + P2(x)r2

1

)
ηz2 + . . . ,

η (G(x, S(w))− 1) = ηP1(x)s1w +
(
P1(x)s2 + P2(x)s2

1

)
ηw2 + . . . .

Next, equating the corresponding coefficients of z and w in (2.2) and (2.3), we get

(1 + q) (2α− 1)φ2a2 = ηP1(x)r1, (2.4)

(α(2 + q)− 1)
(
1 + q + q2

)
φ3a3−(2α− 1) (1+q)2φ2

2a
2
2 = ηP1(x)r2 +ηP2(x)r2

1 (2.5)

− (1 + q) (2α− 1)φ2a2 = ηP1(x)s1, (2.6)

(α(2+q)−1)(1+q+q2)φ3(2a2
2−a3)−(2α−1)(1+q)2φ2

2a
2
2 = ηP1(x)s2+ηP2(x)s2

1. (2.7)

From (2.4) and (2.6), we have

r1 = −s1 (2.8)

By squaring (2.4) and (2.6), then adding the new relations we get

2(1 + q)2 (2α− 1)
2
a2

2φ
2
2 = η2P 2

1 (x)
(
r2
1 + s2

1

)
. (2.9)

If we add (2.5) and (2.7) we obtain

2[(α(2+q)−1)(1+q+q2)φ3−(2α−1)(1+q)2φ2
2]a2

2 = ηP1(x)(r2+s2)+ηP2(x)(r2
1 +s2

1).
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We can rewrite (2.9) as

r2
1 + s2

1 =
2(1 + q)2 (2α− 1)

2

η2P 2
1 (x)

a2
2φ

2
2.

From above equation, we get

2[(α(2 + q)− 1)(1 + q+ q2)ηP 2
1 (x)φ3− [ηP 2

1 (x) + (2α− 1)P2(x)](2α− 1)(1 + q)2φ2
2]a2

2

= η2P 3
1 (x)(r2 + s2),

it follows that

a2
2 =

η2P 3
1 (x)(r2+s2)

2[(α(2+q)−1)(1+q+q2)ηP 2
1 (x)φ3−(ηP 2

1 (x)+(2α−1)P2(x))(2α−1)(1+q)2φ2
2]
. (2.10)

Then taking the absolute value to the above equation and from (1.16) and (2.1), we
obtain

|a2| ≤ |η||x|
√
x√

|(α(2+q)−1)(1+q+q2)ηx2φ3−[ηP 2
1 (x)+

(2α−1)
2 (3x2−1)](2α−1)(1+q)2φ2

2|
,

which gives the bound for |a2| as we asserted in our theorem. To find the bound for
|a3|. Using (2.5) from (2.7), we have

2 (α(2 + q)− 1)
(
1 + q + q2

)
φ3

(
a3 − a2

2

)
= η

[
P1(x) (r2 − s2) + P2(x)

(
r2
1 − s2

1

)]
.

(2.11)
Form (2.8), (2.9) and (2.11), we obtain

a3 =
ηP1(x) (r2 − s2)

2 (α(2 + q)− 1) (1 + q + q2)φ3
+

η2P 2
1 (x)

(
r2
1 + s2

1

)
2(1 + q)2 (2α− 1)

2
φ2

2

. (2.12)

Using (1.16) and (2.1), we get

|a3| ≤
|η| |x|

(α(2 + q)− 1) (1 + q + q2)φ3
+

|η|2 x2

(1 + q)2 (2α− 1)
2
φ2

2

. �

In view of Theorem 2.1 we obtain the following results.
Putting q → 1− we get the following corollary:

Corollary 2.2. Let the function f given by (1.1) belongs to the class f ∈ N λ
Σ (η, α, h, x),

then

|a2| ≤
|η| |x|

√
x√∣∣∣ 18(3α−1)ηx2b3

(λ+1)2
− 16

[
ηx2 + (2α−1)

2 (3x2 − 1)
]

(2α−1)b22
(λ+1)2

∣∣∣ ,
and

|a3| ≤
|η| |x| (λ+ 1)2

18 (3α− 1) b3
+
|η|2 (x (λ+ 1))

2

16 (2α− 1)
2
b22
.

Considering bk = (−1)k−1Γ(υ+1)
4k−1(k−1)!Γ(k+υ)

(υ > 0), we obtain the following result.
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Corollary 2.3. Let the function f given by (1.1) belongs to the class f ∈
Bq,λΣ (η, α, υ, x) , then

|a2| ≤ |η||x|
√
x√

|(α(2+q)−1)(1+q+q2)ηx2ψ3−[ηx2+
(2α−1)

2 (3x2−1)](2α−1)(1+q)2ψ2
2|
,

and

|a3| ≤
|η| |x|

(α(2 + q)− 1) (1 + q + q2)ψ3
+

|η|2 x2

(1 + q)2 (2α− 1)
2
ψ2

2

.

where ψk, k ∈ {2, 3}, are given by (1.10).

