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Generalized and numerical solution for
a quasilinear parabolic equation with
nonlocal conditions
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Abstract. In this paper we study the one dimensional mixed problem with non-
local boundary conditions, for the quasilinear parabolic equation. We prove an
existence, uniqueness of the weak generalized solution and also continuous depen-
dence upon the data of the solution are shown by using the generalized Fourier
method. We construct an iteration algorithm for the numerical solution of this
problem. We analyze computationally convergence of the iteration algorithm, as
well as on test example.
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1. Introduction

In this study, we consider the following mixed problem

∂u

∂t
− ∂2u

∂x2
= f(x, t, u), D := {0 < x < 1, 0 < t < T } (1.1)

u(0, t) = u(1, t), t ∈ [0, T ] (1.2)

ux(1, t) = 0, t ∈ [0, T ] (1.3)

u(x, 0) = ϕ(x), x ∈ [0, 1] (1.4)

for a quasilinear parabolic equation with the nonlinear source term f = f(x, t, u).

The functions ϕ(x) and f(x, t, u) are given functions on [0, 1] and D̄×(−∞,∞) ,
respectively.

Denote the solution of the problem (1.1)-(1.4) by u = u(x, t).

This problem was investigated with different boundary conditions by various
researchers by using Fourier or different methods [2, 4].
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In this study, we consider the initial-boundary value problem (1.1)-(1.4) with
nonlocal boundary conditions (1.2 )-(1.3). The periodic nature of (1.2 )-(1.3) type
boundary conditions is demonstrated in [10]. In this study, we prove the existence,
uniqueness, convergence of the weak generalized solution continuous dependence upon
the data of the solution and we construct an iteration algorithm for the numerical
solution of this problem. We analyze computationally convergence of the iteration
algorithm, as well as on test example. We demonstrate a numerical procedure for this
problem on concrete examples, and also we obtain numerical solution by using the
implicit finite difference algorithm [11].

We will use the weak solution approach from [3] for the considered problem
(1.1)-(1.4).

According to [1, 5] assume the following definitions.

Definition 1.1. The function v(x, t) ∈ C2(D̄) is called test function if it satisfies the
following conditions:

v(x, T ) = 0, v(0, t) = v(1, t), vx(1, t) = 0, ∀t ∈ [0, T ] and ∀x ∈ [0, 1].

Definition 1.2. The function u(x, t) ∈ C(D̄) satisfying the integral identity

T∫

0

1∫

0

[(
∂v

∂t
− ∂2v

∂x2

)
u− f(x, t, u)v

]
dxdt

−
T∫

0

[u(0, t)vx(0, t)− v(0, t)ux(0, t)] dt−
1∫

0

ϕ(x)v(x, 0)dx = 0, (1.5)

for arbitrary test function v = v(x, t), is called a generalized (weak) solution of the
problem (1)-(4).

2. Reducing the problem to countable system of integral equations

Consider the following system of functions on the interval [0, 1] :

X0(x) = 2, X2k−1(x) = 4 cos(2πkx), X2k(x) = 4(1− x) sin(2πkx), k = 1, 2, . . . ,
(2.1)

Y0(x) = x, Y2k−1(x) = x cos(2πkx), Y2k(x) = sin(2πkx), k = 1, 2, . . . (2.2)

The system of functions (2.1) and (2.2) arise in [6] for the solution of a nonlocal
boundary value problem in heat conduction.

It is easy to verify that the system of function (2.1) and (2.2) are biorthonormal
on [0, 1]. They are also Riesz bases in L2[0, 1] (see [7, 8]).

We will use the Fourier series representation of the weak solution to transform
the initial-boundary value problem to the infinite set of nonlinear integral equations.

