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An algorithm for solving a control problem
for Kolmogorov systems

Alexandru Hofman

Abstract. In this paper, a numerical algorithm is used for solving control prob-
lems related to Kolmogorov systems. It is proved the convergence of the algorithm
and by this it is re-obtained, by a numerical approach, the controllability of the
investigated problems.
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1. Introduction

Many real processes must be controlled to drive their evolution completion ac-
cording to a desired plan. Mathematically, a control problem returns to determination
of one or several parameters of the equation or system of equations so that the solution
satisfies certain conditions, others than initial or boundary conditions.

The Kolmogorov system was introduced as a generalization of a model given by
the mathematician Volterra from population dynamics. It operates at the general per
capita rate of two species that interact with each other and has the following form:{

x′ = xf(x, y)

y′ = yg(x, y).

Here, the rates f and g are given in terms of parameters that cannot be changed, and
others that can be modified in order to control the evolution. Kolmogorov systems
arises in many areas, such as population dynamics, ecological balance and the spread
of epidemics (for such models see [1], [3], [8]).
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The Lotka-Volterra system, also known as prey-predator system, consists in a
pair of nonlinear differential equations dynamically describing the interaction between
two species. Populations change over time according to the system of equations

dx

dt
= αx− βxy

dy

dt
= δxy − γy,

where x(t) represents the prey population, y(t) predator population,
dx

dt
,
dy

dt
represents

the growth rates of the two populations, t time variable and α, β, δ, γ are real positive
parameters that describe the interaction of the two species.

In mathematical epidemiology, the SIR model (1.1) is well known. Here, S(t)
represented the number of susceptible population, I(t) the number of population
infected and R(t) this number of recovered. Significant advances have been made by
Kermack and McKendrick, where they studied those circumstances (represented by
values of certain parameters) when behaviour of susceptible population falls below a
threshold value.

The equations governing the SIR model are as follows:
S′(t) = −aS(t)I(t)

I ′(t) = aS(t)I(t)− bI(t)

R′(t) = bI(t).

(1.1)

The purpose of this paper is to present a numerical algorithm for solving control
problems related to Kolmogorov systems. It is proved the convergence of the algo-
rithm and by this it is reobtained, by a numerical approach, the controllability of the
problems.

2. Main results

In what follows, we study the dynamics of the growth rates (not the per capita
one) in order for certain conditions to be fulfilled. Consider the problem

x′(t) = x(t)f(x(t), y(t))− λ
y′(t) = y(t)g(x(t), y(t))

x(0) = x0, y(0) = y0,

(2.1)

where λ is constant.
Here, the controllability condition is ϕ(x, y) = 0, where ϕ : C([0, T ],R2) → R
represents a continuous function (for example, ϕ(x, y) = αx(T ) + βy(T ) − γ with
α, β, γ ∈ R).

The initial value problem (2.1) has a unique solution (S1(λ), S2(λ)), for any fixed
λ, which is continuous with respect to λ.

Assume the following conditions hold:

(i) ϕ(x, y) < 0 for λ = 0;
(ii) ϕ(x, y) ≥ 0 for λ = 1.
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The following iterative algorithm is aimed to bring us as close as possible to a
value of λ that corresponds to a solution of the control problem.

The algorithm:

Step 1. Initialize λ0 := 0, λ0 := 1

Step 2. At any iteration k ≥ 1, define λk :=
λk−1 + λk−1

2
and solve system (2.1) for

λ := λk. Obtain the numerical solution

(xk, yk) = (S1(λk), S2(λk)).

If ϕ(xk, yk) < 0, then put λk = λ, λk = λk−1, otherwise, take λk = λk−1, λk = λ, we
make k = k + 1 and we repeat Step 2.

Step 3. The algorithm stops if
|ϕ(xk, yk)| < δ,

where 0 < δ < 1 is the admitted error.
To demonstrate convergence we need the following two lemmas of continuous

dependence on parameter.