For bk =
(
n+1
n+k

)δ
(δ > 0, n ≥ 0) , we obtain the following corollary.

Corollary 2.4. Let the function f given by (1.1) belongs to the class f ∈
Iq,λΣ (η, α, δ, n, x) , then
|a2| ≤

|η||x|
√
x√∣∣∣(α(2+q)−1)(1+q+q2)ηx2 [3,q]!

[λ+1,q]2
(n+1
n+3 )

δ −[ηx2+
(2α−1)

2 (3x2−1)](2α−1)(1+q)2
([2,q]!)2

([λ+1,q])2
(n+1
n+2 )

2δ
∣∣∣ ,

and

|a3| ≤ |η||x|[λ+1,q]2(n+3)δ

(α(2+q)−1)(1+q+q2)[3,q]!(n+1)δ
+ |η|2(x[λ+1,q])2(n+2)2δ

(1+q)2(2α−1)2([2,q]!)2(n+1)2δ
.

If we take bk = mk−1

(k−1)!e
−m (m > 0) we get the following special case.

Corollary 2.5. Let the function f given by (1.1) belongs to the class f ∈
Pq,λΣ (η, α,m, x) , then
|a2| ≤

|η||x|
√
x√∣∣∣(α(2+q)−1)(1+q+q2)ηx2 [3,q]!

2[λ+1,q]2
m2e−m−[ηx2+

(2α−1)
2 (3x2−1)](2α−1)(1+q)2

([2,q]!)2

([λ+1,q])2
m2e−2m

∣∣∣ ,
and

|a3| ≤ 2|η||x|[λ+1,q]2
(α(2+q)−1)(1+q+q2)[3,q]!m2e−m + |η|2x2([λ+1,q])2

(1+q)2(2α−1)2([2,q]!)2m2e−2m .

Putting bk =
[

1+`+δ(k−1)
1+`

]m
(m ∈ Z, ` ≥ 0, δ ≥ 0) we get the following result.

Corollary 2.6. Let the function f given by (1.1) belongs to the class f ∈
Bq,λΣ (η, α,m, `, δ, x) , then
|a2| ≤

|η||x|
√
x√∣∣∣∣(α(2+q)−1)(1+q+q2)ηx2 [3,q]!

[λ+1,q]2
[
1+̀+2δ
1+` ]m−[ηx2+

(2α−1)
2 (3x2−1)](2α−1)(1+q)2

([2,q]!)2

([λ+1,q])2
[
1+̀+δ
1+` ]2m

∣∣∣∣
,

and

|a3| ≤ |η||x|[λ+1,q]2[1+`]m

(α(2+q)−1)(1+q+q2)[3,q]![1+`+2δ]m + |η|2x2([λ+1,q])2[1+`]2m

(1+q)2(2α−1)2([2,q]!)2[1+`+δ]2m
.

For bk =
(
k+m−2
m−1

)
θk−1 (1− θ)m (m ≥ 1, 0 < θ < 1) , we obtain the following

corollary.
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Corollary 2.7. Let the function f given by (1.1) belongs to the class f ∈
Ψq,λ

Σ (η, α,m, θ, x) , then

|a2| ≤
|η||x|

√
x√

A
,

where

A =
∣∣∣(α(2 + q)− 1)(1 + q + q2)ηx2 [3, q]!

2[λ+ 1, q]2
m(m+ 1)θ2(1− θ)m

−[ηx2 +
(2α− 1)

2
(3x2 − 1)](2α− 1)(1 + q)2 ([2, q]!)2

([λ+ 1, q])2
m2θ2(1− θ)2m

∣∣∣
and

|a3| ≤ 2|η||x|[λ+1,q]2
(α(2+q)−1)(1+q+q2)[3,q]!m(m+1)θ2(1−θ)m + |η|2x2([λ+1,q])2

(1+q)2(2α−1)2m2θ2(1−θ)2m([2,q]!)2
.

3. Fekete-Szegő problem for the function class F q,λΣ (η;α, h;x)

Theorem 3.1. If the function f given by (1.1) belongs to the class Fq,λΣ (η, α, h, x),
and η ∈ C∗, then ∣∣a3 − µa2

2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) , (3.1)

where

K = (1−µ)ηx2

2[(α(2+q)−1)(1+q+q2)ηx2φ3−[ηx2+
(2α−1)

2 (3x2−1)](2α−1)(1+q)2φ2
2]
, (3.2)

and

L =
1

2 (α(2 + q)− 1) (1 + q + q2)φ3
,

where µ ∈ C, and φk, k ∈ {2, 3}, are given by (1.7).

