\aleph_1 -A-coseperable groups

Ulrich Albrecht

Abstract. Let A be a countable self-small Abelian group with a right Noetherian right hereditary endomorphism ring. We show that the question whether strongly- \aleph_1 -A-generated groups are \aleph_1 -A-coseparable is undecidable in ZFC. Our main focus is on the algebraic aspect of the proof, not on the underlying set-theory.

Mathematics Subject Classification (2010): 20K20, 20K40.

Keywords: \aleph_1 -a-coseparable groups, Martin's axiom, endomorphism rings.

1. Introduction

Let A be an Abelian group with endomorphism ring E = E(A). Associated with A are the functors $H_A(.) = \operatorname{Hom}(A,.)$ and $T_A(.) = . \otimes_E A$ which induce natural maps $\theta_G : T_A H_A(G) \to G$ and $\phi_M : M \to H_A T_A(M)$ defined by $\theta_G(\alpha \otimes a) = \alpha(a)$ and $[\phi_M(x)](a) = x \otimes a$ for all $\alpha \in H_A(G)$, $x \in M$ and $a \in A$. The A-solvable groups are the Abelian groups G such that θ_G is an isomorphism. Finally, a sequence $0 \to G \to H \to L \to 0$ of Abelian group is A-balanced if the induced sequence $0 \to H_A(G) \to H_A(H) \to H_A(L) \to 0$ of right E-modules is exact

An important class of A-solvable groups are the (finitely) A-projective groups, i.e. groups which are isomorphic to a direct summand of $\bigoplus_I A$ for some (finite) indexset I. Finitely A-projective groups are always A-solvable [8], and the same holds for arbitrary A-projective groups [9] if A is self-small, i.e. if H_A preserves direct sums of copies of A. Arnold and Murley showed in [9, Corollary 2.3] that a countable Abelian group is self-small if and only if E is countable.

Epimorphic images of A-projective groups are called A-generated, but need not be A-solvable. It is easy to see that a group G is A-generated if and only if θ_G is onto. Moreover, if A is self-small, then a group G is A-solvable if and only if there is an A-balanced exact sequence $0 \to U \to F \to G \to 0$ in which F is A-projective and U is A-generated [3]. Finally, G is A-torsion-free if every finitely A-generated subgroup of G is isomorphic to a subgroup of a finitely A-projective group, and an A-generated subgroup G is A-pure if G is A-torsion-free for all finitely A-generated subgroups G is A-pure if G is flat as an E-module, then A-torsion-free groups are A-solvable [4]. We want to remind the reader that a right E-module G

is non-singular if $xI \neq 0$ for all non-zero x in M and all essential right ideals I of E. The ring R is right non-singular if R_R is a non-singular module. If U is a submodule of a non-singular right E-module M, then the S-closure of U in M consists of all $x \in M$ such that $xI \subseteq M$ for some essential right ideal I of E [14]. Non-singularity is closely related to A-torsion-freeness whenever A is a self-small Abelian group whose endomorphism ring is right non-singular [5]:

- a) If an A-generated group G is A-torsion-free, then $H_A(G)$ is non-singular.
- b) An A-generated subgroup U of an A-torsion-free group G is contained in a smallest A-pure subgroup V of G which is obtained as $\theta_G(T_A(W))$ where W is the S-closure of $H_A(U)$ in $H_A(G)$.

The focus of this paper are A-torsion-free groups G such that all A-generated subgroups U of G with |U| < |G| are A-projective. Since A-generated subgroups of A-projective groups need not be A-projective in general ([4] and [8]), some immediate restrictions on A are needed to guarantee the existence of non-trivial groups with the above property.

2. Hereditary Endomorphism Rings and κ -A-projective groups

An Abelian group is κ -A-generated, where κ is an infinite cardinal, if it is an epimorphic image of $\oplus_I A$ for some index-set I with $|I| < \kappa$. The \aleph_0 -A-generated groups are referred to as finitely A-generated groups. An A-generated group G is κ -A-projective if every κ -A-generated subgroup U of G is A-projective. If $|A| < \kappa$, then this is equivalent to the condition that all A-generated subgroups U with $|U| < \kappa$ are A-projective. Since every finitely A-generated subgroup of a κ -A-projective group G is A-projective, G is A-solvable. In particular, an A-generated group G is \aleph_0 -A-projective if every finitely A-generated subgroup is A-projective. If A is faithfully flat as a left E-module, then finitely A-generated A-projective groups are finitely A-projective [4].

Theorem 2.1. The following conditions are equivalent for a self-small torsion-free Abelian group A:

- a) i) A-projective groups are κ -A-projective for all infinite cardinals κ .
 - ii) Every exact sequence $0 \to U \to G \to H \to 0$, in which G and H is κ -A-projective for some infinite cardinal κ , is A-balanced.
- b) E is a right hereditary ring.

In this case, A is faithfully flat as an E-module.

Proof. $a) \Rightarrow b$): To see that A is flat as an E-module, observe that A^n is \aleph_0 -A-projective for all $n < \omega$, from which we obtain that $G = \alpha(A^n)$ is A-projective for all $\alpha : A^n \to A$. By a.ii), the exact sequence $0 \to U \to A^n \to G \to 0$ with $U = \ker \alpha$ is A-balanced which yields the commutative diagram

$$0 \longrightarrow T_A H_A(U) \longrightarrow T_A H_A(A^n) \longrightarrow T_A H_A(G) \longrightarrow 0$$

$$\downarrow^{\theta_U} \qquad \qquad \downarrow^{\psi_{A^n}} \qquad \qquad \downarrow^{\psi_{G}}$$

$$0 \longrightarrow U \longrightarrow A^n \longrightarrow G \longrightarrow 0.$$

Thus, θ_U is an isomorphism. By Ulmer's Theorem [17], A is E-flat.

Consider a right ideal I of E. Because A is E-flat, $T_A(I) \cong IA \subseteq A$. Since IA is an A-generated subgroup of A, and A is $|IA|^+$ -A-projective by a.i), IA is A-projective. Thus, $H_AT_A(I)$ is a projective module fitting into the commutative diagram

$$0 \longrightarrow H_A T_A(I) \longrightarrow H_A T_A(E)$$

$$\uparrow^{\phi_I} \qquad \qquad \downarrow^{\uparrow^{\phi_E}}$$

$$0 \longrightarrow I \longrightarrow E$$

from which we obtain that ϕ_I is one-to-one.