Any solution of the equation (1.1)-(1.4) can be represented as

u(x, t) =

∞∑

k=1

uk(t)Xk(x), (2.3)
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where the functions uk(t), k = 0, 1, 2, . . . satisfy the following system of equations:

u0(t) = ϕ0 +

t∫

0

f0(τ)dτ,

u2k(t) = ϕ2k e−(2πk)2t +

t∫

0

f2k(τ)e
−(2πk)2(t−τ)dτ, (2.4)

u2k−1(t) = (ϕ2k−1 − 4πkϕ2k)e
−(2πk)2t

+

t∫

0

e−(2πk)2(t−τ)[f2k−1(τ)− 4πk(t− τ)f2k(τ)]dτ,

where

ϕk =

∫ 1

0

ϕ(x)Yk(x)dx,

fk(x) =

∫ 1

0

f(x, t, u)Yk(x)dx.

Definition 2.1. Denote the set

{u(t)} = {u0(t), u2k(t), u2k−1(t), k = 1, 2, . . . , } ,

of continuous on [0, T ] satisfying the following condition

underset0 ≤ t ≤ Tmax2 |u0(t)|+ 4

∞∑

k=1

(
max
0≤t≤T

|u2k(t)|+ max
0≤t≤T

|u2k−1(t)|
)

< ∞,

by B. Let

‖u(t)‖ = max
0≤t≤T

2 |u0(t)|+ 4

∞∑

k=1

(
max
0≤t≤T

|u2k(t)|+ max
0≤t≤T

|u2k−1(t)|
)
,

be the norm in B. It can be shown that B is the Banach space [9].

We denote the solution of the nonlinear system (2.4) by {u(t)} .

Theorem 2.2. a) Let the function f(x, t, u) is continuous with respect to all arguments
in D̄ × (−∞,∞) and satisfies the following condition

|f(x, t, u)− f(x, t, ũ)| ≤ b(x, t) |u− ũ| ,

where b(x, t) ∈ L2(D), b(x, t) ≥ 0,

b) f(x, t, 0) ∈ C2[0, 1], t ∈ [0, 1],

c) ϕ(x) ∈ C2[0, 1].

Then the system (2.4) has a unique solution in D.
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Proof. For N = 0, 1, . . . let’s define an iteration for the system (2.4) as follows:

u
(N+1)
0 (t) = u

(0)
0 (t) +

t∫

0

1∫

0

f(ξ, τ, Au(N)(ξ, τ))ξdξdτ,

u
(N+1)
2k (t) = u

(0)
2k (t) +

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Au(N)(ξ, τ)) sin 2πkξdξdτ,

u
(N+1)
2k−1 (t) = u

(0)
2k−1(t) +

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Au(N)(ξ, τ))ξ cos 2πkξdξdτ

−4πk

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Au(N)(ξ, τ))(t − τ) sin 2πkξdξdτ,

(2.5)

where, for simplicity, let

Au(N)(ξ, τ) = 2u
(N)
0 (τ) + 4

∞∑

k=1

(
u
(N)
2k (τ)(1 − ξ) sin 2πkξ + u

(N)
2k−1(τ) cos 2πkξ

)
.

where,

u
(0)
0 (t) = ϕ0 , u

(0)
2k (t) = ϕ2k e−(2πk)2t, u

(0)
2k−1(t) = (ϕ2k−1 − 4πk ϕ2k ) e−(2πk)2t.

From the condition of the theorem we have u(0)(t) ∈ B. We will prove that the other
sequentially approximations satisfy this condition.

Let us write N = 0 in (2.5).

u
(1)
0 (t) = u

(0)
0 (t) +

t∫

0

1∫

0

f(ξ, τ, Au(0)(ξ, τ))dξdτ.

Adding and subtracting

t∫

0

1∫

0

f(ξ, τ, 0)dξdτ, applying Cauchy inequality, Lipschitz

condition, taking the maximum of both sides of the last inequality yields the following:

max
0≤t≤T

∣∣∣u(1)
0 (t)

∣∣∣ ≤ |ϕ0|+
√
T ‖b(x, t)‖L2(D)

∥∥∥u(0)(t)
∥∥∥+

√
T ‖f(x, t, 0)‖L2(D) .

u
(1)
2k (t) = ϕ2ke

−(2πk)2t +

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Au(N)(ξ, τ)) sin 2πkξdξdτ.

