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N;-A-coseperable groups
Ulrich Albrecht

Abstract. Let A be a countable self-small Abelian group with a right Noetherian
right hereditary endomorphism ring. We show that the question whether strongly-
N;i-A-generated groups are Ni-A-coseparable is undecidable in ZFC. Our main
focus is on the algebraic aspect of the proof, not on the underlying set-theory.
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1. Introduction

Let A be an Abelian group with endomorphism ring E = E(A). Associated with
A are the functors Ha(.) = Hom(A,.) and T4(.) = . ® A which induce natural
maps 0g : TAHA(G) — G and ¢pr : M — HaTa(M) defined by dg(a® a) = afa)
and [pp(x)](a) = 2 ® a for all @ € Huy(G), x € M and a € A. The A-solvable
groups are the Abelian groups G such that 6 is an isomorphism. Finally, a sequence
0 - G — H — L — 0 of Abelian group is A-balanced if the induced sequence
0— Ha(G) = Ha(H) — Ha(L) — 0 of right E-modules is exact

An important class of A-solvable groups are the (finitely) A-projective groups,
i.e. groups which are isomorphic to a direct summand of &7 A for some (finite) index-
set I. Finitely A-projective groups are always A-solvable [8], and the same holds for
arbitrary A-projective groups [9] if A is self-small, i.e. if H4 preserves direct sums of
copies of A. Arnold and Murley showed in [9, Corollary 2.3] that a countable Abelian
group is self-small if and only if F is countable.

Epimorphic images of A-projective groups are called A-generated, but need not
be A-solvable. It is easy to see that a group G is A-generated if and only if 64 is onto.
Moreover, if A is self-small, then a group G is A-solvable if and only if there is an
A-balanced exact sequence 0 - U — F' — G — 0 in which F is A-projective and U
is A-generated [3]. Finally, G is A-torsion-free if every finitely A-generated subgroup
of GG is isomorphic to a subgroup of a finitely A-projective group, and an A-generated
subgroup U of an A-torsion-free group G is A-pure if (U + P)/U is A-torsion-free for
all finitely A-generated subgroups P of G. If A is flat as an E-module, then A-torsion-
free groups are A-solvable [4]. We want to remind the reader that a right E-module M
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is non-singular if I # 0 for all non-zero x in M and all essential right ideals I of E.
The ring R is right non-singular if Rg is a non-singular module. If U is a submodule
of a non-singular right F-module M, then the S-closure of U in M consists of all
x € M such that 21 C M for some essential right ideal I of E [14]. Non-singularity is
closely related to A-torsion-freeness whenever A is a self-small Abelian group whose
endomorphism ring is right non-singular [5]:

a) If an A-generated group G is A-torsion-free, then H 4(G) is non-singular.

b) An A-generated subgroup U of an A-torsion-free group G is contained in a
smallest A-pure subgroup V' of G which is obtained as 8¢ (T4 (W)) where W is
the S-closure of H4(U) in Ha(G).

The focus of this paper are A-torsion-free groups G such that all A-generated
subgroups U of G with |U| < |G| are A-projective. Since A-generated subgroups of
A-projective groups need not be A-projective in general ([4] and [8]), some immediate
restrictions on A are needed to guarantee the existence of non-trivial groups with the
above property.

2. Hereditary Endomorphism Rings and - A-projective groups

An Abelian group is k-A-generated, where k is an infinite cardinal, if it is an
epimorphic image of @rA for some index-set I with |I| < x. The Rj-A-generated
groups are referred to as finitely A-generated groups. An A-generated group G is k-
A-projective if every k-A-generated subgroup U of G is A-projective. If |A] < k, then
this is equivalent to the condition that all A-generated subgroups U with |U| < &
are A-projective. Since every finitely A-generated subgroup of a k- A-projective group
G is A-projective, G is A-solvable. In particular, an A-generated group G is Ng-A-
projective if every finitely A-generated subgroup is A-projective. If A is faithfully
flat as a left F-module, then finitely A-generated A-projective groups are finitely
A-projective [4].

Theorem 2.1. The following conditions are equivalent for a self-small torsion-free
Abelian group A:
a) 1) A-projective groups are k-A-projective for all infinite cardinals k.
i) Every exact sequence 0 — U — G — H — 0, in which G and H is k-A-
projective for some infinite cardinal x, is A-balanced.
b) E is a right hereditary ring.
In this case, A is faithfully flat as an E-module.

