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Abstract. The purpose of this paper is to describe the geodesics of the three-
dimensional Bolyai-Lobachevskian hyperbolic space. We also determine the equa-
tion of the orthogonal surfaces and the scalar curvature of the surfaces of revo-
lution. The metric applied is the Lobachevskian metric extended into three di-
mensions. During the analysis we use Cartesian and cylindrical coordinates. This
article is a continuation of the paper [4].
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1. General context

In the literature exists several models for hyperbolic geometry, see [1]-[10]. The
aim of this paper is to present a three dimensional model using [8] to describe some
classical and new properties.

We consider the following metric

ds2 = cosh2 z

k

(
cosh2 y

k
dx2 + dy2

)
+ dz2, (1.1)

where k is the parameter of the three-dimensional hyperbolic space, and x, y, z are
the Cartesian coordinates of any P (x, y, z) point. The usage of Cartesian coordinates
is justified by the existence of such hyperbolic lines which can also be considered
Euclidean lines. These lines include the coordinate axes illustrated in figure 1. Note
that the x-value can only be determined by axis Ox. Figure 1 also represents how the
coordinates of any P (x, y, z) point are determined: x = OP2, y = P1P2, z = PP1.

From metric (1.1) we can obtain two possible symmetry operations. These consist
of the reflections across the coordinate planes and the translation of the origin along
the direction of the x-axis (the values y and z are not modified).
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Based on metric (1.1), the geodesic lines verify

cosh2 z

k
cosh2 y

k

dx

ds
= C1, (1.2)

where C1 is constant. From this we obtain

d

ds

(
cosh2 z

k

dy

ds

)
− 1

k
cosh2 z

k
sinh

y

k
cosh

y

k

(
dx

ds

)2

= 0, (1.3)

d2z

ds2
− 1

k
sinh

z

k
cosh

z

k

[
cosh2 y

k

(
dx

ds

)2

+

(
dy

ds

)2
]

= 0. (1.4)

Figure 1

If we use x instead of variable s in (1.2), we can write equations (1.3) and (1.4)
in the following form:

d2 tanh y
k

dx2
− 1

k2
tanh

y

k
= 0, (1.5)

d

dx

(
1

cosh2 y
k

d tanh z
k

dx

)
− 1

k2

[
1 + k2 cosh2 y

k

(
d tanh y

k

dx

)2
]

tanh
z

k
= 0. (1.6)

If we use variable x, we can apply the results obtained in the hyperbolic plane
by determining the function y = y(x). Moreover, we claim that the projections of
the geodesics in the three-dimensional space to the xOy plane are geodesics of the
two-dimensional plane.

Using (1.1) and (1.2), we get

1

C2
1

=
1

cosh2 z
k

[
1

cosh2 y
k

+ k2

(
d tanh y

k

dx

)2
]

+ k2 1

cosh4 y
k

(
d tanh z

k

dx

)2

. (1.7)
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The curvature of the geodesics equals zero,

1

rg
= 0. (1.8)

Metric (1.1) can also be obtained by using the metric

ds2 = dx2
1 + dx2

2 + dx2
3 − dx2

0 (1.9)

defined in the four-dimensional pseudo-Euclidean space, with the help of the following
equations:

x2
1 + x2

2 + x2
3 − x2

0 = −k2, (1.10)

x1 = k sinh
x

k
cosh

y

k
cosh

z

k
, x2 = k sinh

y

k
cosh

z

k
, (1.11)

x3 = k sinh
z

k
, x0 = k cosh

x

k
cosh

y

k
cosh

z

k
.