Lemma 2.1. Assume that f, g : R2 → R are Lipschitz continuous on R2 and |f | ≤ Cf ,
|g| ≤ Cg. Then for any λ ∈ R, the Cauchy problem (2.1) has a unique solution that
depends continuously on the parameter λ.

Proof. Problem (2.1) is equivalent to the Volterra integral system{
x(t) = x0 +

∫ t
0
x(s)f(x(s), y(s))ds− λt

y(t) = y0 +
∫ t
0
y(s)g(x(s), y(s))ds,

(2.2)

which is a fixed point equation in (x, y) , on the space C([0, T ];R2).
For the proof we first show the boundedness of solutions.

I. Boundedness of solutions
We have to prove that there exist two constants C1, C2 > 0 such that

|S1(λ)(t)| ≤ C1 and |S2(λ)(t)| ≤ C2,

for every λ ∈ [0, 1] and t ∈ [0, T ]. Since |f | ≤ Cf , |g| ≤ Cg, the first equation in (2.2)
yields

|x(t)| ≤ |x0|+
∫ t

0

|x(s)||f(x(s), y(s))|ds+ T

≤ |x0|+ T + Cf

∫ t

0

|x(s)|ds.

From Gronwall‘s inequality(see [2]), we obtain

|x(t)| ≤ (|x0|+ T )eCfT =: C1, t ∈ [0, T ] .

Under a similar reasoning we find C2 := (|y0| + T )eCgT such that |y(t)| ≤ C2 for
t ∈ [0, T ] .
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II. Existence and uniqueness

Let αij , i, j = 1, 2 be the Lipschitz constants for f(x, y) and g(x, y) with respect x
and y.

Denote

A(x, y)(t) = x0 +

∫ t

0

x(s)f(x(s), y(s))ds− λt,

B(x, y)(t) = y0 +

∫ t

0

y(s)g(x(s), y(s))ds.

We prove that the operator N := (A,B) is a contraction on C
(
[0, T ] ;R2

)
with respect

to the Bielecki norm ‖(x, y)‖θ := ‖x‖θ + ‖y‖θ, where

‖x‖θ := max
t∈[0,T ]

(
|x (t)| e−θt

)
, ‖y‖θ := max

t∈[0,T ]

(
|y (t)| e−θt

)
.

We have

|A(x, y)(t)−A(x̄, ȳ)(t)| ≤
∫ t

0

|x(s)f(x(s), y(s))− x̄(s)f(x̄(s), ȳ(s))|ds

≤
∫ t

0

|x(s)f(x(s), y(s))− x(s)f(x̄(s), ȳ(s))|ds

+

∫ t

0

|x(s)f(x̄(s), ȳ(s))− x̄(s)f(x̄(s), ȳ(s))|ds

≤ C1

∫ t

0

(α11|x(s)− x̄(s)|+ α12|y(s)− ȳ(s)|)ds

+ Cf

∫ t

0

|x(s)− x̄(s)|ds.

Next

|A(x, y)(t)−A(x̄, ȳ)(t)|

≤ C1

∫ t

0

(α11|x(s)− x̄(s)|e−θseθs + α12|y(s)− ȳ(s)|e−θseθs)ds

+Cf

∫ t

0

|x(s)− x̄(s)|e−θseθsds

≤ (C1α11 + Cf ) ‖x− x‖θ
∫ t

0

eθsds+ C1α12 ‖y − y‖θ
∫ t

0

eθsds

≤ C1α11 + Cf
θ

‖x− x‖θ e
θt +

C1α12

θ
‖y − y‖θ e

θt.

Now, multipling the above relation with e−θt and taking the supremum over t, we
obtain

||A(x, y)−A(x̄, ȳ)||θ ≤
C1α11 + Cf

θ
‖x− x‖θ +

C1α12

θ
‖y − y‖θ . (2.3)
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Similarly

||B(x, y)−B(x̄, ȳ)||θ ≤
C2α21

θ
||x− x̄||θ +

C2α22 + Cg
θ

||y − ȳ||θ. (2.4)

Further, adding relations (2.3) and (2.4), we deduce

‖(A(x, y), B(x, y))− (A (x, y) , B(x, y))‖θ ≤ C1||x− x̄||θ + C2||y − ȳ||θ,

where

C1 =
C1α11 + Cf

θ
+
C2α21

θ
,

C2 =
C1α12

θ
+
C2α22 + Cg

θ
.