Proof. a) = b): To see that A is flat as an E-module, observe that A™ is Ng-A-
projective for all n < w, from which we obtain that G = a(A™) is A-projective for all
a: A" — A. By a.ii), the exact sequence 0 - U — A" — G — 0 with U = ker « is
A-balanced which yields the commutative diagram

0 —— TAHA(U) —_— TAHA(AH) —_— TAHA(G) — 0

JVQU ll@An ?J,GG

0 —— U —_— A" —_— G — 0.
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Thus, 6y is an isomorphism. By Ulmer’s Theorem [17], A is E-flat.

Consider a right ideal I of E. Because A is E-flat, T4(I) = IA C A. Since I A is
an A-generated subgroup of A, and A is | A|T-A-projective by a.i), [ A is A-projective.
Thus, HoT4(I) is a projective module fitting into the commutative diagram

0 —— fiATh(I) E— I{ATQ(ED

To Joo

0 —— I E

from which we obtain that ¢; is one-to-one.
On the other hand, consider an exact sequence 0 -V — F — I — 0 where F'
is a free right F-module. It induces the exact sequence

0= TaA(V) = Ta(F) = Ta(Il) = 0.

The latter sequence is A-balanced by a.ii). Hence, the top-row in the commutative
diagram
f[ATh(PU E— ELATQ(I) — 0

sz Tm

F —_— 1 — 0
is exact, which yields that ¢; is onto. Consequently, I is projective, and E is right
hereditary.
b) = a): Let M be a right E-module. Since E is right hereditary, we can find an
exact sequence 0 - P — F — M — 0 in which P and F' are projective. It induces
exact sequence

0 = Torf(F, A) — Torf (M, A) — Ta(P) — Ta(F) — Ta(M) — 0.
We obtain the commutative diagram

0 —— Ha(Torf(M,A)) —— HATs(P) —— HaTa(F)

ZT¢P ZT¢F
0 _— P _— F.

Therefore, H. A(Tor{% (M, A)) =0 for all right R-modules M.
If M™ is torsion-free, then it is isomorphic to a submodule of QM = Q ®z M. Since
Tor{{(QM, A) is torsion-free and divisible, H 4 (Torf(QM, A)) = 0 is only possible if
Torf (QM, A) = 0. However, because F is right hereditary, we have the exact sequence
0— Tor{%(M, A) — Tor{{(QM, A) =0, and Torf”(]%7 A)=0.

If M™ is torsion, then we select an exact sequence 0 - U — F; - A — 0 in
which [ is a free left E-module. It induces

0 = Torf(M, Fy) — Tor® (M, A) - M @5 V.

Since M ®p V is torsion, the same holds for Torf'(M, A). But, the latter also is
isomorphic to a subgroup of the torsion-free group T4 (P). Thus, Torf(M, A) = 0.
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For an arbitrary M, we consider the exact sequence
0 = Torf (tM, A) — Torf (M, A) — Torf'(M/tM, A) = 0

where the first and the last term vanish but what has already been shown. Thus, A
is F-flat.

To show that A is faithful as a left E-module, suppose that T4 (M) = 0. The
sequence 0 - P — F' — M — 0 yields the exact sequence

0= TaA(P) > TaA(F) = Ta(M)=0
since A is flat as an E-module. Hence, the top-row of the commutative diagram
0 —— HATA(P) E— HATA(F) — 0

2T¢P ?TiﬁF

0 —— P —_— F M 0.
is exact. A simple diagram chase shows M = 0.
Finally, A-generated subgroups of A-projective groups are A-projective if A is
faithfully flat and F is right hereditary [4], and a.i) holds. Finally, a.ii) is a direct
consequence of [6] since k-A-projective groups are A-solvable. O

In particular, the last result shows that A-generated subgroups of self-small
groups with right hereditary endomorphism ring are A-projective. Our next results
summarizes other properties of such groups which we use frequently in this paper:

Corollary 2.2. Let A be a self-small torsion-free Abelian group whose endomorphism
ring s right hereditary:
a) Every exact sequence G — P — 0 such that G is A-generated and P is A-
projective splits.
b) An A-generated group is A-torsion-free if and only if it is Rg-A-projective.
c) An A-generated subgroup of an A-torsion-free group is A-pure if and only if U
is a direct summand of U + V' for all finitely A-generated subgroups V of G.

Proof. a) follows directly from the fact that A is faithfully flat which was established
in Theorem 2.1.

b) It remains to show that A-torsion-free groups are Ro-A-projective. Suppose
that G is A-torsion-free, and let U be a finitely A-generated subgroup of G. Then U
can be embedded into an A-projective group, and thus is A-projective by Theorem
2.1.