If we use equations

x1 = k cosϕ sinh
ρ

k
cosh

z

k
, x2 = k sinϕ sinh

ρ

k
cosh

z

k
, (1.12)

x3 = k sinh
z

k
, x0 = k cosh

ρ

k
cosh

z

k
,

we obtain metric

ds2 = cosh2 z

k

(
dρ2 + k2 sinh2 ρ

k
dϕ2

)
+ dz2, (1.13)

where ρ, ϕ and z represent cylindrical coordinates (figure 1).
Metric (1.13) justifies that the rotation around axis Oz (the constant choices for

ρ and z) is a symmetry operation.
By choosing s as variable, the geodesic lines verify

sinh2 ρ

k
cosh2 z

k

dρ

ds
= C2, (1.14)

where C2 is constant. We can also write

d2ρ

ds2
+

2

k
tanh

z

k

dρ

ds

dz

ds
− k sinh

ρ

k
cosh

ρ

k

(
dϕ

ds

)2

= 0, (1.15)

d2z

ds2
− 1

k
sinh

z

k
cosh

z

k

[(
dρ

ds

)2

+ k2 sinh2 ρ

k

(
dϕ

ds

)2
]

= 0. (1.16)

If we consider ϕ as variable, we will use the following differential equations:

d2 coth ρ
k

dϕ2
+ coth

ρ

k
= 0, (1.17)

d

dϕ

(
1

sinh2 ρ
k

d tanh z
k

dϕ

)
− tanh

z

k

[
1 + k2

(
d coth ρ

k

dϕ

)2
]

= 0. (1.18)

Using (1.13) and (1.14), we obtain

1

C2
2

= k2

{
1

cosh2 z
k

[
1

sinh2 ρ
k

+ k2

(
d coth ρ

k

dϕ

)2
]

+
1

sinh4 ρ
k

(
d tanh z

k

dϕ

)2
}
. (1.19)
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In the following sections we describe the different types of lines. Note that each
line verifies the differential equations which characterize the geodesics. Also, C1 and C2

are constant values. During the analysis our choice of coordinates may vary depending
on the form of calculations.

2. Lines crossing the origin

Let us consider the line passing through points O and P represented in figure 1,
where ϑ is the angle of intersection with axis Oz. In the OP1P right triangle we can
write

tanh
z

k
= cotϑ sinh

ρ

k
. (2.1)

The projection of line OP onto the xOy plane satisfies the following equation:

tanh
y

k
= tanϕ sinh

x

k
. (2.2)

Using (1.11) and (1.12), we obtain

cosh
x

k
cosh

y

k
= cosh

ρ

k
.

These formulas imply

tanh
z

k
=

cotϑ sinh x
k

cosϕ
√

1− tan2 ϕ sinh2 x
k

. (2.3)

The lines verifying equations (2.2) and (2.3) also satisfy the (1.5) and (1.6) differential
equations. Using (1.7), we get

C1 = cosϕ sinϑ

constant. Therefore, the lines crossing the origin satisfy the conditions mentioned in
the previous section.

In the two-dimensional hyperbolic plane the orthogonal curves of lines crossing
the origin are circles. Based on the rotational symmetry operation, we claim that in the
three-dimensional case the orthogonal surfaces are spheres. By the use of cylindrical
coordinates we can write

cosh
ρ

k
cosh

z

k
= cosh

R

k
. (2.4)

In order to determine the curvature of the sphere surface, we use the metric

ds2 = E(ρ)dρ2 +G(ρ)dϕ2

obtained from equations (1.13) and (2.4), where

E(ρ) =
sinh2 R

k cosh2 R
k

cosh2 ρ
k

(
cosh2 R

k − cosh2 ρ
k

) , G(ρ) = k2 cosh2 R

k
tanh2 ρ

k
.
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The Christoffel symbols of the second kind are as follows:

Γ1
11 =

2 sinh ρ
k cosh ρ

k − cosh2 R
k tanh ρ

k

k
(
cosh2 R

k − cosh2 ρ
k

) , Γ2
12 =

1

k sinh ρ
k cosh ρ

k

,

Γ1
22 = − k

sinh2 R
k cosh2 R

k

tanh
ρ

k

(
cosh2 R

k
− cosh2 ρ

k

)
,

where we used index 1 for ρ and index 2 for ϕ.
The components of the Ricci curvature tensor are

R11 =
dΓ2

12

dρ
+ Γ2

12

(
Γ2

12 − Γ1
11

)
, R22 = −dΓ1

22

dρ
+ Γ1

22

(
Γ2

12 − Γ1
11

)
.