On the other hand, consider an exact sequence $0 \to V \to F \to I \to 0$ where F is a free right E-module. It induces the exact sequence

$$0 \to T_A(V) \to T_A(F) \to T_A(I) \to 0.$$

The latter sequence is A-balanced by a.ii). Hence, the top-row in the commutative diagram

$$H_A T_A(F) \longrightarrow H_A T_A(I) \longrightarrow 0$$

$$\downarrow \uparrow \phi_F \qquad \qquad \uparrow \phi_I$$
 $F \longrightarrow I \longrightarrow 0$

is exact, which yields that ϕ_I is onto. Consequently, I is projective, and E is right hereditary.

 $b)\Rightarrow a)$: Let M be a right E-module. Since E is right hereditary, we can find an exact sequence $0\to P\to F\to M\to 0$ in which P and F are projective. It induces exact sequence

$$0 = \operatorname{Tor}_{1}^{R}(F, A) \to \operatorname{Tor}_{1}^{R}(M, A) \to T_{A}(P) \to T_{A}(F) \to T_{A}(M) \to 0.$$

We obtain the commutative diagram

$$0 \longrightarrow H_A(\operatorname{Tor}_1^R(M,A)) \longrightarrow H_AT_A(P) \longrightarrow H_AT_A(F)$$

$$\downarrow \uparrow \phi_P \qquad \qquad \downarrow \uparrow \phi_F$$

$$0 \longrightarrow P \longrightarrow F.$$

Therefore, $H_A(\operatorname{Tor}_1^R(M,A)) = 0$ for all right R-modules M.

If M^+ is torsion-free, then it is isomorphic to a submodule of $\mathbb{Q}M = \mathbb{Q} \otimes_{\mathbb{Z}} M$. Since $\operatorname{Tor}_1^R(\mathbb{Q}M,A)$ is torsion-free and divisible, $H_A(\operatorname{Tor}_1^R(\mathbb{Q}M,A)) = 0$ is only possible if $\operatorname{Tor}_1^R(\mathbb{Q}M,A) = 0$. However, because E is right hereditary, we have the exact sequence $0 \to \operatorname{Tor}_1^R(M,A) \to \operatorname{Tor}_1^R(\mathbb{Q}M,A) = 0$, and $\operatorname{Tor}_1^R(M,A) = 0$.

If M^+ is torsion, then we select an exact sequence $0 \to U \to F_1 \to A \to 0$ in which F_1 is a free left E-module. It induces

$$0 = \operatorname{Tor}_{1}^{R}(M, F_{1}) \to \operatorname{Tor}_{1}^{R}(M, A) \to M \otimes_{E} V.$$

Since $M \otimes_E V$ is torsion, the same holds for $\operatorname{Tor}_1^R(M, A)$. But, the latter also is isomorphic to a subgroup of the torsion-free group $T_A(P)$. Thus, $\operatorname{Tor}_1^R(M, A) = 0$.

For an arbitrary M, we consider the exact sequence

$$0 = \operatorname{Tor}_{1}^{R}(tM, A) \to \operatorname{Tor}_{1}^{R}(M, A) \to \operatorname{Tor}_{1}^{R}(M/tM, A) = 0$$

where the first and the last term vanish but what has already been shown. Thus, A is E-flat.

To show that A is faithful as a left E-module, suppose that $T_A(M) = 0$. The sequence $0 \to P \to F \to M \to 0$ yields the exact sequence

$$0 \to T_A(P) \to T_A(F) \to T_A(M) = 0$$

since A is flat as an E-module. Hence, the top-row of the commutative diagram

$$0 \longrightarrow H_A T_A(P) \longrightarrow H_A T_A(F) \longrightarrow 0$$

$$\downarrow \uparrow \phi_P \qquad \qquad \downarrow \uparrow \phi_F$$

$$0 \longrightarrow P \longrightarrow F \longrightarrow M \longrightarrow 0.$$

is exact. A simple diagram chase shows M=0.

Finally, A-generated subgroups of A-projective groups are A-projective if A is faithfully flat and E is right hereditary [4], and a.i) holds. Finally, a.ii) is a direct consequence of [6] since κ -A-projective groups are A-solvable.

In particular, the last result shows that A-generated subgroups of self-small groups with right hereditary endomorphism ring are A-projective. Our next results summarizes other properties of such groups which we use frequently in this paper:

Corollary 2.2. Let A be a self-small torsion-free Abelian group whose endomorphism ring is right hereditary:

- a) Every exact sequence $G \to P \to 0$ such that G is A-generated and P is A-projective splits.
- b) An A-generated group is A-torsion-free if and only if it is \aleph_0 -A-projective.
- c) An A-generated subgroup of an A-torsion-free group is A-pure if and only if U is a direct summand of U + V for all finitely A-generated subgroups V of G.

Proof. a) follows directly from the fact that A is faithfully flat which was established in Theorem 2.1.

- b) It remains to show that A-torsion-free groups are \aleph_0 -A-projective. Suppose that G is A-torsion-free, and let U be a finitely A-generated subgroup of G. Then U can be embedded into an A-projective group, and thus is A-projective by Theorem 2.1.
- c) Let U be an A-pure subgroup of an A-torsion-free group G. If V is a finitely A-generated subgroup of G, then (U+V)/U can be embedded into an A-projective group by Theorem 2.1. Thus, (U+V)/U is A-projective. By a), U is a direct summand of U+V.

However, the S-closure of a countable submodule of a non-singular module does not need to be countable even if R is countable. For instance, if $Q = \mathbb{Q}^{\omega}$ and $R = \mathbb{Z}1_S + \mathbb{Z}^{(\omega)}$, then Q is the maximal ring of quotients of R and |Q| > |R| although Q is an essential extension of R. We want to remind the reader that a right E-module M has Goldie-dimension $m < \infty$ if it contains an essential submodule which is the

direct sum of m non-zero uniform submodules where a module $X \neq 0$ is uniform if all its non-zero submodules are essential.

Proposition 2.3. Let R be a countable right non-singular ring which has finite right Goldie-dimension. The S-closure of a countable submodule U of a non-singular right R-module M is countable.

Proof. Let V be S-closure of U, and assume that V is uncountable. Let

$$\mathcal{F} = \{ X \subseteq R \mid |X| < \infty \text{ and } \sum_{x \in X} xR \text{ is an essential right ideal} \}.$$

Then, $V = \{y \in M \mid yX \subseteq U \text{ for some } x \in \mathcal{F}\}$ since R has finite right Goldie-dimension. Since V is uncountable and \mathcal{F} is countable, we can find $X_0 \in \mathcal{F}$ such that $yX_0 \subseteq U$ for uncountably many $y \in V$. Let $Y_0 = \{y \in V \mid yX_0 \subseteq U\}$. Write $X_0 = \{x_1, \ldots, x_n\}$, and consider $Y_0x_1 \subseteq U$. There is an uncountable subset Y_1 of Y_0 such that $yx_1 = y'x_1$ for all $y, y' \in Y_1$ since U is countable. Repeating this argument with x_2 and Y_1 yields an uncountable subset Y_2 of Y_1 such that $yx_2 = y'x_2$ for all $y, y' \in Y_2$. By induction, we can find an uncountable subset Y_n of Y_0 such that $yx_1 = y'x_1$ for all $i = 1, \ldots, n$ and all $y, y' \in Y_n$. Thus, $(y-y')(x_1R+\ldots+x_nR)=0$ for all $y, y' \in Y_n$ which contradicts the fact that M is non-singular because $x_1R+\ldots+x_nR$ is essential. Thus V has to be countable.