Therefore,

||N(x, y)−N(x̄, ȳ)||θ ≤ L (||x− x̄||θ + ||y − ȳ||θ) = L||(x, y)− (x̄, ȳ)||θ,

where L := max{C1, C2}.
If we now take a sufficiently large number θ, then L < 1, and thus the operator

N = (A,B) is a contraction on the space C([0, T ];R2) endowed with the Bielecki
norm || · ||θ. Therefore, Banach contraction principle applies and gives the result.

III. Continuous dependence of parameter λ

Using (2.2), where, first x = S1(λ) and y = S2(λ), and next x = S1(µ) and y = S2(µ),
we have

|S1(λ)(t)− S1(µ)(t)|

≤
∫ t

0

|S1(λ)(s)f(S1(λ)(s), S2(λ)(s))− S1(µ)(s)f(S1(µ)(s), S2(µ)(s))|ds

+|λ− µ|T

≤
∫ t

0

|S1(λ)(s)f(S1(λ)(s), S2(λ)(s))− S1(λ)(s)f(S1(µ)(s), S2(µ)(s))|ds

+

∫ t

0

|S1(λ)(s)f(S1(µ)(s), S2(µ)(s))− S1(µ)(s)f(S1(µ)(s), S2(µ)(s))|ds

+|λ− µ|T

≤
∫ t

0

|S1(λ)(s)||f(S1(λ)(s), S2(λ)(s))− f(S1(µ)(s), S2(µ)(s))|ds

+

∫ t

0

|f(S1(µ)(s), S2(µ)(s))||S1(λ)(s)− S1(µ)(s)|ds+ |λ− µ|T.
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Furthermore, using the Lipschitz property of f, g, and their boundedness, we obtain

|S1(λ)(t)− S1(µ)(t)|

≤ C1

∫ t

0

(α11|S1(λ)(s)− S1(µ)(s)|+ α12|S2(λ)(s)− S2(µ)(s)|)ds

+Cf

∫ t

0

|S1(λ)(s)− S1(µ)(s)|ds+ |λ− µ|T

≤ C1

∫ t

0

(α11|S1(λ)(s)− S1(µ)(s)|e−θseθs + α12|S2(λ)(s)− S2(µ)(s)|e−θseθs)ds

+Cf

∫ t

0

|S1(λ)(s)− S1(µ)(s)|e−θseθsds+ |λ− µ|T

≤ C1||S1(λ)− S1(µ)||θ
α11

θ
eθt + C1||S2(λ)− S2(µ)||θ

α12

θ
eθt

+
Cf
θ
||S1(λ)− S1(µ)||θeθt + |λ− µ|T.

Thus

|S1(λ)(t)− S1(µ)(t)|

≤ C1α11 + Cf
θ

||S1(λ)− S1(µ)||θeθt +
C1α12

θ
||S2(λ)− S2(µ)||θeθt

+ |λ− µ|T.

Multiply by e−θt, go to the maximum and introduce the Bielecki norm, to obtain

||S1(λ)− S1(µ)||θ ≤
C1α11 + Cf

θ
||S1(λ)− S1(µ)||θ

+
C1α12

θ
||S2(λ)− S2(µ)||θ + |λ− µ|T.

Similarly

||S2(λ)− S2(µ)||θ ≤
C2α21

θ
||S1(λ)− S1(µ)||θ

+
C2α22 + Cg

θ
||S2(λ)− S2(µ)||θ.

Summing up, gives

||S1(λ)− S1(µ)||θ + ||S2(λ)− S2(µ)||θ

≤ C1α11 + Cf + C2α21

θ
||S1(λ)− S1(µ)||θ

+
C1α12 + C2α22 + Cg

θ
||S2(λ)− S2(µ)||θ + |λ− µ|T,

whence

||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ ≤Mθ||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ
+ |λ− µ|T,



An algorithm for solving a control problem 337

where

Mθ = max

{
C1α11 + Cf + C2α21

θ
,
C1α12 + C2α22 + Cg

θ

}
.