Adding and subtracting

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, 0) sin 2πkξdξdτ, applying Cauchy in-

equality, taking the summation of both sides respect to k and using Hölder inequality,
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Bessel inequality, Lipschitz condition and taking maximum of both sides of the last
inequality yields the following:
∞∑

k=1

max
0≤t≤T

∣∣∣u(1)
2k (t)

∣∣∣ ≤
∞∑

k=1

|ϕ2k|+
1

4
√
3
‖b(x, t)‖L2(D)

∥∥∥u(0)(t)
∥∥∥+

1

4
√
3
‖f(x, t, 0)‖L2(D) .

In the same way, we obtain:
∞∑

k=1

max
0≤t≤T

∣∣∣u(1)
2k−1(t)

∣∣∣ ≤
∞∑

k=1

|ϕ2k−1|+
1√
6

∞∑

k=1

∣∣∣ϕ
′′

2k

∣∣∣

+
1

4
√
3
‖b(x, t)‖L2(D)

∥∥∥u(0)(t)
∥∥∥+

1

4
√
3
‖f(x, t, 0)‖L2(D)

+
√
2 |T | ‖b(x, t)‖L2(D)

∥∥∥u(0)(t)
∥∥∥+

√
2 |T | ‖f(x, t, 0)‖

L2(D)
.

Finally we have the following inequality:
∥∥∥u(1)(t)

∥∥∥
B
= 2 max

0≤t≤T

∣∣∣u(1)
0 (t)

∣∣∣+ 4

∞∑

k=1

(
max
0≤t≤T

∣∣∣u(1)
2k (t)

∣∣∣ + max
0≤t≤T

∣∣∣u(1)
2k−1(t)

∣∣∣
)

≤ 2 |ϕ0|+ 4
∞∑

k=1

(|ϕ2k|+ |ϕ2k−1|) +
2
√
6 |T |
3

∞∑

k=1

∣∣∣ϕ
′′

2k

∣∣∣

+

(
2
√
T +

2
√
3

3
+ 4

√
2 |T |

)(
‖b(x, t)‖L2(D)

∥∥∥u(0)(t)
∥∥∥
B

)

+

(
2
√
T +

2
√
3

3
+ 4

√
2 |T |

)
‖f(x, t, 0)‖L2(D) .

Hence u(1)(t) ∈ B. In the same way, for a general value of N we have

∥∥∥u(N)(t)
∥∥∥
B
= 2 max

0≤t≤T

∣∣∣u(N)
0 (t)

∣∣∣ + 4

∞∑

k=1

(
max
0≤t≤T

∣∣∣u(N)
2k (t)

∣∣∣+ max
0≤t≤T

∣∣∣u(N)
2k−1(t)

∣∣∣
)

≤ 2 |ϕ0|+ 4
∞∑

k=1

(|ϕ2k|+ |ϕ2k−1|) +
2
√
6 |T |
3

∞∑

k=1

∣∣∣ϕ
′′

2k

∣∣∣

+

(
2
√
T +

2
√
3

3
+ 4

√
2 |T |

)(
‖b(x, t)‖L2(D)

∥∥∥u(N−1)(t)
∥∥∥
B

)

+

(
2
√
T +

2
√
3

3
+ 4

√
2 |T |

)
‖f(x, t, 0)‖L2(D) ,

u(N−1)(t) ∈ B, we deduce that u(N)(t) ∈ B, we obtain

{u(t)} = {u0(t), u2k(t), u2k−1(t), k = 1, 2, . . .} ∈ B.