¢) Let U be an A-pure subgroup of an A-torsion-free group G. If V' is a finitely
A-generated subgroup of G, then (U + V) /U can be embedded into an A-projective
group by Theorem 2.1. Thus, (U+V)/U is A-projective. By a), U is a direct summand
of U+V. O

However, the S-closure of a countable submodule of a non-singular module does
not need to be countable even if R is countable. For instance, if @ = Q“ and R =
Z1g + Z“), then @ is the maximal ring of quotients of R and |Q| > |R| although Q
is an essential extension of R. We want to remind the reader that a right F-module
M has Goldie-dimension m < oo if it contains an essential submodule which is the
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direct sum of m non-zero uniform submodules where a module X # 0 is uniform if
all its non-zero submodules are essential.

Proposition 2.3. Let R be a countable right non-singular ring which has finite right
Goldie-dimension. The S-closure of a countable submodule U of a non-singular right
R-module M is countable.

Proof. Let V be S-closure of U, and assume that V' is uncountable. Let

F={X CR||X|< oo and Z xR is an essential right ideal}.
z€X

Then, V = {y € M | yX C U for some z € F} since R has finite right Goldie-
dimension. Since V is uncountable and F is countable, we can find Xy € F such
that yXo C U for uncountably many y € V. Let Yy = {y € V | yXo C U}. Write
Xo ={z1,...,2,}, and consider Ypa; C U. There is an uncountable subset Y7 of Yj
such that yzy = v’z for all y,3' € Y7 since U is countable. Repeating this argument
with 2o and Y7 yields an uncountable subset Y5 of Y7 such that yzo = y'zs for
all y,4y' € Y. By induction, we can find an uncountable subset Y;, of Yy such that
yr; =y'z;foralli=1,...,nand all y,y’ € Y,. Thus, (y—y')(x1R+...+2,R) = 0 for
all y,y’ € Y,, which contradicts the fact that M is non-singular because x1 R+. . .+z, R
is essential. Thus V" has to be countable. O

By Sandomierski’s Theorem [11], a right finite dimensional, right hereditary ring
is right Noetherian.

Corollary 2.4. The following conditions are equivalent for a self-small torsion-free
Abelian group A whose endomorphism ring is right hereditary:

a) E is right Noetherian.
b) An A-generated subgroup U of a finitely A-projective group G is finitely A-
projective.

Proof. a) = b): Suppose that U is an A-generated subgroup of a finitely A-projective
group P. Then H4(U) is a submodule of H4(P), and hence a finitely generated
projective module. By Theorem 2.1, U is A-solvable, and U = T4 H 4(U) is finitely
A-projective.

b) = a): Let I be a right ideal of E. Arguing as in the proof of Theorem 2.1, ¢;
is an isomorphism. Moreover T4 (I) = I A since A is flat as an E-module. By b), TA
is finitely A-projective, from which we obtain that I is finitely generated. 0

In view of the results of this section, we assume from this point on that A is a
self-small torsion-free group with a right Noetherian right hereditary endomorphism
ring. Huber and Warfield showed in [16] that E is a right and left Noetherian ring
whenever A is a torsion-free reduced group of finite rank with a right hereditary
endomorphism ring. Moreover, no generality is lost if we restrict our discussion to
the case that k is a regular cardinal because Shelah’s singular compactness theorem
applies to A-projective groups [2].
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3. N;-A-Coseparable Groups

Let k > Ny be a regular cardinal, and A be a torsion-free Abelian group with
|A] < k. An A-projective subgroup U of an Rg-A-projective group G is k-A-closed
provided that (U + V))/U is A-projective for all k-A-generated subgroups V' of G. If
|U| < k, then this is equivalent to saying that G/U is k-A-projective. The group G
is strongly k-A-projective if it is k- A-projective and every k-A-generated subgroup U
of G is contained in an k-A-generated, s-A-closed subgroup V of G. By [1], Sa(Af)
is Ni-A-projective, but not strongly N;-A-projective since ®;A is not an Ni-A-closed
subgroup.

In the following we focus on the case k = N; since we are mainly interested in
the algebraic aspects instead of the underlying set-theory. However, most results of
this section carry over to the general case. In order to avoid immediate difficulties,
we restrict our discussion to the case that A is countable.

Lemma 3.1. Let A be a self-small countable torsion-free group with a right Noetherian
right hereditary endomorphism ring.
a) If G is Ny-A-projective, then G/U is Xi-A-projective for all Ry-A-closed sub-
groups U of G.
b) If G is strongly Ri-A-projective, then G/U is strongly Wy-A-projective for all
countable N1-A-closed subgroups U of G.