By Sandomierski's Theorem [11], a right finite dimensional, right hereditary ring is right Noetherian.

Corollary 2.4. The following conditions are equivalent for a self-small torsion-free Abelian group A whose endomorphism ring is right hereditary:

- a) E is right Noetherian.
- b) An A-generated subgroup U of a finitely A-projective group G is finitely A-projective.

Proof. $a) \Rightarrow b$): Suppose that U is an A-generated subgroup of a finitely A-projective group P. Then $H_A(U)$ is a submodule of $H_A(P)$, and hence a finitely generated projective module. By Theorem 2.1, U is A-solvable, and $U \cong T_A H_A(U)$ is finitely A-projective.

 $b) \Rightarrow a$): Let I be a right ideal of E. Arguing as in the proof of Theorem 2.1, ϕ_I is an isomorphism. Moreover $T_A(I) \cong IA$ since A is flat as an E-module. By b), IA is finitely A-projective, from which we obtain that I is finitely generated.

In view of the results of this section, we assume from this point on that A is a self-small torsion-free group with a right Noetherian right hereditary endomorphism ring. Huber and Warfield showed in [16] that E is a right and left Noetherian ring whenever A is a torsion-free reduced group of finite rank with a right hereditary endomorphism ring. Moreover, no generality is lost if we restrict our discussion to the case that κ is a regular cardinal because Shelah's singular compactness theorem applies to A-projective groups [2].

3. \aleph_1 -A-Coseparable Groups

Let $\kappa > \aleph_0$ be a regular cardinal, and A be a torsion-free Abelian group with $|A| < \kappa$. An A-projective subgroup U of an \aleph_0 -A-projective group G is κ -A-closed provided that (U+V)/U is A-projective for all κ -A-generated subgroups V of G. If $|U| < \kappa$, then this is equivalent to saying that G/U is κ -A-projective. The group G is strongly κ -A-projective if it is κ -A-projective and every κ -A-generated subgroup U of G is contained in an κ -A-generated, κ -A-closed subgroup V of G. By [1], $S_A(A^I)$ is \aleph_1 -A-projective, but not strongly \aleph_1 -A-projective since $\oplus_I A$ is not an \aleph_1 -A-closed subgroup.

In the following we focus on the case $\kappa = \aleph_1$ since we are mainly interested in the algebraic aspects instead of the underlying set-theory. However, most results of this section carry over to the general case. In order to avoid immediate difficulties, we restrict our discussion to the case that A is countable.

Lemma 3.1. Let A be a self-small countable torsion-free group with a right Noetherian right hereditary endomorphism ring.

- a) If G is \aleph_1 -A-projective, then G/U is \aleph_1 -A-projective for all \aleph_1 -A-closed subgroups U of G.
- b) If G is strongly \aleph_1 -A-projective, then G/U is strongly \aleph_1 -A-projective for all countable \aleph_1 -A-closed subgroups U of G.

Proof. a) Let $\{\phi_n|n < \omega\} \subseteq H_A(G/U)$. Since $\Sigma_{n<\omega}\phi_n(A)$ is countable, there is a countable subgroup K of G such that $\Sigma_{n<\omega}\phi_n(A) \subseteq (K+U)/U$. Because A is countable, we can choose K to be A-generated. Since U is \aleph_1 -A-closed in G, the group (K+U)/U is U-projective, and the same holds $\Sigma_{n<\omega}\phi_n(A)$. Therefore, G/U is \aleph_1 -A-projective.

b) Let V/U be a countable A-generated subgroup of G/U. Without loss of generality, we may assume that V is A-generated. Then, V is contained in an \aleph_1 -A-closed subgroup W is a \aleph_1 -A-closed subgroup of G. Since U is countable this means that G/W is \aleph_1 -A-projective. Since $G/W \cong (G/U)/(W/U)$ and G/U is \aleph_1 -A-projective, we obtain that G/U is strongly \aleph_1 -A-projective.

An A-generated group $G \aleph_1$ -A-coseparable if it is \aleph_1 -A-projective and every A-generated subgroup U of G such that G/U is countable contains a direct summand V of G such that G/V is countable. Our next results describes \aleph_1 -A-coseparable group. Although our arguments follow the general outline of [13], significant modifications are necessary in our setting.

Theorem 3.2. Let A be a self-small countable torsion-free group with a right Noetherian right hereditary endomorphism ring. A group G is \aleph_1 -A-coseparable if and only if G is A-solvable and every exact sequence

$$0 \to P \to X \to G \to 0$$

with P a direct summand of $\bigoplus_{\omega} A$ and X A-generated splits.

Proof. Suppose that G is \aleph_1 -A-coseparable, and consider an exact sequence

$$0 \to P \overset{\alpha}{\to} X \overset{\beta}{\to} G \to 0$$

with P a direct summand of $\bigoplus_{\omega} A$ and X A-generated. Since A is faithfully flat, X is A-generated and G is A-solvable, the induced sequence

$$0 \to H_A(P) \xrightarrow{\alpha} H_A(X) \xrightarrow{H_A(\beta)} H_A(G) \to 0$$

of right E-modules is exact by Theorem 2.1. Since $H_A(G)$ is non-singular by the remarks in the introduction, the same holds for $H_A(X)$. Observe that $H_A(P)$ is countable since it is a direct summand of $H_A(\bigoplus_{\omega} A)$, and the latter is countable because A is self-small. We choose a complement W of $im(H_A(\alpha))$ in $H_A(X)$, and observe that $H_A(X)/W$ is nonsingular. Since

$$M = H_A(X)/(im(H_A(\alpha) \oplus W) \cong [H_A(X)/W][(im(H_A(\alpha) \oplus W)/W]$$

is singular and $(im(H_A(\alpha) \oplus W)/W)$ is countable, $H_A(X)/W$ is countable as the S-closure of a countable submodule by Proposition 2.3 because E is right Noetherian and countable. Applying T_A yields the commutative diagram

$$0 \longrightarrow T_A H_A(P) \xrightarrow{T_A H_A(\alpha)} T_A H_A(X) \xrightarrow{T_A H_A(\beta)} T_A H_A(G) \longrightarrow 0$$

$$\downarrow \downarrow \theta_P \qquad \qquad \downarrow \theta_X \qquad \qquad \downarrow \downarrow \theta_G$$

$$0 \longrightarrow P \xrightarrow{\alpha} X \xrightarrow{\beta} G \longrightarrow 0.$$