Now we prove that the iterations u(N+1)(t) converge in B, as N → ∞.

u(1)(t)−u(0)(t) = 2(u
(1)
0 (t)−u

(0)
0 (t))+4

∞∑

k=1

[(u
(1)
2k (t)−u

(0)
2k (t))+(u

(1)
2k−1(t)−u

(0)
2k−1(t))]



572 Fatma Kanca and Irem Baglan

= 2

t∫

0

1∫

0

[
f(ξ, τ, Au(0)(ξ, τ)) − f(ξ, τ, 0)

]
ξdξdτ

+4

t∫

0

1∫

0

[
f(ξ, τ, Au(0)(ξ, τ)) − f(ξ, τ, 0)

]
e−(2πk)2(t−τ) sin 2πkξdξdτ

+4

t∫

0

1∫

0

[
f(ξ, τ, Au(0)(ξ, τ)) − f(ξ, τ, 0)

]
e−(2πk)2(t−τ)ξ cos 2πkξdξdτ

−16πk

t∫

0

1∫

0

(t− τ)
[
f(ξ, τ, Au(0)(ξ, τ)) − f(ξ, τ, 0)

]
e−(2πk)2(t−τ) sin 2πkξdξdτ.

Applying Cauchy inequality, Hölder inequality, Lipschitz condition and Bessel inequal-
ity to the right side of u(1)(t)− u(0)(t) respectively, we obtain:

∣∣∣u(1)(t)− u(0)(t)
∣∣∣ ≤ 2

∣∣∣u(1)
0 (t)− u

(0)
0 (t)

∣∣∣

+4
∞∑

k=1

(∣∣∣u(1)
2k (t)− u

(0)
2k (t)

∣∣∣ +
∣∣∣u(1)

2k−1(t)− u
(0)
2k−1(t)

∣∣∣
)

≤
(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)dξdτ





1
2 ∣∣∣u(0)(t)

∣∣∣

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

f2(ξ, τ, 0)dξdτ




1
2

,

AT =



(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)dξdτ




1
2 ∣∣∣u(0)(t)

∣∣∣

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

f2(ξ, τ, 0)dξdτ




1
2


 .

Applying Cauchy unequality, Hölder inequality, Lipschitz condition and Bessel in-
equality to the right hand side of u(2)(t)− u(1)(t) respectively, we obtain:

∣∣∣u(2)(t)− u(1)(t)
∣∣∣ ≤ 2

∣∣∣u(2)
0 (t)− u

(1)
0 (t)

∣∣∣

+4

∞∑

k=1

(∣∣∣u(2)
2k (t)− u

(1)
2k (t)

∣∣∣ +
∣∣∣u(2)

2k−1(t)− u
(1)
2k−1(t)

∣∣∣
)

≤
(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)dξdτ





1
2

AT .
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In the same way, for a general value of N we have
∣∣∣u(N+1)(t)− u(N)(t)

∣∣∣ ≤ 2
∣∣∣u(N+1)

0 (t)− u
(N)
0 (t)

∣∣∣

+ 4

∞∑

k=1

(∣∣∣u(N+1)
2k (t)− u

(N)
2k (t)

∣∣∣ +
∣∣∣u(N+1)

2k−1 (t)− u
(N)
2k−1(t)

∣∣∣
)

≤ (2
√
T + 4

√
2 |T |+ 2

√
3

3
)N

AT√
N !







t∫

0

1∫

0

b2(ξ, τ)dξdτ




2



N
2

≤ (2
√
T + 4

√
2 |T |+ 2

√
3

3
)NAT

1√
N !

‖b(x, t)‖NL2(D) . (2.6)

Then the last inequality shows that the u(N+1)(t) convergence in B.