Proof. a) Let {¢,In < w} C Ha(G/U). Since ¥, <,¢n(A) is countable, there is a
countable subgroup K of G such that ¥, «,¢,(A) C (K +U)/U. Because A is count-
able, we can choose K to be A-generated. Since U is Nj-A-closed in G, the group
(K +U)/U is U-projective, and the same holds ¥,,<,¢,(A). Therefore, G/U is N;-
A-projective.

b) Let V/U be a countable A-generated subgroup of G/U. Without loss of gen-
erality, we may assume that V is A-generated. Then, V is contained in an X;-A-closed
subgroup W is a Nj-A-closed subgroup of G. Since U is countable this means that
G/W is Nj-A-projective. Since G/W = (G/U)/(W/U) and G/U is R;-A-projective,
we obtain that G/U is strongly R;-A-projective. a

An A-generated group G RNi-A-coseparable if it is N1-A-projective and every A-
generated subgroup U of G such that G/U is countable contains a direct summand V/
of G such that G/V is countable. Our next results describes R;-A-coseparable group.
Although our arguments follow the general outline of [13], significant modifications
are necessary in our setting.

Theorem 3.2. Let A be a self-small countable torsion-free group with a right Noether-
ian right hereditary endomorphism ring. A group G is Wy-A-coseparable if and only if
G is A-solvable and every exact sequence

0-P—-X—->G—=0
with P a direct summand of ®,A and X A-generated splits.

Proof. Suppose that G is Ni-A-coseparable, and consider an exact sequence

0P x2 a0
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with P a direct summand of &, A and X A-generated. Since A is faithfully flat, X is
A-generated and G is A-solvable, the induced sequence

0= Ha(P) - Ho(X) D H,4@) =0
of right E-modules is exact by Theorem 2.1. Since H4(G) is non-singular by the re-
marks in the introduction, the same holds for H4(X). Observe that H(P) is count-
able since it is a direct summand of H4(®,A), and the latter is countable because A
is self-small. We choose a complement W of im(H 4(«)) in H4(X), and observe that
H4(X)/W is nonsingular. Since

M = Ha(X)/(im(Ha(a) @ W) = [Ha(X)/W][(im(Ha(e) © W)/ W]

is singular and (im(Ha(a) @ W)/W is countable, H4(X)/W is countable as the S-
closure of a countable submodule by Proposition 2.3 because E is right Noetherian
and countable. Applying T4 yields the commutative diagram

0 — s T4Hu(P) TAHA(X) 22220 1 HA(G) —— 0

i I i

0o —— P LN X s, G — 0.

Therefore, X is A-solvable, and U = 0x(Ta(W)) is an A-generated subgroup of X
such that a(P) N X =0 and

X/|a(P)@ U] =2Ts(M)

is countable. If H = B(U), then B|U is one-to-one. Since S(U) = U = Ty(W)
is A-generated and G/B(U) is countable, there is a subgroup K of U such that
G = B(K) @ B for some countable subgroup B of G using the fact that G is N;-
A-coseparable. Select a subgroup V of X containing a(P) such that (V) = B.
Clearly, V is countable.

To show X = K @V, take x € X and write 8(z) = 8(k) + 8(v) for some k € K
and v € V. Then  —k — b € a(P) C V. On the other hand, suppose that y € KNV.
Then B(y) € B8(K)N B = 0, from which we obtain

yea(P)NK Ca(P)NU =0.

Moreover, V is A-generated since it is a direct summand of X, while 8(V) = V/«a(P)
is A-projective as a countable subgroup of G. Therefore, a(P) is a direct summand
of V.

Conversely, assume that G is an A-solvable group such that every exact sequence
0P — X —- G — 0 with P a direct summand of @,A and X A-generated
splits. Suppose that G contains a countable A-generated subgroup U which is not
A-projective. Since U is A-solvable because A is E-flat by Theorem 2.1, H4(U) is
not projective. Looking at projective resolutions of H4(U), we can find a countable
projective module P with Exty,(H4(U), P) # 0. Since E is right hereditary, we have
an exact sequence

TAHA(a)
—_

Extp(Ha(G), P) — Extp(Ha(U), P) — 0.
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Thus, there is a non-splitting sequence 0 — P — M — H4(G) — 0 which induces
0 = Tu(P) = Ta(M) — TaHA(G) — 0 which splits since G = T4HA(G). We
therefore obtain the commutative diagram

0 —— HATA(P) e HATA(M) e HATAHA(G) — 0

ZT¢P T¢’M ITQbHA(G)

0——» P —— M —— HxG) ——0

in which ¢y is an isomorphism by the 3-Lemma. Since the top-row splits, the same has
to hold for the bottom, which contradicts its choice. Therefore, G is Ni-A-projective.