Therefore, X is A-solvable, and $U = \theta_X(T_A(W))$ is an A-generated subgroup of X such that $\alpha(P) \cap X = 0$ and

$$X/[\alpha(P) \oplus U] \cong T_A(M)$$

is countable. If $H = \beta(U)$, then $\beta|U$ is one-to-one. Since $\beta(U) \cong U \cong T_A(W)$ is A-generated and $G/\beta(U)$ is countable, there is a subgroup K of U such that $G = \beta(K) \oplus B$ for some countable subgroup B of G using the fact that G is \aleph_1 -A-coseparable. Select a subgroup V of X containing $\alpha(P)$ such that $\beta(V) = B$. Clearly, V is countable.

To show $X = K \oplus V$, take $x \in X$ and write $\beta(x) = \beta(k) + \beta(v)$ for some $k \in K$ and $v \in V$. Then $x - k - b \in \alpha(P) \subseteq V$. On the other hand, suppose that $y \in K \cap V$. Then $\beta(y) \in \beta(K) \cap B = 0$, from which we obtain

$$y \in \alpha(P) \cap K \subseteq \alpha(P) \cap U = 0.$$

Moreover, V is A-generated since it is a direct summand of X, while $\beta(V) \cong V/\alpha(P)$ is A-projective as a countable subgroup of G. Therefore, $\alpha(P)$ is a direct summand of V.

Conversely, assume that G is an A-solvable group such that every exact sequence $0 \to P \to X \to G \to 0$ with P a direct summand of $\oplus_{\omega} A$ and X A-generated splits. Suppose that G contains a countable A-generated subgroup U which is not A-projective. Since U is A-solvable because A is E-flat by Theorem 2.1, $H_A(U)$ is not projective. Looking at projective resolutions of $H_A(U)$, we can find a countable projective module P with $\operatorname{Ext}^1_E(H_A(U), P) \neq 0$. Since E is right hereditary, we have an exact sequence

$$\operatorname{Ext}_E^1(H_A(G), P) \to \operatorname{Ext}_E^1(H_A(U), P) \to 0.$$

Thus, there is a non-splitting sequence $0 \to P \to M \to H_A(G) \to 0$ which induces $0 \to T_A(P) \to T_A(M) \to T_AH_A(G) \to 0$ which splits since $G \cong T_AH_A(G)$. We therefore obtain the commutative diagram

$$0 \longrightarrow H_A T_A(P) \longrightarrow H_A T_A(M) \longrightarrow H_A T_A H_A(G) \longrightarrow 0$$

$$\downarrow \uparrow \phi_P \qquad \qquad \uparrow \phi_M \qquad \qquad \downarrow \uparrow \phi_{H_A(G)}$$

$$0 \longrightarrow P \longrightarrow M \longrightarrow H_A(G) \longrightarrow 0$$

in which ϕ_M is an isomorphism by the 3-Lemma. Since the top-row splits, the same has to hold for the bottom, which contradicts its choice. Therefore, G is \aleph_1 -A-projective.

Consider an A-generated subgroup C of G such that G/C is countable. We can find a countable subgroup B such that G = C + B, and no generality is lost if we assume in addition that B is A-generated. By what was shown in the last paragraph, B is A-projective. We consider the exact sequence $0 \to K \to B \oplus C \xrightarrow{\pi} G \to 0$ with $\pi(b,c) = b + c$. Since G is A-solvable, and C is an A-generated subgroup of G, the group $B \oplus C$ is A-solvable. By Theorem 2.1, $K = \{(b, -b) \mid b \in B \cap C\}$ is A-generated, and hence A-solvable since A is E-flat. Since K is isomorphic to a subgroup of the countable A-projective group B, another application of Theorem 2.1 yields that K is a countable A-projective group. By our hypotheses, the map π splits, say $\pi\delta=1_G$ for some homomorphism $\delta: G \to B \oplus C$. Let $\rho: B \oplus C \to B$ be the projection onto B with kernel C, and consider $D = \ker(\rho\delta)$. Since G/D is A-generated and isomorphic to a subgroup of the countable A-projective group B, it is A-projective itself. By Theorem 2.1, D is a direct summand of G. Moreover, every $d \in D$ satisfies $\delta(d) = (0,c)$ for some $c \in C$ since $\rho \delta(d) = 0$ yields $\delta(d) \in \ker \rho = C$. Then $d = \pi \delta(d) = \pi(0, c) = c$, and $D \subseteq C$.

A group W is an A-Whitehead group if it admits an A-balanced exact sequence $0 \to U \to F \to W \to 0$ in which F is A-projective and U is A-generated with the property that

$$0 \to \operatorname{Hom}(W, A) \to \operatorname{Hom}(F, A) \to Hom(U, A) \to 0$$

is exact.

Corollary 3.3. Let A be a self-small countable torsion-free group with a right Noetherian right hereditary endomorphism ring.

- a) Every \aleph_1 -A-coseparable group W is an A-Whitehead group.
- b) It is consistent with ZFC that there exists a strongly \aleph_1 -A-projective group G which is not \aleph_1 -A-coseparable.

Proof. a) By [7], an A-solvable group W is an A-Whitehead group if every exact sequence $0 \to A \to X \to W \to 0$ with $S_A(X) = X$ splits which is satisfied by W because of Theorem 3.2.

b) If we assume V=L, then all A-Whitehead groups are A-projective. However, there exist strongly \aleph_1 -A-projective group G with $\operatorname{Hom}(G,A)=0$ [7].

4. Strongly \aleph_1 -A-Projective Groups and Martin's Axiom

We use the formulation of Martin's Axiom given in [13, Definition VI.4.2]. A partially ordered set (P, \leq) satisfies the countable chain condition (ccc) if any antichain in (P, \leq) is countable. An antichain is a subset A of P such that any two distinct members of A are incompatible, i.e., whenever $p, q \in A$, then there does not exist $r \in P$ such that $r \geq p$ and $r \geq q$. A subset P of P is dense if, for every $P \in P$ there is $P \in P$ such that $P \in P$ such t

For a cardinal κ , let MA(κ) denote the statement:

Let (P, \leq) be a partially ordered set satisfying the countable chain condition (ccc). For every family $\mathcal{D} = \{D_{\alpha} \mid \alpha < \kappa\}$ of dense subsets of P, there is a directed subset \mathcal{F} of P such that $\mathcal{F} \cap D_{\alpha} \neq \emptyset$ for all α , i.e. \mathcal{F} is \mathcal{D} -generic.