Using the expressions above, we obtain for the scalar curvature

R =
1

E
R11 +

1

G
R22 = − 2

k2 sinh2 R
k

. (2.5)

3. Lines crossing the x-axis

Let us consider the line passing through points P0(a, 0, 0) and P1(0, b, c) illus-
trated in figure 2. If we project this line onto the xOy plane, we get the line passing
through points P0(a, 0, 0) and P2(0, b, 0), which verifies

tanh
y

k
= tanh

b

k

sinh a−x
k

sinh a
k

. (3.1)

The angle of intersection between the lines P0P1 and P0P2 is denoted by δ.

Figure 2

We can obtain the distance d between the points P0(a, 0, 0) and P2(0, b, 0) from

cosh
d

k
= cosh

a

k
cosh

b

k
.
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Furthermore, distance d1 between P0(a, 0, 0) and P3(x, y, 0) verifies

cosh
d1

k
= cosh

a− x
k

cosh
y

k
.

If we consider the P0PP3 right triangle, we can write

tanh
z

k
= tan δ sinh

d1

k
,

while in the right triangle P0P1P2

tanh
c

k
= tan δ sinh

d

k
.

These formulas imply

tanh
z

k
= tanh

c

k

B sinh a−x
k

A

√
1− tanh2 b

k

sinh2 a−x
k

sinh2 a
k

, (3.2)

where

B =

√
1 +

tanh2 b
k

sinh2 a
k

, A =

√
cosh2 a

k
cosh2 b

k
− 1.

Using (1.5) and (1.6) one can easily prove that equations (3.1) and (3.2) determine
geodesic lines. Also, formula (1.13) implies

1

C2
1

=

(
1 +

tanh2 b
k

sinh2 a
k

)(
1 +

tanh2 c
k

cosh2 a
k cosh2 b

k − 1

)
, (3.3)

thus C1 is constant.
Now we determine the orthogonal surface of the family of lines crossing point

P0 ∈ Ox. As the translation of the origin along the direction of the x-axis into point
P0 is a symmetry operation, we obtain spheres with center P0. If we use Cartesian
coordinates, these spheres verify

cosh
x− a
k

cosh
y

k
cosh

z

k
= cosh

R

k
. (3.4)

The curvature of the orthogonal surface is determined by formula (2.5).
As a −→∞, we obtain lines being parallel to the x-axis:

tanh
y

k
= tanh

b

k
e−

x
k , tanh

z

k
=

tanh c
k√

cosh2 b
ke

2x − sinh2 b
k

.

Thus we get

C1 = 1.

If

R = a, (3.5)

by applying equation (3.4), we obtain the equation of a parasphere containing the
origin:

cosh
y

k
cosh

z

k
= e

x
k .
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Therefore the parasphere which contains point P (x0, 0, 0) verifies

cosh
y

k
cosh

z

k
= e

x−x0
k . (3.6)

By using condition (3.5) and equation (2.5), the curvature of the parasphere becomes

R = 0.

This implies that we can use Euclidean geometry in order to study the surface of the
parasphere, fact which was also mentioned by Bolyai in his main work [1].

4. Lines crossing the z-axis

If we consider the set of lines crossing the z-axis, we can differentiate three types
of lines. The first set contains lines crossing the xOy plane, the second set consists
of lines which do not cross the xOy plane, finally, the lines of the third family are
parallel to the xOy plane.

In each case the projections of the lines contain the origin. Note that the rotation
around the z-axis is a symmetry operation. Therefore, we can determine the relevant
lines by using surfaces of revolution which are created by rotating the curves around
the z-axis in the xOy plane (the role of x is taken by ρ). On the other hand, the lines
which cross a projected line onto the xOy plane while being parallel to the z-axis
determine an orthogonal surface perpendicular to the xOy plane. The intersection of
this orthogonal surface and the surface of revolution determines the lines in question.