Consider an A-generated subgroup C' of G such that G/C is countable. We can
find a countable subgroup B such that G = C + B, and no generality is lost if we
assume in addition that B is A-generated. By what was shown in the last paragraph,
B is A-projective. We consider the exact sequence 0 - K — B® C 5 G — 0 with
m(b,c) = b+ c. Since G is A-solvable, and C is an A-generated subgroup of G, the
group B@C is A-solvable. By Theorem 2.1, K = {(b, —b) | b € BNC} is A-generated,
and hence A-solvable since A is E-flat. Since K is isomorphic to a subgroup of the
countable A-projective group B, another application of Theorem 2.1 yields that K is
a countable A-projective group. By our hypotheses, the map 7 splits, say mé = 14 for
some homomorphism 0 : G — B&C. Let p : B&C — B be the projection onto B with
kernel C, and consider D = ker(pd). Since G/D is A-generated and isomorphic to a
subgroup of the countable A-projective group B, it is A-projective itself. By Theorem
2.1, D is a direct summand of G. Moreover, every d € D satisfies d(d) = (0,c) for
some ¢ € C since pd(d) = 0 yields d(d) € ker p = C. Then d = 7é(d) = 7(0,¢) = ¢,
and D C C. O

A group W is an A-Whitehead group if it admits an A-balanced exact sequence
0—-U — F = W — 0 in which F is A-projective and U is A-generated with the
property that

0 — Hom(W, A) — Hom(F, A) - Hom(U,A) — 0
is exact.

Corollary 3.3. Let A be a self-small countable torsion-free group with a right Noether-
1an right hereditary endomorphism ring.

a) Every Ny-A-coseparable group W is an A-Whitehead group.
b) It is consistent with ZFC that there exists a strongly Ri-A-projective group G
which is not Ni-A-coseparable.

Proof. a) By [7], an A-solvable group W is an A-Whitehead group if every exact
sequence 0 - A — X — W — 0 with S4(X) = X splits which is satisfied by W
because of Theorem 3.2.

b) If we assume V' = L, then all A-Whitehead groups are A-projective. However,
there exist strongly N;-A-projective group G with Hom(G, A) = 0 [7]. O
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4. Strongly XN;-A-Projective Groups and Martin’s Axiom

We use the formulation of Martin’s Axiom given in [13, Definition VI.4.2]. A
partially ordered set (P, <) satisfies the countable chain condition (ccc) if any an-
tichain in (P, <) is countable. An antichain is a subset A of P such that any two
distinct members of A are incompatible, i.e., whenever p,q € A, then there does not
exist r € P such that » > p and r > ¢g. A subset D of P is dense if, for every p € P
there is ¢ € D such that p < g. Finally, a subset F of P is directed, if, for all p,q € F,
there is » € F such that r > p and r > q.

For a cardinal k, let MA(x) denote the statement:

Let (P,<) be a partially ordered set satisfying the countable chain condition
(cce). For every family D = {D, | a < x} of dense subsets of P, there is a directed
subset F of P such that F N D, # 0 for all «, i.e. F is D-generic.

Martin’s axiom (MA) stipulates that MA (k) holds for every x < 2%0 [13].

Theorem 4.1. (MA + X; < 2%0) Let A be a self-small countable torsion-free group
with a right Noetherian right hereditary endomorphism ring. If G is a strongly N;-A-
projective group and 0 — U — ©1A — G — 0 is an A-balanced exact sequence such
that S4(U) = U and |I| < 2%, then the induced sequence

0 — Hom(G, B) - Hom(®;A, B) - Hom(G,B) — 0
is exact for all countable A-solvable group B.

Proof. We consider an A-balanced exact sequence 0 — U — @&rA — G — 0 where
U — @A is the inclusion map. Let P(U) be the collection of A-generated A-pure
subgroups V of F' = @A containing U such that V/U is finitely A-projective. Since
V is A-generated and A is faithfully flat, U is a direct summand of V' by Corollary
2.2, say V = U @ Ry for some finitely A-projective group Ry .

To show that the sequence Hom(®rA, B) — Hom(G, B) — 0 is exact whenever
B is a countable A-solvable group, let ¢ € Hom(U, B), and consider

P={(V.¢)|V € P(U),¢ € Hom(V, B), and $|U = ¢}.

We partially order P by (Vi,41) > (Va, 1)) if and only if Vo C Vi and ¢ |Va = ts.
Once we have shown that P and D = {D(J)|J C I finite} satisfy the hypotheses
of Martin’s Axiom, then we can find a D-generic directed directed subset F of P.
Define a map v : ®;A — B as follows. For x € ®;A, choose a finite subset J of
such that z € @ A. Since F is D-generic, there is (V,d) € D(J) N F with € V.
Define ¢(z) = 06(z). Moreover, if (V1,d1) and (Va,02) are two choices, then there
is (V3,03) € F such that (V;,8;) < (V3,d3) for i = 1,2 since F is directed. Thus,
d1(x) = 03(x) = da2(x). O

The key towards showing that (P, <) satisfies the countable chain condition is

Theorem 4.2. Every uncountable subset P’ of P contains an uncountable subset P
for which we can find an A-pure A-projective subgroup X of F containing U as a
direct summand such that V. C X whenever (V,4) € P".
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Proof. We may assume that P’ = {(V,,,¢,)|v < wi}. Since U is a direct summand
of V,,, we obtain that H4(V,/U) = Hx(V,)/H4(U) is a finitely generated right E-
module. In particular, it has finite right Goldie dimension since E is right Noetherian.
Therefore, no generality is lost if we assume that there is m < w such that H4(V, /U)
has Goldie dimension m for all v < ws.