Martin's axiom (MA) stipulates that MA(κ) holds for every $\kappa < 2^{\aleph_0}$ [13].

Theorem 4.1. $(MA + \aleph_1 < 2^{\aleph_0})$ Let A be a self-small countable torsion-free group with a right Noetherian right hereditary endomorphism ring. If G is a strongly \aleph_1 -A-projective group and $0 \to U \to \bigoplus_I A \to G \to 0$ is an A-balanced exact sequence such that $S_A(U) = U$ and $|I| < 2^{\aleph_0}$, then the induced sequence

$$0 \to \operatorname{Hom}(G, B) \to \operatorname{Hom}(\oplus_I A, B) \to \operatorname{Hom}(G, B) \to 0$$

is exact for all countable A-solvable group B.

Proof. We consider an A-balanced exact sequence $0 \to U \to \oplus_I A \to G \to 0$ where $U \to \oplus_I A$ is the inclusion map. Let $\mathcal{P}(U)$ be the collection of A-generated A-pure subgroups V of $F = \oplus_I A$ containing U such that V/U is finitely A-projective. Since V is A-generated and A is faithfully flat, U is a direct summand of V by Corollary 2.2, say $V = U \oplus R_V$ for some finitely A-projective group R_V .

To show that the sequence $Hom(\bigoplus_I A, B) \to Hom(G, B) \to 0$ is exact whenever B is a countable A-solvable group, let $\phi \in Hom(U, B)$, and consider

$$P = \{(V, \psi) \mid V \in \mathcal{P}(U), \psi \in \text{Hom}(V, B), \text{ and } \psi | U = \phi\}.$$

We partially order P by $(V_1, \psi_1) \geq (V_2, \psi_2)$ if and only if $V_2 \subseteq V_1$ and $\psi_1 | V_2 = \psi_2$. Once we have shown that P and $\mathcal{D} = \{D(J) | J \subseteq I \text{ finite}\}$ satisfy the hypotheses of Martin's Axiom, then we can find a \mathcal{D} -generic directed directed subset \mathcal{F} of P. Define a map $\psi : \oplus_I A \to B$ as follows. For $x \in \oplus_I A$, choose a finite subset J of I such that $x \in \oplus_J A$. Since \mathcal{F} is \mathcal{D} -generic, there is $(V, \delta) \in D(J) \cap F$ with $x \in V$. Define $\psi(x) = \delta(x)$. Moreover, if (V_1, δ_1) and (V_2, δ_2) are two choices, then there is $(V_3, \delta_3) \in \mathcal{F}$ such that $(V_i, \delta_i) \leq (V_3, \delta_3)$ for i = 1, 2 since \mathcal{F} is directed. Thus, $\delta_1(x) = \delta_3(x) = \delta_2(x)$.

The key towards showing that (P, \leq) satisfies the countable chain condition is

Theorem 4.2. Every uncountable subset P' of P contains an uncountable subset P'' for which we can find an A-pure A-projective subgroup X of F containing U as a direct summand such that $V \subseteq X$ whenever $(V, \psi) \in P''$.

Proof. We may assume that $P' = \{(V_{\nu}, \psi_{\nu}) | \nu < \omega_1\}$. Since U is a direct summand of V_{ν} , we obtain that $H_A(V_{\nu}/U) \cong H_A(V_{\nu})/H_A(U)$ is a finitely generated right E-module. In particular, it has finite right Goldie dimension since E is right Noetherian. Therefore, no generality is lost if we assume that there is $m < \omega$ such that $H_A(V_{\nu}/U)$ has Goldie dimension m for all $\nu < \omega_1$.

Let $0 \le k \le m$ be maximal with respect to the property that there exists an A-pure A-projective subgroup T of F containing U such that $H_A(T/U)$ has Goldie dimension k and T is contained in uncountable many V_{ν} . This k exists since U is the choice for T in the case k=0. Observe that T/U is A-solvable as an A-generated subgroup of the A-solvable group G=F/U. Thus, $0 \to U \to T \to T/U \to 0$ is A-balanced, and $H_A(T/U) \cong H_A(T)/H_A(U)$ has finite Goldie-dimension and is non-singular. Thus, it contains a finitely generated essential submodule. Since E is right Noetherian and countable, any essential extension of a non-singular finite dimensional right E-module is countable by Proposition 2.3. In particular, $H_A(T/U)$ is countable, and hence $T/U \cong T_A H_A(T/U)$ is countable. Since E is E-projective, and E-projective.

Suppose that T' is an A-generated subgroup of F containing T such that $T \neq T'$. There exists $\alpha \in H_A(T')$ with $\alpha(A) \not\subseteq T$. Since T is A-pure in F, we obtain $T + \alpha(A) = T \oplus C$ with $C \neq 0$. Thus, the Goldie-dimension of $H_A(T')$ is at least k+1, and T' is contained in only countably many of the V_{ν} . No generality is lost if we assume that T is contained in V_{ν} for all ν . Since T is A-pure in F and $V_{\nu} = U \oplus R_{V_{\nu}} = T + R_{V_{\nu}}$ for some finitely A-projective subgroup $R_{V_{\nu}}$ of F, we obtain decompositions $V_{\nu} = T \oplus W_{\nu}$. Observe that W_{ν} is finitely A-projective.

We construct X as the union of a smooth ascending chain $\{X_{\nu}|\nu<\omega_1\}$ of A-pure A-projective subgroups of F containing T and an ascending chain of ordinals $\{\sigma_{\nu}|\nu<\omega_1\}$ such that $X_{\nu+1}/X_{\nu}$ is A-projective, $W_{\sigma_{\nu+1}}\subseteq X_{\nu+1}$, and X_{ν}/U is an image of $\oplus_{\omega}A$ for all $\nu<\omega_1$. We set $X_0=T$, and $X_{\alpha}=\cup_{\nu<\alpha}X_{\nu}$ if α is a limit ordinal. Then, X_{α}/U is a countable subgroup of F/U, and hence A-projective. Set $\sigma_{\alpha}=\sup(\sigma_{\nu}|\nu<\alpha)$.

If $\alpha = \nu + 1$, then there exists a subgroup C_{ν} of F containing X_{ν} such that the group C_{ν}/U is an A-projective countable \aleph_1 -A-closed subgroup of F/U since F/U is strongly \aleph_1 -A-projective. In particular, $F/C_{\nu} \cong (F/U)/(C_{\nu}/U)$ is A-solvable. Since A is flat, C_{ν} is A-generated by Theorem 2.1. If K is a countable A-generated subgroup of F, then (K + U)/U is a countable subgroup of F/U. Hence,

$$(K + C_{\nu})/C_{\nu} \cong [(K + C_{\nu})/U]/[C_{\nu}/U]$$

is A-projective.