Notice that Mθ → 0, as θ → +∞, so if θ is large enough, one has Mθ < 1. Then

(1−Mθ)||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ ≤ |λ− µ|T,
where since 1−Mθ > 0 we get that

||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ ≤
1

1−Mθ
|λ− µ|T.

So, if µ → λ, then (S1(µ), S2(µ)) → (S1(λ), S2(λ)), which means that the solution
depends continuously on the parameter λ. �

Alternatively, we have

Lemma 2.2. Let f, g : R2 → R be such that the functions xf(x, y) and yg(x, y) are
Lipschitz continuous on the entire R2. Then for any λ ∈ R, the Cauchy problem (2.2)
has a unique solution that depends continuously on the parameter λ.

Proof. I. Existence and uniqueness. Let αij , i, j = 1, 2 be the Lipschitz constants of
the functions xf(x, y) and yg(x, y). Hence

|xf(x, y)− x̄f(x̄, ȳ)| ≤ α11 |x− x̄|+ α12 |y − ȳ| ,
|yg(x, y)− ȳg(x̄, ȳ)| ≤ α21 |x− x̄|+ α22 |y − ȳ| .

Using the notations from the proof of Lemma 2.1, we have that the operator N =
(A,B) is a contraction on the space C

(
[0, T ] ;R2

)
with respect to a suitable Bielecki

norm. Indeed, one has

|A(x, y)(t)−A(x̄, ȳ)(t)|

≤
∫ t

0

|x(s)f(x(s), y(s))− x̄(s)f(x̄(s), ȳ(s))|ds

≤
∫ t

0

(α11|x(s)− x̄(s)|+ α12|y(s)− ȳ(s)|)ds

≤
∫ t

0

(α11|x(s)− x̄(s)|e−θseθs + α12|y(s)− ȳ(s)|e−θseθs)ds

≤ α11

θ
||x− x̄||θeθt +

α12

θ
||y − ȳ||θeθt.

Multiplying by e−θt, and taking the maximum, we obtain

||A(x, y)−A(x̄, ȳ)||θ ≤ α11

θ
||x− x̄||θ +

α12

θ
||y − ȳ||θ,

||B(x, y)−B(x̄, ȳ)||θ ≤ α21

θ
||x− x̄||θ +

α22

θ
||y − ȳ||θ.

Summing up gives

||A(x, y)−A(x̄, ȳ)||θ + ||B(x, y)−B(x̄, ȳ)||θ

≤ α11 + α21

θ
||x− x̄||θ +

α12 + α22

θ
||y − ȳ||θ
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So
||N(x, y)−N(x̄, ȳ)||θ ≤ L(||x− x̄||θ + ||y − ȳ||θ),

where

L = max

{
α11 + α21

θ
,
α12 + α22

θ

}
.

It turns out that

||N(x, y)−N(x̄, ȳ)||θ ≤ L||(x, y)− (x̄, ȳ)||θ.
Here again if θ is chosen large enough, then L < 1, and so N = (A,B) is a contraction
on C([0, T ];R2) endowed with the Bielecki norm ‖.‖θ. It follows that the Cauchy
problem has a unique solution.

