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Some Hermite-Hadamard type inequalities
for functions whose exponentials are convex
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Abstract. Some inequalities of Hermite-Hadamard type for functions whose ex-
ponentials are convex are obtained.
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1. Introduction

The following integral inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (t) dt ≤ f (a) + f (b)

2
, (1.1)

which holds for any convex function f : [a, b]→ R, is well known in the literature as
the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to the
monograph [1] and the references therein.

We denote by Expconv (I) the class of all functions defined on the interval I
of real numbers such that exp (f) is convex on I. If Conv (I) is the class of convex
functions defined on I then we have the following fact:

Proposition 1.1. We have the strict inclusion

Conv (I)  Expconv (I) .

Proof. If f is convex , then exp(f) is log-convex and therefore convex on I and the
inclusion is proved.

For r ≥ 1 the function fr (x) = r lnx, x > 0 is concave on (0,∞) . We have
exp (fr (x)) = xr is a convex function, therefore fr ∈ Expconv (I) \ Conv (I) . �
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We observe that for twice differentiable functions g on I̊, the interior of I we
have that

(exp (g (x)))
′′

=
(

[g′ (x)]
2

+ g′′ (x)
)

exp g (x) , x ∈ I̊ ,

therefore g ∈ Expconv (I) if and only if

[g′ (x)]
2

+ g′′ (x) ≥ 0 for any x ∈ I̊ .

2. Some Hermite-Hadamard type inequalities

Now, if g ∈ Expconv (I), then by the Hermite-Hadamard inequality for exp (g)
we have for a, b ∈ I with a < b that

exp g

(
a+ b

2

)
≤ 1

b− a

∫ b

a

exp g (t) dt ≤ 1

2
[exp g (a) + exp g (b)] . (2.1)

By Jensen’s integral inequality for the exp function we also have for any integrable
function h : [a, b]→ R that

exp

(
1

b− a

∫ b

a

h (t) dt

)
≤ 1

b− a

∫ b

a

exph (t) dt. (2.2)

We define the logarithmic mean as

L = L (a, b) :=


a if a = b,

b−a
ln b−ln a if a 6= b,

a, b > 0.

We can improve the inequality (2.1) for convex functions as follows:

Theorem 2.1. Let f : I → R be a convex function on I and a, b ∈ I with a < b. Then
we have for f (b) 6= f (a) the inequalities

exp f

(
a+ b

2

)
≤ exp

(
1

b− a

∫ b

a

f (t) dt

)
≤ 1

b− a

∫ b

a

exp f (t) dt (2.3)

≤ exp f (b)− exp f (a)

f (b)− f (a)

(
≤ 1

2
[exp f (a) + exp f (b)]

)
.

Proof. The first inequality follows by Hermite-Hadamard inequality for the convex
function f . The second inequality follows by (2.2).

It is know that if g is log convex, then by [2]

1

b− a

∫ b

a

g (t) dt ≤ L (g (a) , g (b)) . (2.4)

Since f is convex, then g = exp (f) is log-convex and by (2.4) we get the third
inequality in (2.3). �
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A recent paper connected with such results is [4].

Consider the identric mean of two positive numbers

I = I (a, b) :=


a if a = b,

1
e

(
bb

aa

) 1
b−a

if a 6= b,

a, b > 0.

We observe that

ln I (a, b) =
1

b− a

∫ b

a

lnudu

for a, b > 0, a 6= b.

The following result holds:

Theorem 2.2. Assume that f ∈ Expconv (I) and a, b ∈ I with a < b. Then we have

exp

(
1

b− a

∫ b

a

f (t) dt

)
≤ I (exp f (a) , exp f (b)) (2.5)

and

exp f

(
a+ b

2

)
(2.6)

≤ exp

(
1

b− a

∫ b

a

ln

[
exp f (x) + exp f (a+ b− x)

2

]
dx

)

≤ 1

b− a

∫ b

a

exp f (x) dx.