For fixed ϕ we obtain from metric (1.13)

ds2 = cosh2 z

k
dρ2 + dz2, (4.1)

which describes the orthogonal surfaces.
If we use s as variable, we can write

cosh2 z

k

dρ

ds
= C,

d2z

ds2
− 1

k
sinh

z

k
cosh

z

k

(
dρ

ds

)2

= 0. (4.2)

Then by substituting s with ρ, we obtain the following differential equation:

d2 tanh z
k

dρ2
− 1

k2
tanh

z

k
= 0. (4.3)

From (4.1) and (4.2) we get

1

C2
=

1

cosh2 z
k

+ k2

(
d tanh z

k

dρ

)2

.

Applying (2.1), we obtain the condition

C = sinϑ

for the lines passing through the origin.
a. Lines parallel to the xOy plane and lines crossing the xOy plane
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Using the rotational symmetry operation, we obtain for the line passing through
points P1(0, 0, z0) and P2(a, b, 0)

tanh
z

k
= tanh

z0

k

sinh ρ0−ρ
k

sinh ρ0
k

. (4.4)

This formula satisfies equation (4.3), where

cosh
ρ0

k
= cosh

a

k
cosh

b

k
.

Also
1

C2
= 1 +

tanh2 z0
k

sinh2 ρ0
k

. (4.5)

If ρ0 −→∞, it follows that

tanh
z

k
= tanh

z0

k
e−

ρ
k (4.6)

and

C = 1.

b. Lines not crossing the xOy plane
In this case the lines have a minimum point. If we apply the rotational symmetry,

we obtain

tanh
z

k
= tanh

z0

k

cosh ρm−ρ
k

cosh ρm
k

, (4.7)

where ρm denotes the value of ρ determined by the minimum point. For the value of
C we have

1

C2
= 1−

tanh2 z0
k

cosh2 ρm
k

. (4.8)

If ρm = 0, which means that the intersection coincides with the minimum point, we
can write

tanh
z

k
= tanh

z0

k
cosh

ρ

k
(4.9)

and

C = cosh
z0

k
.

If we consider the lines passing through P (0, 0, z0), we get for the orthogonal curves
circles with center P in the xOz plane. Therefore, because of the rotational symmetry,
the orthogonal surfaces of the lines containing P (0, 0, z0) are spheres with center P ,
which verify

cosh
z0

k
cosh

z

k
cosh

ρ

k
− sinh

z0

k
sinh

z

k
= cosh

R

k
. (4.10)

Now let us consider the orthogonal surface which is perpendicular to the xOy plane
and contains the projected line. Here we use variables ρ and z. Furthermore, we will
use indexes 1 and 2 for two arbitrary lines which intersect in point P (ρ, z) on this
surface. Thus we obtain (

dz1

dρ1

)
P

(
dz2

dρ2

)
P

+ cosh2 z

k
= 0,
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where the lower index P means that we need to substitute the coordinates of the
intersection.

Using equations (4.4), (4.6) and (4.7), we get for the lines crossing the z-axis

tanh
z1

k
= tanh

z0

k

(
cosh

ρ1

k
− p sinh

ρ1

k

)
. (4.11)

In the three different cases (lines crossing the xOy plane, lines not crossing the xOy
plane, lines parallel to the xOy plane) the required values are as follows:

coth
ρ0

k
, tanh

ρm
k

and 1.

By deriving equation (4.11) we obtain

dz1

dρ1
= tanh

z0

k
cosh2 z1

k

(
sinh

ρ1

k
− p cosh

ρ1

k

)
. (4.12)

Then, using (4.11) and (4.12), we eliminate variable p. Thus we get

dz1

dρ1
=

tanh z0
k cosh2 z1

k

sinh ρ1
k

(
coth

z0

k
tanh

z1

k
cosh

ρ1

k
− 1
)
.

After differentiating equation (4.10) we obtain

dz2

dρ2
= −

coth z0
k sinh ρ2

k

coth z0
k tanh z2

k coth ρ2
k − 1

.