To construct σ_{α} , assume $W_{\mu} \cap C_{\nu} \neq 0$ for all $\mu > \sigma_{\nu}$. Then,

$$W_{\mu}/(W_{\mu}\cap C_{\nu})\cong (W_{\mu}+C_{\nu})/C_{\nu}$$

is A-projective by the last paragraph. Since A is faithfully flat, $W_{\mu} \cap C_{\nu}$ is A-generated, and there is a map $0 \neq \alpha_{\mu} \in H_A(W_{\mu} \cap C_{\nu}) \subseteq H_A(C_{\nu})$. Since C_{ν}/U is a countable subgroup of F/U, it is A-projective, and $C_{\nu} = U \oplus P_{\nu}$ since A is faithfully flat. Observe that P_{ν} is countable and A-projective. Write $\alpha_{\mu} = \beta_{\mu} + \epsilon_{\mu}$ with $\beta_{\mu} \in H_A(U)$ and $\epsilon_{\mu} \in H_A(P_{\nu})$. Since E is countable, the same holds for $H_A(P_{\nu})$, and there is

 $\epsilon \in H_A(P_{\nu})$ such that $\epsilon_{\mu} = \epsilon$ for uncountably many μ . For all these μ , we have $\epsilon(A) \subseteq W_{\mu} + U \subseteq V_{\mu}$. Hence, $T + \epsilon(A) \subseteq V_{\mu}$ for uncountably many μ . However, this is only possible if $\epsilon(A) \subseteq T$. But then, $\alpha_{\mu}(A) \subseteq T \cap W_{\mu} = 0$, a contradiction.

Therefore, we can find an ordinal $\sigma_{\alpha} > \sigma_{\nu}$ with $C_{\nu} \cap W_{\sigma_{\alpha}} = 0$. In particular, $X_{\nu} \subseteq C_{\nu}$ yields $X_{\nu} \cap W_{\sigma_{\alpha}} = 0$. Let Y be the S-closure of

$$H_A(X_{\nu} \oplus W_{\sigma_{\alpha}}) = H_A(X_{\nu} \oplus H_A(W_{\sigma_{\alpha}}) \supseteq H_A(U)$$

in $H_A(F)$ and let $X_{\alpha} = \theta_F(Y \otimes A) = YA$. As an A-generated subgroup of F, X_{α} is A-solvable. Then, the inclusion $Y \subseteq H_A(X_{\alpha})$ induces the commutative diagram

$$0 \longrightarrow T_A(Y) \longrightarrow T_A H_A(X_\alpha) \longrightarrow T_A(H_A(X_\alpha)/Y) \longrightarrow 0$$

$$\downarrow \Big| \theta_F | T_A(Y) \qquad \downarrow \Big| \theta_{X_\alpha}$$

$$0 \longrightarrow YA \xrightarrow{1_{YA}} YA \longrightarrow 0$$

from which we get $T_A(H_A(X_\alpha)/Y) = 0$. Since A is faithfully flat, $Y = H_A(X_\alpha)$, and $H_A(X_\alpha)/[H_A(X_\nu) \oplus H_A(W_{\sigma_\alpha})]$ is singular.

Observe that $Y/H_A(U)$ is the S-closure of $[H_A(X_\nu) + H_A(W_{\sigma_\alpha})]/H_A(U)$ in $H_A(F)/H_A(U)$ because

$$H_A(F)/Y \cong [H_A(F)/H_A(U)]/[Y/H_A(U)]$$

is non-singular and

$$Y/H_A(X_{\nu} \oplus W_{\sigma_{\alpha}}) \cong [Y/H_A(U)]/[H_A((X_{\nu} \oplus W_{\sigma_{\alpha}})/H_A(U)]$$

is singular. Since F/U is A-solvable, and X_{ν}/U is countable, $H_A(X_{\nu})/H_A(U)$ is countable. Moreover, W_{μ} is finitely A-projective. Hence, the E-module $H_A(W_{\sigma_{\alpha}})$ is countable too, and

$$[H_A(X_\nu) + H_A(W_{\sigma_\alpha})]/H_A(U)$$

is countable. Thus, $Y/H_A(U)$ is an essential extension of a countable non-singular right E-module. By Proposition 2.3, we obtain that $Y/H_A(U)$ is countable. Thus, there is a countable submodule Y' of Y with $Y=Y'+H_A(U)$. Then X_α/U is countable and $X_\alpha=Y'A+X_\nu$, and. Consequently, X_α/U has to be A-projective, and the same holds for $X_\alpha\cong X_\alpha/U\oplus U$.

It remains to show that X_{α}/X_{ν} is A-projective. For this, observe that the group

$$X_{\alpha}/(X_{\alpha}\cap C_{\nu})\cong (X_{\alpha}+C_{\nu})/C_{\nu}$$

is countable since it is an epimorphic image of $(X_{\alpha}+C_{\nu})/U$ which is countable because X_{α} and C_{ν}/U are countable. Since C_{ν}/U is \aleph_1 -A-closed in F/U, we have that

$$X_{\alpha}/(X_{\alpha}\cap C_{\nu})\cong [(X_{\alpha}+C_{\nu})/U]/[C_{\nu}/U]$$

is A-projective. Since A is flat, $X_{\alpha} \cap C_{\nu}$ is A-generated as in Theorem 2.1. For τ in $H_A(X_{\alpha} \cap C_{\nu})$, choose a regular element $c \in E$ such that $\tau c \in H_A(X_{\nu}) \oplus H_A(W_{\sigma_{\alpha}})$, say $\tau c = \beta + \gamma$ for some $\beta \in H_A(X_{\nu})$ and $\gamma \in H_A(W_{\sigma_{\alpha}})$. Then

$$\gamma = \tau c - \beta \in H_A(W_{\sigma_\alpha}) \cap H_A(C_\nu) = 0.$$

Hence, $\tau c \in H_A(X_{\nu})$. Since X_{ν} is A-pure in F, we obtain $\tau \in H_A(X_{\nu})$. Therefore, $H_A(X_{\alpha} \cap C_{\nu}) \subseteq H_A(X_{\nu})$, and $X_{\alpha} \cap C_{\nu} \subseteq X_{\nu}$. Since X_{ν} is contained in X_{α} and in

 C_{ν} , we obtain $X_{\alpha} \cap C_{\nu} = X_{\nu}$. Then $X_{\alpha}/X_{\nu} \cong (X_{\alpha} + C_{\nu})/C_{\nu}$ is A-projective by what we have already shown. In particular, X_{ν} is a direct summand of X_{α} .