Let 0 < k < m be maximal with respect to the property that there exists an
A-pure A-projective subgroup T' of F' containing U such that H4(T/U) has Goldie
dimension k£ and T is contained in uncountable many V,,. This k exists since U is the
choice for T in the case k = 0. Observe that T/U is A-solvable as an A-generated
subgroup of the A-solvable group G = F/U. Thus, 0 - U — T — T/U — 0 is
A-balanced, and Ha(T/U) =2 Ha(T)/Ha(U) has finite Goldie-dimension and is non-
singular. Thus, it contains a finitely generated essential submodule. Since E is right
Noetherian and countable, any essential extension of a non-singular finite dimensional
right E-module is countable by Proposition 2.3. In particular, H4(T'/U) is countable,
and hence T/U = T4 H,(T/U) is countable. Since G is Ni-A-projective, T/U is A-
projective, and T'= U @ W because A is faithfully flat by Corollary 2.2.

Suppose that T” is an A-generated subgroup of F' containing 7" such that T' = T".
There exists o € Ha(T") with a(A) € T. Since T is A-pure in F, we obtain T+a(A4) =
T @& C with C' # 0. Thus, the Goldie-dimension of H4(T") is at least k + 1, and T” is
contained in only countably many of the V,,. No generality is lost if we assume that T’
is contained in V,, for all v. Since T' is A-pure in F and V, =U ¢ Ry, =T + Ry, for
some finitely A-projective subgroup Ry, of F', we obtain decompositions V,, = T&W,,.
Observe that W, is finitely A-projective.

We construct X as the union of a smooth ascending chain {X,|v < wq} of A-
pure A-projective subgroups of F' containing 7" and an ascending chain of ordinals
{ov|v < wi} such that X, /X, is A-projective, W, ., C X, 11, and X, /U is an
image of @, A for all v < wy. We set Xog = T, and X, = Uy, X, if a is a limit
ordinal. Then, X, /U is a countable subgroup of F/U, and hence A-projective. Set
0o = sup(o, v < ).

If @« = v + 1, then there exists a subgroup C, of F' containing X, such that the
group C, /U is an A-projective countable N;-A-closed subgroup of F'/U since F/U is
strongly N;-A-projective. In particular, F/C, = (F/U)/(C,/U) is A-solvable. Since A
is flat, C), is A-generated by Theorem 2.1. If K is a countable A-generated subgroup
of F, then (K 4+ U)/U is a countable subgroup of F/U. Hence,

(K +C)/C, = [(K+C,)/UJ/[C,/U]

is A-projective.
To construct o4, assume W, N C, # 0 for all p > o,,. Then,

W,/ (W,nC,) = (W,+C,)/C,

is A-projective by the last paragraph. Since A is faithfully flat, W,NC, is A-generated,
and there is a map 0 # o, € Ha(W, N C,) € Ha(C,). Since C, /U is a countable
subgroup of F/U, it is A-projective, and C, = U @& P, since A is faithfully flat.
Observe that P, is countable and A-projective. Write a, = 5, + €, with g, € Ha(U)
and €, € Ha(P,). Since E is countable, the same holds for H4(P,), and there is
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€ € Hu(P,) such that ¢, = € for uncountably many p. For all these u, we have
€(A) CW,+U CV,. Hence, T + ¢(A) C V,, for uncountably many p. However, this
is only possible if e(A) C T'. But then, a,(A) C T NW, =0, a contradiction.

Therefore, we can find an ordinal o, > o, with C, N W,_ = 0. In particular,
X, C C, yields X, N W,_, = 0. Let Y be the S-closure of

HA(XV V) Wo'a) = HA(XI/ ©® HA(WJQ) 2 HA(U)

in Hao(F) and let X, = 0p(Y ® A) = Y A. As an A-generated subgroup of F, X, is
A-solvable. Then, the inclusion Y C H4(X,) induces the commutative diagram

0 —— Ta(Y) —— TuHa(Xo) —— Ta(Ha(Xa)/Y) —— 0
leF\TA(Y) zlexa

0 —— YA ¥4, YA e 0
from which we get T4 (H4(Xo)/Y) = 0. Since A is faithfully flat, Y = Ha(X,), and
Ha(Xo)/[Ha(X,) ® Ha(W,,)] is singular.