Now let us show lim
N→∞

u(N+1)(t) = u(t). It follows that if we prove

lim
N→∞

∥∥∥u(τ)− u(N)(τ)
∥∥∥
B
= 0,

then we may deduce that u(t) satisfies (2.4). For this aim we estimate the difference∥∥u(t)− u(N+1)(t)
∥∥
B
, after some transformation we obtain:

∣∣∣u(t)− u(N+1)(t)
∣∣∣ = 2

∣∣∣u0(t)− u
(N+1)
0 (t)

∣∣∣

+4

∞∑

k=1

(∣∣∣u2k(t)− u
(N+1)
2k (t)

∣∣∣+
∣∣∣u2k−1(t)− u

(N+1)
2k−1 (t)

∣∣∣
)

≤ 2

∣∣∣∣∣∣

t∫

0

1∫

0

{
f [ξ, τ, Au(ξ, τ)]− f [ξ, τ, Au(N)(ξ, τ)]

}
ξdξdτ

∣∣∣∣∣∣

+4

∣∣∣∣∣∣

∞∑

k=1

t∫

0

1∫

0

e−(2πk)2(t−τ)
{
f [ξ, τ, Au(ξ, τ)]− f [ξ, τ, Au(N)(ξ, τ)]

}
sin 2πkξdξdτ

∣∣∣∣∣∣

+4

∣∣∣∣∣∣

∞∑

k=1

t∫

0

1∫

0

e−(2πk)2(t−τ)
{
f [ξ, τ, Au(ξ, τ)] − f [ξ, τ, Au(N)(ξ, τ)]

}
ξ cos 2πkξdξdτ

∣∣∣∣∣∣

+16πk

∣∣∣∣∣

t∫

0

1∫

0

(t− τ)
[
f(ξ, τ, Au(ξ, τ))− f(ξ, τ, Au(N)(ξ, τ))

]

·e−(2πk)2(t−τ) sin 2πkξdξdτ

∣∣∣∣∣.
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Adding and subtracting f(ξ, τ, Au(N+1)(ξ, τ)) under appropriate integrals to the right
hand side of the inequality we obtain

∣∣∣u(t)−u(N+1)(t)
∣∣∣≤
(
2
√
T+4

√
2|T |+2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)
∣∣∣u(τ)−u(N+1)(τ)

∣∣∣
2

dξdτ





1
2

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)dξdτ





1
2 ∥∥∥u(N+1)(t)− u(N)(t)

∥∥∥
B
.

Applying Gronwall’s inequality to the last inequality and using inequality (2.6), we
have

∥∥∥u(t)− u(N+1)(t)
∥∥∥
B
≤
√

2

N !
AT

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)(N+1)

‖b(x, t)‖(N+1)
L2(D)

× exp

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)2

‖b(x, t))‖2L2(D) . (2.7)

For the uniqueness, we assume that the problem (1.1)-(1.4) has two solutions u, v.
Applying Cauchy inequality, Hölder inequality, Lipschitz condition and Bessel inequal-
ity to the right hand side of |u(t)− v(t)| respectively, we obtain:

|u(t)− v(t)|2 ≤
(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)2 t∫

0

1∫

0

b2(ξ, τ) |u(τ) − v(τ)|2 dξdτ,

applying Gronwall’s inequality to the last inequality we have u(t) = v(t).
The theorem is proved. �

3. Solution of the problem (1.1)-(1.4)

Using the solution of the system (2.4) we compose the series

2u0(t) + 4

∞∑

k=1

[u2k(t)(1 − x)sin2πkx+ u2k−1(t)cos2πkx].

It is evident that these series convergence uniformly on D. Therefore the sum

u(ξ, τ) = 2u0(τ) + 4

∞∑

k=1

[u2k(τ)(1 − ξ)sin2πkξ + u2k−1(τ)cos2πkξ],

continuous on D.

ul(ξ, τ) = 2u0(τ) + 4
l∑

k=1

[u2k(τ)(1 − ξ)sin2πkξ + u2k−1(τ)cos2πkξ]. (3.1)

From the conditions of Theorem 2.2 and from

lim
l→∞

ul(ξ, τ) = u(ξ, τ),
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it follows

lim
l→∞

f(ξ, τ, ul(τ, ξ)) = f(ξ, τ, u(ξ, τ)).