In the point of intersection we have ρ1 = ρ2 = ρ and z1 = z2 = z. Thus the orthogo-
nality condition holds, which proves the validity of equation (4.10).

Equation (4.10) can be written in the following form:

cos
ρ

k
=

cosh R
k + sinh z0

k sinh z
k

cosh z0
k cosh z

k

= F (ρ). (4.13)

Furthermore, equation (1.13) yields metric

ds2 =
1− F 2 + cosh2 z

k

(
dF
dρ

)2

F 2 − 1
dρ2 + k2 cosh2 z

k

(
F 2 − 1

)
dϕ2. (4.14)

Using metric (4.14) and formula (4.13), we can obtain the curvature of the orthogonal
surface. The Ricci scalar is determined by formula (2.5).

5. Family of lines not having common point

In this section we consider two sets of lines.
a. Lines parallel to the z-axis
In this case, on the orthogonal surfaces the value of z is constant, z = z0. Indeed,

the lines verify dρ1 = 0, while on the orthogonal surface dz2 = 0. Thus we obtain the
following orthogonality condition:

cosh
z

k
dρ1dρ2 + dz1dz2 = 0.
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The orthogonal surface called hypersphere verifies

ds2 = cosh2 z0

k

(
dρ2 + k2 sinh2 ρ

k
dϕ2

)
, (5.1)

the scalar curvature is

R =
2

k2
.

b. Lines having minimum point on the z-axis
Here we use formula (4.9), where the parameter is tanh z0

k .
By deriving (4.9) and eliminating the parameter, we obtain

dz1

dρ1
= sinh

z1

k
cosh

z1

k
tanh

ρ1

k
.

The rotational symmetry operation induces for the orthogonal surface equation

sinh
ρ

k
cosh

z

k
= sinh

ρ0

k
, (5.2)

where ρ0 is constant. Hence we get

dz2

dρ2
= − coth

z2

k
coth

ρ2

k
.

This and the orthogonality condition proves formula (5.2).
From equations (1.13) and (5.2) we obtain metric

ds2 = sinh2 ρ0

k

1 + coth2 ρ
k

sinh2 ρ
k

dρ0 + k2 sinh2 ρ0

k
dϕ2.

Hence the scalar curvature of the orthogonal surface is

R = 0.

This means that this orthogonal surface is the dual of the parasphere.

6. Surfaces with constant curvature

For lines crossing axis Oz we applied equations of type

tanh
z

k
= Φ(ρ), (6.1)

which were as follows: equation (2.2), (4.4), (4.7) and (4.6).
Using formulas (5.1) and (6.1), we obtain

ds2 = E(ρ)dρ2 +G(ρ)dϕ2

for the metric, where

E(ρ) = cosh2 z(ρ) +

(
dz

dρ

)2

=
A

(1− Φ2)
2 ,

G(ρ) = k2 cosh2 z(ρ) sinh2 ρ

k
= k2 sinh2 ρ

k

1− Φ2
.
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In the four different cases (lines crossing the origin, lines crossing the xOy plane, lines
not crossing the xOy plane, lines parallel to the xOy plane) the values of the constant
A are as follows:

1

sin2 ϑ
, 1 +

tanh2 z0
k

sinh2 z0
k

, 1−
tanh2 z0

k

cosh2 ρm
k

and 1.

The Christoffel symbols of the second kind are as follows:

Γ1
11 =

1

2E

dE

dρ
= 2

ΦdΦ
dρ

1− Φ2
,

Γ1
22 = − 1

2E

dG

dρ
= − k

A
sinh

ρ

k
cosh

ρ

k

(
1− Φ2

)
− k2

A
sinh2 ρ

k
Φ
dΦ

dρ
,

Γ2
12 =

1

2G

dG

dρ
=

1

1− Φ2

[
1

k

(
1− Φ2

)
coth

ρ

k
+ Φ

dΦ

dρ

]
,

while the components of the Ricci curvature tensor are

R11 =
dΓ2

12

dρ
+ Γ2

12

(
Γ2

12 − Γ1
11

)
=

1

k2 (1− Φ2)
2

[
1− Φ2 + k2

(
dΦ

dρ

)2
]
,

R22 = −dΓ1
22

dρ
+ Γ1

22

(
Γ2

12 − Γ1
11

)
=

sinh2 ρ
k

A (1− Φ2)

[
1− Φ2 + k2

(
dΦ

dρ

)2
]
.