Observe that Y/HA(U) is the S-closure of [Ha(X,) + Ha(W,_)]/Ha(U) in
Ha(F)/HA(U) because

Ha(F)/Y = [Ha(F)/Ha(U)]/[Y/Ha(U)]
is non-singular and
Y/HA(X, & Wo,) = [Y/HAU)]/[HA(X, & Wo,,)/Ha(U)]

is singular. Since F/U is A-solvable, and X, /U is countable, H4(X,)/H(U) is count-
able. Moreover, W, is finitely A-projective. Hence, the E-module H4 (W, ) is count-
able too, and
[HA(XV) + HA(WUQ)}/HA(U)

is countable. Thus, Y/H 4(U) is an essential extension of a countable non-singular
right E-module. By Proposition 2.3, we obtain that Y/H4(U) is countable. Thus,
there is a countable submodule Y’ of YV with ¥ = Y’ + H4(U). Then X, /U is
countable and X, = Y'A + X, and. Consequently, X, /U has to be A-projective,
and the same holds for X, 2 X,/U® U.

It remains to show that X, /X, is A-projective. For this, observe that the group

Xo/(XanNC)) 2 (Xa+C,)/Cy

is countable since it is an epimorphic image of (X, +C,)/U which is countable because
X, and C, /U are countable. Since C,, /U is X;-A-closed in F//U, we have that

Xo/(XaNCy) = [(Xa + C)/U]/[C, /U]

is A-projective. Since A is flat, X, N C, is A-generated as in Theorem 2.1. For 7 in
Ha(XoNCy), choose a regular element ¢ € E such that 7¢ € Ha(X,) ® Ha(W,,,),
say 7¢ = 3+~ for some 8 € Ha(X,) and v € Ha(W,,_ ). Then

v=Tc— B € Ha(Wo,) NHA(C,) = 0.

o4

Hence, 7¢c € H4(X,). Since X, is A-pure in F, we obtain 7 € H4(X, ). Therefore,
Hpo(X,NC,) C Hy(X,), and X, NC, C X,. Since X, is contained in X, and in
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C,, we obtain X,NC, = X,,. Then X,/X, = (X, +C,)/C, is A-projective by what
we have already shown. In particular, X, is a direct summand of X,,.
Consequently, X = U, <., X, is A-pure and A-projective. Because
Xoi1/Xy = [Xoia/T1/[X0/T]

is A-projective for all v, the group X/T is A-projective. This yields X = T & S.
However, T'=U & W, so that X =U & W @ S. Finally,

VO'L,+1 =To Wo’,,+ - XVJrl - X
for all v < wy. Let P = {(V,, .., %o, )|V <wi}. O

Corollary 4.3. P satisfies the countable chain condition.

Proof. Since B is a countable A-solvable group, there is an exact sequence
0—-V—->6,A—-B-0

which is A-balanced by Theorem 2.1. Thus, H4(B) is countable as an epimorphic
image of Hs(®,A) = @, F using the self-smallness of A.

Let P’ be an uncountable subset of P. By the previous Lemma, we may as-
sume P’ = {(V,, 4, )|v < w1} such that there is an A-pure A-projective subgroup X
containing U as a direct summand satisfying V,, C X for all v < w;. We can write
X =U@®Y and Y = @,;Y; where each Y; is isomorphic to a subgroup of A. This is
possible since F is hereditary.

For v < wy, we have V,, = U® (Y NV,,). Since YNV, is finitely A-projective, there
is a finite subset J, of J such that Ha(Y NV,) C Ha(®,;,Y;), and Y NV, C @Y.
Therefore, V,, is an A-pure subgroup of

Vi+(@®.,Y;)=U& (®,,Y;).

Because @;,Y; is finitely A-generated, V, is a direct summand of U & (©,,Y;), say
Vo + (®,,Y;) =V, & X,. Since V,, + (4,,Y;) is A-projective, the same holds for
X,. Thus, X, is isomorphic to a direct summand of @, Y;. Moreover, 9, : V, = B
extends to a map A, : U @ (@,,Y;) — B. By the Adjoint-Functor-Theorem,

HOIH(EBJVYJ', B) = HomE(HA(GBJVYj), HA(B))

is countable since H 4 (B) is countable as was shown in the first paragraph of the proof
and J, is finite. Consequently, there are at most countably many different extensions
of g to U D ().