Using ul(ξ, τ) and

ϕl(x) = 2ϕ0 + 4

l∑

k=1

[ϕ2k(1− x)sin2πkx+ ϕ2k−1cos2πkx], x ∈ [0, 1]

on the left hand side of (1.5) we denote the obtained expression by Jl:

Jl =

T∫

0

1∫

0

[(
∂v

∂t
+

∂2v

∂x2

)
u(l)(x, t) + f(x, t, u(l)(x, t))v(x, t)

]
dxdt

+

1∫

0

ϕ(l)(x)v(x, 0)dx. (3.2)

Applying the integration by part formula to the right hand side the last equation and
using the conditions of Theorem 2.2 , we can show that

lim Jl
l→∞

= 0.

This shows that the function u(x, t) is a generalized(weak) solution of the problem
(1.1)-(1.4).
The following theorem shows the existence and uniqueness results for the generalized
solutions of problem (1.1)-(1.4).

Theorem 3.1. Under the assumptions of Theorem 2.2, Problem (1.1)-(1.4) possesses
a unique generalized solution u = u(x, t) ∈ C(D) in the following form

u(x, t) = 2u0(t) + 4

∞∑

k=1

[u2k(t)(1− x)sin2πkx+ u2k−1(t)cos2πkx].

4. Continuous dependence upon the data

In this section, we shall prove the continuous dependence of the solution

u = u(x, t)

using an iteration method.

Theorem 4.1. Under the conditions of Theorem 2.2, the solution u = u(x, t) depends
contiunously upon the data.

Proof. Let φ = {ϕ, f} and φ =
{
ϕ, f

}
be two sets of data which satisfy the conditions

of Theorem 1.Let u = u(x, t) and v = v(x, t) be the solutions of the problem (1.1)-(1.4)
corresponding to the data φ and φ respectively and

∣∣f(t, x, 0)− f(t, x, 0)
∣∣ ≤ ε, for ε ≥ 0.
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The solution v = v(x, t) is in the following form

v0(t) = ϕ0 +

t∫

0

f0(τ)dτ,

v2k(t) = ϕ2k e−(2πk)2t +

t∫

0

f2k(τ)e
−(2πk)2(t−τ)dτ,

v2k−1(t) = (ϕ2k−1 − 4πktϕ2k)e
−(2πk)2t

+

t∫

0

e−(2πk)2(t−τ)[f2k−1(τ)− 4πk(t− τ)f2k(τ)]dτ,

where, for simplicity, let

Av(N)(ξ, τ) = 2v
(N)
0 (τ) + 4

∞∑

k=1

(
v
(N)
2k (τ)(1 − ξ) sin 2πkξ + v

(N)
2k−1(τ) cos 2πkξ

)

v
(N+1)
0 (t) = v

(0)
0 (t) +

t∫

0

1∫

0

f(ξ, τ, Av(N)(ξ, τ))ξdξdτ,

v
(N+1)
2k (t) = v

(0)
2k (t) +

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Av(N)(ξ, τ)) sin 2πkξdξdτ,

v
(N+1)
2k−1 (t) = v

(0)
2k−1(t) +

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Av(N)(ξ, τ))ξ cos 2πkξdξdτ

−4πk

t∫

0

1∫

0

e−(2πk)2(t−τ)f(ξ, τ, Av(N)(ξ, τ))(t − τ) sin 2πkξdξdτ,

where

v
(0)
0 (t) = ϕ0 , v

(0)
2k (t) = ϕ2k e−(2πk)2t, u

(0)
2k−1(t) = (ϕ2k−1 − 4πkϕ2k ) e−(2πk)2t.

From the condition of the theorem we have v(0)(t) ∈ B. We will prove that the other
sequentially approximations satisfy this condition.