Therefore the scalar curvature is

R =
1

E
R11 +

1

G
R22 =

2

k2

constant for all surfaces.

7. Lines not crossing the z-axis and the xOy plane

As the projection of these lines to the xOy plane verifies

tanh
y

k
= tanh

b

k
cosh

x

k
, (7.1)

from equations (7.1) and (4.9) it follows that

tanh
z

k
= tanh

z0

k

cosh x
k√

1− tanh2 b
k cosh2 x

k

. (7.2)

By deriving (7.2) we obtain

d tanh z
k

dx
=

tanh z0
k

k

sinh x
k(

1− tanh2 b
k cosh2 x

k

) 3
2

. (7.3)

Using (1.7) and (7.3), we get for the value of C1

1

C2
1

=
1

cosh2 b
k

− tanh2 z0

k
.
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C1 is real if and only if cosh b
k ≤ coth z0

k . Indeed, using formula (4.9) as z0 −→∞, we
get for the maximal value of ρ

cosh
ρm
k

= coth
z0

k
.

From
d

dx

(
1

cosh2 y
k

d tanh z
k

dx

)
=

cosh x
k

k2
(
1− tanh y0

k cosh2 x
k

) 3
2 cosh2 y0

k

and

1 + k2 cosh2 y

k

(
d tanh z

k

dx

)2

=
1

cosh2 y0
k

(
1− tanh y0

k cosh2 x
k

)
it follows that the lines verifying (7.1) and (7.2) satisfy differential equations (1.5)
and (1.6).

If we use cylindrical coordinates, from

coth
ρ

k
= coth

b

k
sinϕ (7.4)

and equation (4.9) we get

tanh
z

k
= tanh

z0

k
coth

b

k

sinϕ√
coth2 b

k sin2 ϕ− 1
. (7.5)

These lines verify differential equations (1.17) and (1.18). Applying (1.19), we get for
the value of C2

1

C2
2

=
k2

sinh2 b
k

(
1− tanh2 z0

k
cosh2 b

k

)
.

Thus C2 is real if and only if cosh b
k ≤ coth z0

k .
If we use equation (4.9) and formula

coth
ρ

k
= coth

a

k
(sinϕ+ cosϕ) , (7.6)

we obtain a different line which satisfies

tanh
z

k
= tanh

z0

k
coth

a

k

sinϕ+ cosϕ√
coth2 a

k (sinϕ+ cosϕ)
2 − 1

. (7.7)

The curves verifying (7.6) and (7.7) also satisfy the differential equations (1.17) and
(1.18). Also, from

1

C2
2

= k2 cosh2 a
k + cosh2 z0

k

sinh2 a
k cosh2 z0

k

we obtain a constant value for C2. Thus these lines are lines of the hyperbolic space.
If we use Cartesian coordinates, instead of (7.6) and (7.7) we may write

tanh
y

k
= tanh

a

k
cosh

x

k
− sinh

x

k
and

tanh
z

k
= tanh

z0

k

cosh x
k√

1−
(
tanh a

k cosh x
k − sinh x

k

)2 .
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For each surface of revolution the scalar curvature equals the curvature of the xOy
plane and xOz is a plane of symmetry. Hence we obtain surfaces on the left and
the right side of the xOz plane. However, only equation (4.9) provides a necessary
condition. Let us consider a line crossing axis Oz, which connects two distinct surfaces.
The transitions between the line and the surfaces are smooth (the tangent vector field
is continuous) only in the case of (4.9). Therefore, new lines can only be derived by
the surface of revolution (4.9).
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