Consequently, $X = \bigcup_{\nu < \omega_1} X_{\nu}$ is A-pure and A-projective. Because

$$X_{\nu+1}/X_{\nu} \cong [X_{\nu+1}/T]/[X_{\nu}/T]$$

is A-projective for all ν , the group X/T is A-projective. This yields $X = T \oplus S$. However, $T = U \oplus W$, so that $X = U \oplus W \oplus S$. Finally,

$$V_{\sigma_{\nu+1}} = T \oplus W_{\sigma_{\nu+1}} \subseteq X_{\nu+1} \subseteq X$$

for all $\nu < \omega_1$. Let $P'' = \{(V_{\sigma_{\nu+1}}, \psi_{\sigma_{\nu+1}}) | \nu < \omega_1 \}$.

Corollary 4.3. P satisfies the countable chain condition.

Proof. Since B is a countable A-solvable group, there is an exact sequence

$$0 \to V \to \oplus_{\omega} A \to B \to 0$$

which is A-balanced by Theorem 2.1. Thus, $H_A(B)$ is countable as an epimorphic image of $H_A(\bigoplus_{\omega} A) \cong \bigoplus_{\omega} E$ using the self-smallness of A.

Let P' be an uncountable subset of P. By the previous Lemma, we may assume $P' = \{(V_{\nu}, \psi_{\nu}) | \nu < \omega_1\}$ such that there is an A-pure A-projective subgroup X containing U as a direct summand satisfying $V_{\nu} \subseteq X$ for all $\nu < \omega_1$. We can write $X = U \oplus Y$ and $Y = \bigoplus_J Y_j$ where each Y_j is isomorphic to a subgroup of A. This is possible since E is hereditary.

For $\nu < \omega_1$, we have $V_{\nu} = U \oplus (Y \cap V_{\nu})$. Since $Y \cap V_{\nu}$ is finitely A-projective, there is a finite subset J_{ν} of J such that $H_A(Y \cap V_{\nu}) \subseteq H_A(\oplus_{J_{\nu}}Y_j)$, and $Y \cap V_{\nu} \subseteq \oplus_{J_{\nu}}Y_j$. Therefore, V_{ν} is an A-pure subgroup of

$$V_{\nu} + (\bigoplus_{J_{\nu}} Y_j) = U \oplus (\bigoplus_{J_{\nu}} Y_j).$$

Because $\bigoplus_{J_{\nu}} Y_j$ is finitely A-generated, V_{ν} is a direct summand of $U \oplus (\bigoplus_{J_{\nu}} Y_j)$, say $V_{\nu} + (\bigoplus_{J_{\nu}} Y_j) = V_{\nu} \oplus X_{\nu}$. Since $V_{\nu} + (\bigoplus_{J_{\nu}} Y_j)$ is A-projective, the same holds for X_{ν} . Thus, X_{ν} is isomorphic to a direct summand of $\bigoplus_{J_{\nu}} Y_j$. Moreover, $\psi_{\nu} : V_{\nu} \to B$ extends to a map $\lambda_{\nu} : U \oplus (\bigoplus_{J_{\nu}} Y_j) \to B$. By the Adjoint-Functor-Theorem,

$$\operatorname{Hom}(\bigoplus_{J_{\nu}} Y_j, B) \cong \operatorname{Hom}_E(H_A(\bigoplus_{J_{\nu}} Y_j), H_A(B))$$

is countable since $H_A(B)$ is countable as was shown in the first paragraph of the proof and J_{ν} is finite. Consequently, there are at most countably many different extensions of ϕ to $U \oplus (\oplus_{J_{\nu}})$.

If there are only countably many different J_{ν} 's, then there is ν_0 such that $J_{\nu_0} = J_{\mu}$ for uncountable μ . Thus, there are μ_1 and μ_2 with $J_{\nu_0} = J_{\mu_1} = J_{\mu_2}$ and $\lambda_{\mu_1} = \lambda_{\mu_2}$. Thus, ψ_{μ_1} and ψ_{μ_2} have a common extension. Therefore, $P' = \{(V_{\nu}, \psi_{\nu}) | \nu < \omega_1\}$ cannot be an antichain. On the other hand, if there are uncountably many J_{ν} 's, then we may assume without loss of generality that $J_{\nu} \neq J_{\mu}$ for $\mu \neq \nu$. Finally, we can impose the requirement that all the J_{ν} have the same order. Thus, J_{ν} cannot be contained in J_{μ} for $\mu \neq \nu$. Since $(V_{\nu}, \psi_{\nu}) \leq (V_{\nu} \oplus X_{\nu}, \lambda_{\nu})$, we may assume that $V_{\nu} = U \oplus (\oplus_{J_{\nu}} Y_j)$ and $\lambda_{\nu} = \psi_{\nu}$.

There is a subset T of J which is maximal with respect to the property that it is contained in uncountably many of the J_{ν} . We may assume that T is actually

contained in all of the J_{ν} . Observe that T is finite and a proper subset of all the J_{ν} . Otherwise, all the J_{ν} would have to coincide with T since they have the same finite order. Since $\operatorname{Hom}(\oplus_T Y_j, B) \cong \operatorname{Hom}_E(H_A(\oplus_T Y_j), H_A(B))$ is countable by the Adjoint-Functor-Theorem, there are uncountably many ψ_{ν} which have the same restriction to $W = U \oplus (\oplus_T Y_j)$. Without loss of generality, we may assume that this happens for all ν .

Let $j \in J_0 \setminus T$. The maximality of T guarantees that j is contained in only countably many of the J_{ν} . Since $J_0 \setminus T$ is finite, there is $\mu < \omega_1$ with $J_{\mu} \cap J_0 = T$. The maps ψ_{μ} and ψ_0 have a common extension $\sigma: U \oplus (\oplus_{J_0 \cup J_{\nu}} Y_j) \to B$ since they coincide on W. Since $U \oplus (\oplus_{J_0 \cup J_{\nu}} Y_j)$ is a direct summand of X, and X is A-pure in F, we have that $U \oplus (\oplus_{J_0 \cup J_{\nu}} Y_j)$ is A-pure in F. Because $J_0 \cup J_{\nu}$ is finite,

$$(U \oplus (\oplus_{J_0 \cup J_{\nu}} Y_i), \sigma) \in P.$$

Thus,

$$(U \oplus (\oplus_{J_0 \cup J_{\nu}} Y_j), \sigma) \ge (V_{\mu}, \psi_{\mu}), (V_0, \psi_0).$$

Consequently, P' cannot be an anti-chain.