If there are only countably many different J,’s, then there is vy such that J,,, =
J,, for uncountable p. Thus, there are py and po with J,, = J,, = Jy, and Ay, = Ay,
Thus, v, and v, have a common extension. Therefore, P" = {(V,,¢,)|lv < w1}
cannot be an antichain. On the other hand, if there are uncountably many J,’s, then
we may assume without loss of generality that J, # J, for u # v. Finally, we can
impose the requirement that all the J, have the same order. Thus, J, cannot be
contained in J, for p # v. Since (V,,v,) < (V, @ X,,\,), we may assume that
V,=U®(®,,Y;) and A, = 9,

There is a subset T of J which is maximal with respect to the property that
it is contained in uncountably many of the .J,. We may assume that T is actually
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contained in all of the J,. Observe that T is finite and a proper subset of all the J,,.
Otherwise, all the J,, would have to coincide with T since they have the same finite
order. Since Hom(®7Yj, B) = Homg(HA(®7Y;), Ha(B)) is countable by the Adjoint-
Functor-Theorem, there are uncountably many 1, which have the same restriction to
W =U & (®rY;). Without loss of generality, we may assume that this happens for
all v.

Let j € Jop \ T. The maximality of T guarantees that j is contained in only
countably many of the J,. Since Jo \ T is finite, there is p < wy with J, NJy =T
The maps 1, and ¢, have a common extension o : U & ($s,04,Y;) — B since they
coincide on W. Since U & (® 4,0, Y;) is a direct summand of X, and X is A-pure in
F, we have that U & (©,u,Y;) is A-pure in F'. Because Jy U J, is finite,

(Ua (GBJOUJVYVJ-)’O—) S
Thus,

(U 57 (@JOUJU)/j)7 U) 2 (‘//u ¢/L)a (V07 d)O)
Consequently, P’ cannot be an anti-chain. O

For every finite subset J of I, let D(J) = {(V,¢) € P|®&; ACV}.

Proposition 4.4. P and D = {D(J)|J C I finite} satisfy the hypotheses of Martin’s
Axiom.

Proof. By Corollary 4.3, it remains to show that D(J) is dense in P. For this, let
(V,¢) € P. We have to find (W, a) € P such that ®;A and V are contained in W
and a|V = 1. Since V/U is finitely A-projective and G = F/U is strongly Ri-A-
projective, there is a subgroup X of F containing V and @ ;A such that X/U is a
N;-A-closed, A-projective countable subgroup of F/U. Since

[F/Ul/IX/U] = F/X
is Ny-A-projective, it is A-solvable by Theorem 2.1. Using the same result once more,

we obtain that the sequence 0 - X — F — F/X — 0 is A-balanced. In particular,
Sa(X) =X and X is A-projective. Moreover,

Ha(F)/Ha(X) = Ha(F/X) = Ha([F/U]/[X/U]) = Ha(F/U)/Ha(X/U)
since X in F' and X/U in F/U are A-balanced by the faithful flatness of A. But the
latter is non-singular, since [F/U]/[X/U] is Ni-Aprojective. Therefore, X is A-pure
in F.

Since the group X/U is A-projective, we have a decomposition X = U @ P.
Hence, V. =U @ (VN P) and V N P is finitely A-projective. In the same way,

(@A) +U=Ud[(®;A) +U)N P]
yields that ((®7A) + U) N P is A-generated and an image of & ;A.
Therefore, ((©;A)+U)NP and V N P are finitely A-projective subgroups of P. Thus,
Ha(((®54) +U) N P) and Ha(V N P) are finitely generated submodule of H4(P).
Since E is right hereditary, H4(P) is a direct sum of right ideals of E, which yields

that Ha(((®5A4) + U) N P) and H4(V N P) are contained in a finitely generated
direct summand of H(P). Hence, there is a finitely A-projective summand D of P



506 Ulrich Albrecht

which contains VN P and ((@5A4) +U)NP. Since U @ D=V + D and V is A-pure
in F', we obtain that V is a direct summand of U @ D. Thus, ¥ extends to a map
a:U@®D — B. Clearly, (U® D,«a) € Pand (U@ D,a) > (V,v). O

An A-generated group G W;-A-separable if every countable subset of G is con-
tained in an A-projective direct summand of G.

Corollary 4.5. (MA + ®; < 2%) If A is a self-small countable torsion-free group
with a right Noetherian right hereditary endomorphism ring, then every strongly Ni-
A-projective group is Wi-A-separable and Ri-A-coseparable.

Proof. By Theorem 3.2 and Theorem 4.1, a strongly N;-A-projective group G is N;-
A-coseparable. It remains to show that is R;-A-separable too. For a countable subset
X of G select a countable Ry-A-closed subgroup U of G containing X. Since G/U is
strongly Ri-A-projective, the sequence 0 — U — G — G/U — 0 splits by Theorem
4.1. O
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