Proof. Since f ∈ Expconv (I) , then

exp f ((1− λ) a+ λb) ≤ (1− λ) exp f (a) + λ exp f (b)

for any λ ∈ [0, 1] , which is equivalent to

f ((1− λ) a+ λb) ≤ ln [(1− λ) exp f (a) + λ exp f (b)] (2.7)

for any λ ∈ [0, 1] .

Integrating (2.7) on [0, 1] we get

1

b− a

∫ b

a

f (t) dt =

∫ 1

0

f ((1− λ) a+ λb) dλ (2.8)

≤
∫ 1

0

ln [(1− λ) exp f (a) + λ exp f (b)] dλ

=
1

exp f (b)− exp f (a)

∫ exp f(b)

exp f(a)

lnudu

= ln I (exp f (a) , exp f (b))

and the inequality in (2.5) is proved.
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From (2.7) we have

f

(
x+ y

2

)
≤ ln

[
exp f (x) + exp f (y)

2

]
(2.9)

for any x, y ∈ I.
From (2.9) we have

f

(
a+ b

2

)
≤ ln

[
exp f (x) + exp f (a+ b− x)

2

]
(2.10)

for any x ∈ [a, b] .

Integrating the inequality (2.10) over x on [a, b] we get the first inequality in
(2.6).

By the Jensen’s inequality for the concave function ln we have

1

b− a

∫ b

a

ln

[
exp f (x) + exp f (a+ b− x)

2

]
dx (2.11)

≤ ln

(
1

b− a

∫ b

a

[
exp f (x) + exp f (a+ b− x)

2

]
dx

)

= ln

(
1

2 (b− a)

∫ b

a

[exp f (x) + exp f (a+ b− x)] dx

)

= ln

(
1

b− a

∫ b

a

exp f (x) dx

)

and the second inequality in (2.6) is proved. �

If we consider Toader’s mean defined as (see for instance [5] and [7] for many
relations of this mean with other means)

E = E (a, b) :=

 a if a = b,

log I (exp a, exp b) if a 6= b,
a, b ∈ R.

we can write (2.5) in an equivalent form as

1

b− a

∫ b

a

f (t) dt ≤ E (exp f (a) , exp f (b)) . (2.12)

Remark 2.3. If the function g : I → (0,∞) is convex on I, then f = ln g ∈ Expconv (I)
and for a, b ∈ I with a < b we have, by (2.5) and (2.6), the following inequalities

exp

(
1

b− a

∫ b

a

ln g (t) dt

)
≤ I (g (a) , g (b)) (2.13)
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and

g

(
a+ b

2

)
≤ exp

(
1

b− a

∫ b

a

ln

[
g (x) + g (a+ b− x)

2

]
dx

)
(2.14)

≤ 1

b− a

∫ b

a

g (x) dx.

3. Related results

The following related result also holds:

Theorem 3.1. Assume that f ∈ Expconv (I) and a, b ∈ I with a < b. Then we have

f (a) (x− a) + f (b) (b− x)

b− a
− 1

b− a

∫ b

a

f (y) dy (3.1)

≥ exp f (x)

[
exp (−f (x))− 1

b− a

∫ b

a

exp [−f (y)] dy

]
for any x ∈ [a, b] .

In particular, we have

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (y) dy (3.2)

≥ exp f

(
a+ b

2

)[
exp

(
−f
(
a+ b

2

))
− 1

b− a

∫ b

a

exp [−f (y)] dy

]
.