First of all , we consider u(1)(t) − v(1)(t), applying Cauchy inequality, Hölder
inequality, Lipschitz condition and Bessel inequality to the

∣∣u(1)(t)− v(1)(t)
∣∣ respec-

tively, we obtain: ∣∣∣u(1)(t)− v(1)(t)
∣∣∣ ≤ 2

∣∣∣u(1)
0 (t)− v

(1)
0 (t)

∣∣∣

+4

∞∑

k=1

(∣∣∣u(1)
2k (t)− v

(1)
2k (t)

∣∣∣+
∣∣∣u(1)

2k−1(t)− v
(1)
2k−1(t)

∣∣∣
)
≤ 2max |ϕ0 − ϕ0|

+4

∞∑

k=1

max |ϕ2k − ϕ2k|+max |ϕ2k−1 − ϕ2k−1|+
2
√
6 |T |
3

∞∑

k=1

max
∣∣∣ϕ

′′

2k − ϕ
′′

2k

∣∣∣
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(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)dξdτ




1
2 ∣∣∣u(0)(t)

∣∣∣

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b
2
(ξ, τ)dξdτ





1
2 ∣∣∣v(0)(t)

∣∣∣

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

f2(ξ, τ, 0)− f
2
(ξ, τ, 0)dξdτ





1
2

,

AT = ‖ϕ− ϕ‖+
[(

2
√
T + 4

√
2 |T |+ 2

√
3

3

)
‖b(x, t)‖

∣∣∣u(0)(t)
∣∣∣

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)
‖b(x, t)‖

∣∣∣v(0)(t)
∣∣∣
]
+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)
∥∥f − f

∥∥ .

‖ϕ− ϕ‖ = 2max |ϕ0 − ϕ0|

+4

∞∑

k=1

max |ϕ2k − ϕ2k|+max |ϕ2k−1 − ϕ2k−1|+
2
√
6 |T |
3

∞∑

k=1

max
∣∣∣ϕ

′′

2k − ϕ
′′

2k

∣∣∣ .

Applying Cauchy inequality, Hölder inequality, Lipschitz condition and Bessel inequal-
ity to the right hand side of u(2)(t)− v(2)(t) respectively, we obtain:

∣∣∣u(2)(t)− v(2)(t)
∣∣∣ ≤ 2

∣∣∣u(2)
0 (t)− v

(2)
0 (t)

∣∣∣

+4

∞∑

k=1

(∣∣∣u(2)
2k (t)− v

(2)
2k (t)

∣∣∣+
∣∣∣u(2)

2k−1(t)− v
(2)
2k−1(t)

∣∣∣
)

≤
(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b2(ξ, τ)dξdτ




1
2

AT

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)


t∫

0

1∫

0

b
2
(ξ, τ)dξdτ




1
2

AT .

In the same way, for a general value of N we have
∣∣∣u(N+1)(t)− v(N+1)(t)

∣∣∣ ≤ 2
∣∣∣u(N+1)

0 (t)− v
(N+1)
0 (t)

∣∣∣

+4

∞∑

k=1

(∣∣∣u(N+1)
2k (t)− v

(N+1)
2k (t)

∣∣∣ +
∣∣∣u(N+1)

2k−1 (t)− v
(N+1)
2k−1 (t)

∣∣∣
)

≤
(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)N

AT√
N !







t∫

0

1∫

0

b2(ξ, τ)dξdτ




2



N
2
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+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)N

AT√
N !







t∫

0

1∫

0

b
2
(ξ, τ)dξdτ




2



N
2

≤
(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)N

AT

1√
N !

‖b(x, t)‖NL2(D)

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)N

AT

1√
N !

∥∥b(x, t)
∥∥N
L2(D)

≤ AT · aN = aN (‖ϕ− ϕ‖+ C(t) +M1

∥∥f − f
∥∥)

where

aN =

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)N

1√
N !







t∫

0

1∫

0

b2(ξ, τ)dξdτ




2



N
2

+

(
2
√
T + 4

√
2 |T |+ 2

√
3

3

)N

1√
N !







t∫

0

1∫

0

b
2
(ξ, τ)dξdτ




2



N
2

.

and

M1 = (2
√
T + 4

√
2 |T |+ 2

√
3

3
)N .