For every finite subset J of I, let $D(J) = \{(V, \psi) \in P | \oplus_J A \subseteq V\}$.

Proposition 4.4. P and $\mathcal{D} = \{D(J)|J \subseteq I \text{ finite}\}$ satisfy the hypotheses of Martin's Axiom.

Proof. By Corollary 4.3, it remains to show that D(J) is dense in P. For this, let $(V, \psi) \in P$. We have to find $(W, \alpha) \in P$ such that $\bigoplus_J A$ and V are contained in W and $\alpha | V = \psi$. Since V/U is finitely A-projective and $G \cong F/U$ is strongly \aleph_1 -A-projective, there is a subgroup X of F containing V and $\bigoplus_J A$ such that X/U is a \aleph_1 -A-closed, A-projective countable subgroup of F/U. Since

$$[F/U]/[X/U] \cong F/X$$

is \aleph_1 -A-projective, it is A-solvable by Theorem 2.1. Using the same result once more, we obtain that the sequence $0 \to X \to F \to F/X \to 0$ is A-balanced. In particular, $S_A(X) = X$ and X is A-projective. Moreover,

$$H_A(F)/H_A(X) \cong H_A(F/X) \cong H_A([F/U]/[X/U]) \cong H_A(F/U)/H_A(X/U)$$

since X in F and X/U in F/U are A-balanced by the faithful flatness of A. But the latter is non-singular, since [F/U]/[X/U] is \aleph_1 -Aprojective. Therefore, X is A-pure in F.

Since the group X/U is A-projective, we have a decomposition $X = U \oplus P$. Hence, $V = U \oplus (V \cap P)$ and $V \cap P$ is finitely A-projective. In the same way,

$$(\oplus_J A) + U = U \oplus [((\oplus_J A) + U) \cap P]$$

yields that $((\oplus_J A) + U) \cap P$ is A-generated and an image of $\oplus_J A$.

Therefore, $((\oplus_J A) + U) \cap P$ and $V \cap P$ are finitely A-projective subgroups of P. Thus, $H_A(((\oplus_J A) + U) \cap P)$ and $H_A(V \cap P)$ are finitely generated submodule of $H_A(P)$. Since E is right hereditary, $H_A(P)$ is a direct sum of right ideals of E, which yields that $H_A(((\oplus_J A) + U) \cap P)$ and $H_A(V \cap P)$ are contained in a finitely generated direct summand of $H_A(P)$. Hence, there is a finitely A-projective summand D of P

which contains $V \cap P$ and $((\oplus_J A) + U) \cap P$. Since $U \oplus D = V + D$ and V is A-pure in F, we obtain that V is a direct summand of $U \oplus D$. Thus, ψ extends to a map $\alpha : U \oplus D \to B$. Clearly, $(U \oplus D, \alpha) \in P$ and $(U \oplus D, \alpha) \geq (V, \psi)$.

An A-generated group $G \aleph_1$ -A-separable if every countable subset of G is contained in an A-projective direct summand of G.

Corollary 4.5. $(MA + \aleph_1 < 2^{\aleph_0})$ If A is a self-small countable torsion-free group with a right Noetherian right hereditary endomorphism ring, then every strongly \aleph_1 -A-projective group is \aleph_1 -A-separable and \aleph_1 -A-coseparable.

Proof. By Theorem 3.2 and Theorem 4.1, a strongly \aleph_1 -A-projective group G is \aleph_1 -A-coseparable. It remains to show that is \aleph_1 -A-separable too. For a countable subset X of G select a countable \aleph_1 -A-closed subgroup U of G containing X. Since G/U is strongly \aleph_1 -A-projective, the sequence $0 \to U \to G \to G/U \to 0$ splits by Theorem 4.1.

References

- Albrecht, U., Endomorphism rings and A-projective torsion-free Abelian Groups, Abelian Group Theory, Proceedings Honolulu 1982/83, Springer Lecture Notes in Mathematics 1006, Springer Verlag, Berlin, New York, Heidelberg, 1983, 209-227.
- Albrecht, U., A-projective groups of large Cardinality, Abelian Group Theory and Modules, Proceedings Udine 1984, CISM Courses and Lectures 287, Springer Verlag, Wien, New York, 1984, 233-243.
- [3] Albrecht, U., Abelian groups A, such that the category of A-solvable groups is preabelian, Contemporary Mathematics 87(1989), 117-131.
- [4] Albrecht, U., Baer's lemma and Fuchs' problem 84a, Transactions of the American Mathematical Society, 293(1986), 565-582.
- [5] Albrecht, U., Endomorphism rings and a generalization of torsion-freeness and purity, Communications in Algebra, 17(5)(1989), 1101-1135.
- [6] Albrecht, U., Endomorphism rings, tensor products, and Fuchs' problem 47, Warfield Memorial Volume, Contemporary Mathematics, 130(1992), 17-31.
- [7] Albrecht, U., A-Whitehead groups, accepted for publication in Studia UBB Math.
- [8] Arnold, D.M., Lady, L., Endomorphism rings and direct sums of torsion-free Abelian groups, Trans. Amer. Math. Soc., 211(1975), 225-237.
- [9] Arnold, D.M., Murley, C.E., Abelian groups A, such that Hom(A,) preserves direct sums of copies of A, Pac. J. Math., 56(1975), 7-20.
- [10] Arnold, D. M., Finite Rank Torsion Free Abelian Groups and Rings, Lecture Notes in Mathematics Vol. 931, Springer-Verlag Berlin-Heidelberg-New York, 1982.
- [11] Chatters, A.W., Hajarnavis, C.R., Rings with Chain Conditions, Pitman, 1980.
- [12] Corner, A.L.S., Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc., 13(1963), 687-710.
- [13] Eklof, P.C., Mekler, A.H., Almost Free Modules, Vol. 46, North Holland Mathematical Library, 1990.

- [14] Goodearl, K.R., Ring Theory, Pure and Applied Mathematics No. 33, Marcel Dekker, New York-Basel, 1976.
- [15] Göbel, R., Trilifaj, J., Approximations and Endomorphism Algebras of Modules, de Gruyter Expositions in Mathematics 41, W. de Gruyter, Berlin New York, 2006.
- [16] Huber, M., Warfield, R.B., Homomorphisms between Cartesian powers of an Abelian group, Lecture Notes in Mathematics, 874(1981), 202-227.
- [17] Ulmer, F., A flatness criterrion in Groethendick categories, Inventiones Math., $\mathbf{19}(1973)$, 331-336.

Ulrich Albrecht Department of Mathematics Auburn University Auburn, AL 36849, U.S.A. e-mail: albreuf@auburn.edu