II. Continuous dependence of parameter λ. Using (2.2) where x = S1(λ) and
y = S2(λ), we have

|S1(λ)(t)− S1(µ)(t)|

≤
∫ t

0

|S1(λ)(s)f(S1(λ)(s), S2(λ)(s))− S1(µ)(s)f(S1(µ)(s), S2(µ)(s))|ds

+|λ− µ|T

≤
∫ t

0

(α11|S1(λ)(s)− S1(µ)(s)|+ α12|S2(λ)(s)− S2(µ)(s)|)ds+ |λ− µ|T

≤
∫ t

0

(α11|S1(λ)(s)− S1(µ)(s)|e−θseθs + α12|S2(λ)(s)− S2(µ)(s)|e−θseθs)ds

+|λ− µ|T.
Then

|S1(λ)(t)− S1(µ)(t)| ≤ α11

θ
||S1(λ)− S1(µ)||θeθt +

α12

θ
||S2(λ)− S2(µ)||θeθt

+ |λ− µ|T.
It follows that

||S1(λ)− S1(µ)||θ ≤
α11

θ
||S1(λ)− S1(µ)||θ +

α12

θ
||S2(λ)− S2(µ)||θ

+ |λ− µ|T.
Similarly

||S2(λ)− S2(µ)||θ ≤
α21

θ
||S1(λ)− S1(µ)||θ +

α22

θ
||S2(λ)− S2(µ)||θ.

Summing up gives

||S1(λ)− S1(µ)||θ + ||S2(λ)− S2(µ)||θ

≤ α11 + α21

θ
||S1(λ)− S1(µ)||θ +

α12 + α22

θ
||S2(λ)− S2(µ)||θ

+ |λ− µ|T.
Thus

||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ
≤ mθ||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ + |λ− µ|T,
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where

mθ := max

{
α11 + α21

θ
,
α12 + α22

θ

}
.

Then we have

(1−mθ)||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ ≤ |λ− µ|T.
Here again, if θ → +∞, then mθ → 0 and thus one can choose θ > 0 sufficiently large
that mθ < 1. Then

||(S1(λ), S2(λ))− (S1(µ), S2(µ))||θ ≤
1

1−mθ
|λ− µ|T.

So, if µ → λ, then (S1(µ), S2(µ)) → (S1(λ), S2(λ)), which proves the continuous
dependence of the solution of λ. �

Using Lemmas 2.1 and 2.2 we obtain two convergence results regarding the above
algorithm.

Theorem 2.3. Assume that f, g : R2 → R are Lipschitz continuous on R2 and |f | ≤
Cf , |g| ≤ Cg. Then the algorithm is convergent to a solution of the control problem.

Proof. For k ≥ 1 we have the solution (xk, yk) corresponding to λ = λk. In addition,
the algorithm gives an increasing sequence (λk) and a decreasing sequence (λk) with
the following properties

ϕ(S1(λk), S2(λk)) < 0, ϕ(S1(λk), S2(λk)) ≥ 0, (2.5)

and

λk − λk =
1

2k
. (2.6)

The two sequences being monotone and bounded are convergent. Moreover, from (2.6)
they have the same limit λ∗. Using the continuity of ϕ and of S1, S2 with respect to
λ, and (2.5) we deduce that

ϕ(S1(λ∗), S2(λ∗)) = 0. (2.7)

Finally, denote x∗ := S1(λ∗) and y∗ := S2(λ∗). The (2.7) shows that (x∗, y∗, λ∗) is a
solution the control problem. �

Similarly, using Lemma 2.2, one can prove the follwoing result.

Theorem 2.4. Let f, g : R2 → R be such that the functions xf(x, y) and yg(x, y) are
Lipschitz continuous on the entire R2. Then the algorithm is convergent to a solution
of the control problem.
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[5] Haplea, I.-Ş., Parajdi, L.-G., Precup, R., On the controllability of a system modeling cell
dynamics related to leukemia, Symmetry, 13(2021), 1867.

[6] Hofman, A., Precup, R., On some control problems for Kolmogorov type systems, Math-
ematical Modelling and Control, 2(2022), no. 3, 90-99.

[7] Kolmogorov, A.N., Sulla teoria di Volterra della lotta per l’esistenza, Giornale dell Isti-
tuto Italiano degli Attuari, 7(1936), 74-80.

[8] Murray, J.D., An Introduction to Mathematical Biology, Vol. 1, Springer, New York,
2011.

[9] Precup, R., On some applications of the controllability principle for fixed point equations,
Results Appl. Math., 13(2022), 100236.

[10] Sigmund, K., Kolmogorov and Population Dynamics, In: É. Charpentier, A. Lesne, N.K.
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