(The sequence aN is convergent then we can write aN ≤ M, ∀N). It follows from
the estimation ([2], page 76-77) that lim

N→∞
u(N+1)(t) = u(t), then let N → ∞ for last

equation

|u(t)− v(t)| ≤ M ‖ϕ− ϕ‖+M2

∥∥f − f
∥∥)

where M2 = M.M1. If
∥∥f − f

∥∥ ≤ ε and ‖ϕ− ϕ‖ ≤ ε then |u(t)− v(t)| ≤ ε. �

5. Numerical procedure for the nonlinear problem (1.1)-(1.4)

We construct an iteration algorithm for the linearization of the problem (1.1)-(1.4):

∂u(n)

∂t
− ∂2u(n)

∂x2
= f(x, t, u(n−1)), (x, t) ∈ D (5.1)

u(n)(0, t) = u(n)(1, t), t ∈ [0, T ] (5.2)

u(n)
x (1, t) = 0, t ∈ [0, T ] (5.3)

u(n)(x, 0) = ϕ(x), x ∈ [0, 1] . (5.4)
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Let u(n)(x, t) = v(x, t) and f(x, t, u(n−1)) = f̃(x, t). Then the problem (5.1)-(5.4)
can be written as a linear problem:

∂v

∂t
− ∂2v

∂x2
= f̃(x, t) (x, t) ∈ D (5.5)

v(0, t) = v(1, t), t ∈ [0, T ] (5.6)

vx(1, t) = 0, t ∈ [0, T ] (5.7)

v(x, 0) = ϕ(x), x ∈ [0, 1] . (5.8)

We use the finite difference method to solve (5.5)-(5.8).
We subdivide the intervals [0, 1] and [0, T ] into M and N subintervals of equal lengths
h = 1

M
and τ = T

N
, respectively. Then, we add a line x = (M + 1)h to generate the

fictitious point needed for the second boundary condition.
We choose the implicit scheme, which is absolutely stable and has a second order
accuracy in h and a first order accuracy in τ.

The implicit monotone difference scheme for (5.5)-(5.8) is as follows:

vi,j+1 − vi,j

τ
=

a2

h2
(vi−1,j+1 − 2vi,j+1 + vi+1,j+1) + f̃i,j+1

vi,0 = ϕi, v0,j = vM,j , vx,Mj
= 0

where 0 ≤ i ≤ M and 1 ≤ j ≤ N are the indices for the spatial and time steps,
respectively, vi,j is the approximation to v(xi, tj), fi,j = f(xi, tj), vi = v(xi), xi = ih,
tj = jτ . [12]

At the t = 0 level, adjustment should be made according to the initial condition
and the compatibility requirements.

6. Numerical example

In this section, we will consider an example of numerical solution of the problem
(1.1)-(1.4).

These problems were solved by applying the iteration scheme and the finite
difference scheme which were explained in the Section 5. The condition

error(i, j) :=
∥∥∥u(n+1)

i,j − u
(n)
i,j

∥∥∥
∞

with error(i, j) := 10−3 was used as a stopping criteria for the iteration process.

Example 6.1. Consider the problem

∂u

∂t
− ∂2u

∂x2
=
[
1− (2π)2(cos 2πx+ (sin 2πx)2)

]
u

u(x, 0) = exp(− cos 2πx), x ∈ [0, 1]

u(0, t) = u(1, t), t ∈ [0, T ] , ux(1, t) = 0, t ∈ [0, T ] .

It is easy to see that the analytical solution of this problem is

u(x, t) = exp(t− cos 2πx).

The comparisons between the analytical solution and the numerical finite difference
solution f when T = 1 are shown in Figure 1 for the step sizes h = 0.0025, τ = 0.0025.
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Figure 1. The exact and numerical solutions of u(x, 1), the exact
solution is shown with dashes line.
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