Proof. Since the function exp (f) is convex, it has lateral derivatives in each point of
(a, b) and f = ln (exp f) does the same. Then for any x, y ∈ (a, b) we have

exp f (x)− exp f (y) ≥ f ′− (y) (x− y) exp f (y)

and dividing by exp f (y) > 0 we get

exp f (x) exp [−f (y)]− 1 ≥ f ′− (y) (x− y) (3.3)

for any x, y ∈ (a, b) .
Integrating (3.3) over y on [a, b] and dividing by b− a we get

exp f (x)
1

b− a

∫ b

a

exp [−f (y)] dy − 1 (3.4)

≥ 1

b− a

∫ b

a

f ′− (y) (x− y) dy

=
1

b− a

[
f (y) (x− y)|ba +

∫ b

a

f (y) dy

]

=
1

b− a

[∫ b

a

f (y) dy − f (a) (x− a)− f (b) (b− x)

]
for any x ∈ [a, b] , which is equivalent to the desired inequality (3.1). �
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Corollary 3.2. With the assumptions of Theorem 3.1 we have

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (y) dy (3.5)

≥ exp f (a) + exp f (b)

2

[
1− 1

b− a

∫ b

a

exp [−f (y)] dy

]
.

Proof. If we take x = a and x = b in (3.4) we get

exp f (a)
1

b− a

∫ b

a

exp [−f (y)] dy − 1 ≥ 1

b− a

∫ b

a

f (y) dy − f (b)

and

exp f (b)
1

b− a

∫ b

a

exp [−f (y)] dy − 1 ≥ 1

b− a

∫ b

a

f (y) dy − f (a) .

Adding these inequalities and dividing by two we get

exp f (a) + exp f (b)

2

[
1

b− a

∫ b

a

exp [−f (y)] dy − 1

]

≥ 1

b− a

∫ b

a

f (y) dy − f (a) + f (b)

2
,

which is equivalent to the desired inequality (3.5). �

Corollary 3.3. With the assumptions of Theorem 3.1 and if

x0 :=
f (b) b− f (a) a−

∫ b

a
f (y) dy

f (b)− f (a)
∈ [a, b] , (3.6)

where f (b) 6= f (a) , then we have

1

b− a

∫ b

a

exp [−f (y)] dy ≥ exp

(
−f

(
f (b) b− f (a) a−

∫ b

a
f (y) dy

f (b)− f (a)

))
. (3.7)

Proof. Follows by (3.1) by taking x = x0 defined in (3.6). �

The inequality (3.7) can be found in Sándor’s paper [3] where x0 considered in
(3.6) is in fact a mean called by him as “generated by derivatives of functions”. This
mean is extended in [9] (see also [6]), and generalized many results related to integral
inequalities. See also [8] for more results.

Remark 3.4. Since

x0 =

∫ b

a
f ′ (y) ydy∫ b

a
f ′ (y) dy

,

then a sufficient condition for (3.6) to hold is that f is monotonic nondecreasing or
nonincreasing on the whole interval [a, b] .
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Remark 3.5. If the function g : I → (0,∞) is convex on I, then f = ln g ∈ Expconv (I)
and for a, b ∈ I with a < b we have, by (3.1), (3.2) and (3.5), the following inequalities

ln
(

[g (a)]
x−a
b−a [g (b)]

b−x
b−a

)
− 1

b− a

∫ b

a

ln g (y) dy (3.8)

≥ g (x)

[
1

g (x)
− 1

b− a

∫ b

a

1

g (y)
dy

]
,

ln
(√

g (a) g (b)
)
− 1

b− a

∫ b

a

ln g (y) dy (3.9)

≥ g
(
a+ b

2

)[
1

g
(
a+b
2

) − 1

b− a

∫ b

a

1

g (y)
dy

]
,

and

ln
(√

g (a) g (b)
)
− 1

b− a

∫ b

a

ln g (y) dy (3.10)

≥ g (a) + g (b)

2

[
1− 1

b− a

∫ b

a

1

g (y)
dy

]
.

If

x0 :=
ln
(

[g(b)]b

[g(a)]a

)
−
∫ b

a
ln g (y) dy

ln
(

g(b)
g(a)

) ∈ [a, b] , (3.11)

where g (b) 6= g (a) , then we have

1

b− a

∫ b

a

1

g (y)
dy ≥ 1

g

(
ln
(

[g(b)]b

[g(a)]a

)
−
∫ b
a
ln g(y)dy

ln( g(b)
g(a) )

) . (3.12)
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