Proof. If f ∈ Fq,λΣ (η, α, h, x). As in the proof of Theorem 2.1, from (2.8) and (2.11),
we have

a3 − a2
2 =

ηP1(x) (r2 − s2)

2 (α(2 + q)− 1) (1 + q + q2)φ3
, (3.3)

and multiplying (2.10) by (1− µ) we get

(1− µ) a2
2 =

(1−µ)η2P 3
1 (x)(r2+s2)

2[(α(2+q)−1)(1+q+q2)ηP 2
1 (x)φ3−[ηP 2

1 (x)+(2α−1)P2(x)](2α−1)(1+q)2φ2
2]
. (3.4)

Adding (3.3) and (3.4) leads to

a3 − µa2
2 = ηh2 [(K + L) r2 + (K − L) s2] , (3.5)

where K and L are given by (3.2), and taking the absolute value of (3.5), from (2.1)
we obtain the inequality (3.1). The proof is complete. �

Remark 3.2. A simple computation shows that the inequality |K| ≤ L is equivalent
to

|µ− 1| ≤

∣∣∣∣∣∣1−
[
ηx2 + (2α−1)

2 (3x2 − 1)
]

(2α− 1) (1 + q)2φ2
2

ηx2 (α(2 + q)− 1) (1 + q + q2)φ3

∣∣∣∣∣∣ ,
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therefore, from Theorem 3.1 we get the next result. If the function f given by (1.1)

belongs to the class Fq,λΣ (η;α, h;x), and η ∈ C∗, then∣∣a3 − µa2
2

∣∣ ≤ ηx

(α(2 + q)− 1) (1 + q + q2)φ3
,

where µ ∈ C, with

|µ− 1| ≤

∣∣∣∣∣∣1−
[
ηx2 + (2α−1)

2 (3x2 − 1)
]

(2α− 1) (1 + q)2φ2
2

ηx2 (α(2 + q)− 1) (1 + q + q2)φ3

∣∣∣∣∣∣ ,
and φk, k ∈ {2, 3}, are given by (1.7).

We conclude our result with the following consequence of Theorem 3.1. Putting
q → 1−, we obtain the following corollary.

Corollary 3.3. If the function f given by (1.1) belongs to the class Fq,λΣ (η;α, h;x),
and µ ∈ C, η ∈ C∗, then∣∣a3 − µa2

2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) ,
where

K =
(1− µ) ηx2

36(3α−1)ηx2b3
(λ+1)2

− 32
[
ηx2 + (2α−1)

2 (3x2 − 1)
]

(2α−1)b22
(λ+1)2

,

and

L =
ηx (λ+ 1)2

36 (3α− 1) b3
.

If we put bk = (−1)k−1Γ(υ+1)
4k−1(k−1)!Γ(k+υ)

(υ > 0), we obtain the following result.

Corollary 3.4. If the function f given by (1.1) belongs to the class Bq,λΣ (η, α, υ, x),
and η ∈ C∗, then ∣∣a3 − µa2

2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) ,
where

K = (1−µ)ηx2

2[(α(2+q)−1)(1+q+q2)ηx2ψ3−[ηx2+
(2α−1)

2 (3x2−1)](2α−1)(1+q)2ψ2
2]
,

and

L =
1

2 (α(2 + q)− 1) (1 + q + q2)ψ3
,

where µ ∈ C, and ψk, k ∈ {2, 3}, are given by (1.10).

Considering bk =
(
n+1
n+k

)δ
(δ > 0, n ≥ 0) , we get the following corollary.

Corollary 3.5. If the function f given by (1.1) belongs to the class Iq,λΣ (η, α, δ, n, x),
and µ ∈ C, η ∈ C∗, then∣∣a3 − µa2

2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) ,
where

K= (1−µ)ηx2

2
[
(α(2+q)−1)(1+q+q2)ηx2 [3,q]!

[λ+1,q]2
(n+1
n+3 )

δ−[ηx2+
(2α−1)

2 (3x2−1)](2α−1)(1+q)2
([2,q]!)2

([λ+1,q])2
(n+1
n+2 )

2δ
] ,
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and

L =
[λ+ 1, q]2 (n+ 3)

δ

2 (α(2 + q)− 1) (1 + q + q2) [3, q]! (n+ 1)
δ
.

If we take bk = mk−1

(k−1)!e
−m (m > 0), we get the following case.

Corollary 3.6. If the function f given by (1.1) belongs to the class Pq,λΣ (η, α,m, x),
and µ ∈ C, η ∈ C∗, then∣∣a3 − µa2

2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) ,
where

K= (1−µ)ηx2

2
[
(α(2+q)−1)(1+q+q2)ηx2 [3,q]!

2[λ+1,q]2
m2e−m−[ηx2+

(2α−1)
2 (3x2−1)](2α−1)(1+q)2

([2,q]!)2

([λ+1,q])2
m2e−2m

] ,
and

L =
[λ+ 1, q]2

(α(2 + q)− 1) (1 + q + q2) [3, q]!m2e−m
.

Putting bk =
[

1+`+δ(k−1)
1+`

]m
(m ∈ Z, ` ≥ 0, δ ≥ 0) , we obtain the following

result.

Corollary 3.7. If the function f given by (1.1) belongs to the class Bq,λΣ (η, α,m, `, δ, x),
and µ ∈ C, η ∈ C∗, then∣∣a3 − µa2

2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) ,
where

K =
(1− µ) ηx2

B
,

where

B = 2

[
(α(2 + q)− 1)

(
1 + q + q2

)
ηx2 [3, q]!

[λ+ 1, q]2

[
1+`+2δ

1+`

]m
−
[
ηx2 +

(2α− 1)

2
(3x2 − 1)

]
(2α− 1) (1 + q)2 ([2, q]!)

2

([λ+ 1, q])
2

[
1+`+δ

1+`

]2m]
and

L =
[λ+ 1, q]2 [1 + `]

m

2 (α(2 + q)− 1) (1 + q + q2) [3, q]! [1 + `+ 2δ]
m .

For bk =
(
k+m−2
m−1

)
θk−1 (1− θ)m (m ≥ 1, 0 < θ < 1) , we get the following spe-

cial case.

Corollary 3.8. If the function f given by (1.1) belongs to the class Ψq,λ
Σ (η, α,m, θ, x),

and µ ∈ C, η ∈ C∗, then∣∣a3 − µa2
2

∣∣ ≤ |η||x| (|K + L|+ |K − L|) ,
where

K =
(1− µ)ηx2

C
,
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where

C = 2[(α(2 + q)− 1)(1 + q + q2)ηx2 [3, q]!

2[λ+ 1, q]2
m(m+ 1)θ2(1− θ)m

− [ηx2 +
(2α− 1)

2
(3x2 − 1)](2α− 1)(1 + q)2 ([2, q]!)2

([λ+ 1, q])2
m2θ2(1− θ)2m]

and

L =
[λ+ 1, q]2

2 (α(2 + q)− 1) (1 + q + q2) [3, q]!m(m+ 1)θ2 (1− θ)m
,

Now, the following examples are presented here to illustrate our results. For
η = 1 and α = 1. Therefore, from Theorem 2.1 and Theorem 3.1.

Example 3.9. Let the function f given by (1.1) belongs to the class Fq,λΣ (1; 1, h;x),
then

|a2| ≤
|x|
√
x√∣∣(1 + q) (1 + q + q2)x2φ3 − 1

2 (5x2 − 1)(1 + q)2φ2
2

∣∣ ,
|a3| ≤

|x|
(1 + q) (1 + q + q2)φ3

+
x2

(1 + q)2φ2
2

,

and ∣∣a3 − µa2
2

∣∣ ≤ |x| (|K + L|+ |K − L|) ,
with

K =
(1− µ)x3

2
[
(1 + q) (1 + q + q2)x2φ3 − 1

2 (5x2 − 1)(1 + q)2φ2
2

] ,
and

L =
x

2 (1 + q) (1 + q + q2)φ3
,

where µ ∈ C and φk, k ∈ {2, 3}, are given by (1.7).

For η = 1 and α = 0. Therefore, from Theorem 2.1 and Theorem 3.1.

Example 3.10. Let the function f given by (1.1) belongs to the class Fq,λΣ (1; 0, h;x),
then

|a2| ≤
|x|
√
x√∣∣[− (1 + q + q2)x2φ3 + 1
2 (1− x2)(1 + q)2φ2

2

]∣∣ ,
|a3| ≤ −

|x|
(1 + q + q2)φ3

+
x2

(1 + q)2φ2
2

,

and ∣∣a3 − µa2
2

∣∣ ≤ |x| (|K + L|+ |K − L|) ,
with

K =
(1− µ)x3

2
[
− (1 + q + q2)x2φ3 + 1

2 (1− x2)(1 + q)2φ2
2

] ,

and
L = − x

2 (1 + q + q2)φ3
,

where µ ∈ C and φk, k ∈ {2, 3}, are given by (1.7).
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Remark 3.11. We mention that all the above estimations for the coefficients |a2|, |a3|,
and Fekete-Szegő problem for the function class Fq,λΣ (η;α, h;x) are not sharp. To
find the sharp upper bounds for the above functionals remains an interesting open
problem, as well as those for |an|, n ≥ 4.
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