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A unified local convergence for
Chebyshev-Halley-type methods in Banach
space under weak conditions
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Abstract. We present a unified local convergence analysis for Chebyshev-Halley-
type methods in order to approximate a solution of a nonlinear equation in a
Banach space setting. Our methods include the Chebyshev; Halley; super-Halley
and other high order methods. The convergence ball and error estimates are
given for these methods under the same conditions. Numerical examples are also
provided in this study.
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1. Introduction

In this study we are concerned with the problem of approximating a solution x∗

of the equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach
space X with values in a Banach space Y.

Many problems in computational sciences and other disciplines can be brought
in a form like (1.1) using mathematical modeling [2, 3, 4, 5, 11, 14, 15]. The solutions
of these equations can rarely be found in closed form. That is why most solution
methods for these equations are iterative. The study about convergence matter of
iterative procedures is usually based on two types: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an
initial point, to give conditions ensuring the convergence of the iterative procedure;
while the local one is, based on the information around a solution, to find estimates
of the radii of convergence balls. In particular, the practice of Numerical Functional
Analysis for finding solution x∗ of equation (1.1) is essentially connected to variants
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of Newton’s method. This method converges quadratically to x∗ if the initial guess
is close enough to the solution. Iterative methods of convergence order higher than
two such as Chebyshev-Halley-type methods [1, 3, 5, 7]–[16] require the evaluation of
the second Fréchet-derivative, which is very expensive in general. However, there are
integral equations, where the second Fréchet-derivative is diagonal by blocks and inex-
pensive [10]–[13] or for quadratic equations the second Fréchet-derivative is constant
[4, 12]. Moreover, in some applications involving stiff systems [2], [5], [9], high order
methods are usefull. That is why in a unified way we study the local convergence of
Chebyshev-Halley-type methods(CHTM) defined for each n = 0, 1, 2, · · · by

xn+1 = xn −
[
I +

1

2
Ln(I − θTn)−1

]
ΓnF (xn), (1.2)

where x0 is an initial point, I is the identity operator, Γn = F ′(xn)−1, Tn =
ΓnB(xn)ΓnF (xn), B a bilinear operator and θ a real parameter. If B(xn) = F ′′(xn),
then: for θ = 0 we obtain the Chebyshev method; for θ = 1

2 we obtain the Hal-
ley method, for θ = 1 we obtain the super-Halley method [3], [5], [7]–[16] and for
θ ∈ [0, 1] we obtain the method studied by Gutierrez and Hernandez [10], [11]. Other
choices of operator B and parameter θ are possible [3]–[5]. The usual conditions for
the semi-local convergence of these methods are (C):

(C1) There exists Γ0 = F ′(x0)−1 and ‖Γ0‖ ≤ β;

(C2) ‖Γ0F (x0)‖ ≤ η;

(C3) ‖F ′′(x)‖ ≤ β1 for each x ∈ D;

(C4) ‖F ′′′(x)‖ ≤ β2 for each x ∈ D;

(C5) ‖F ′′′(x)− F ′′′(y)‖ ≤ β3‖x− y‖ for each x, y ∈ D.
The local convergence conditions are similar but x0 is x∗ in (C1) and (C2). There

is a plethora of local and semi-local convergence results under the (C) conditions [1]–
[16]. The conditions (C4) and (C5) restrict the applicability of these methods. That is
why, in our study we assume conditions (A):

(A1) F : D → Y is Fréchet-differentiable and there exists x∗ ∈ D such that

F (x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X);

(A2) ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖ for each x ∈ D;

(A3) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖ for each x, y ∈ D;

(A4) ‖F ′(x∗)−1F ′(x)‖ ≤ N for each x ∈ D
(A5) ‖F ′(x∗)−1B(x)‖ ≤M for each x ∈ D.
Notice that the (A) conditions are weaker than the (C) conditions.

In the rest of this study, U(w, q) and U(w, q) stand, respectively, for the open
and closed ball in X with center w ∈ X and of radius q > 0.

As a motivational example, let us define function f on D = [− 1
2 ,

5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0



A unified local convergence for Chebyshev-Halley-type methods 465

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Notice that f ′′′(x) is unbounded on D. That is condition (C4) is not satisfied. Hence,
the results depending on (C4) cannot apply in this case. However, we have f ′(x∗) = 3
and f(x∗) = 0. That is, conditions (A1), (A2), (A3), (A4) are satisfied for L0 = L =
146.6629073, N = 101.5578008 and if e.g, we choose B = 0, then we can set M = 0.
Then condition (A5) is also satisfied. Hence, the results of our Theorem 2.1 that
follows can apply to solve equation f(x) = 0 using CHTM. Hence, the applicability
of CHTM is expanded under the conditions (A).

The paper is organized as follows: In Section 2 we present the local convergence
of these methods. The numerical examples are given in the concluding Section 3.

2. Local convergence

We present the local convergence of method CHTM in this section. It is conve-
nient for the local convergence of CHTM to introduce some functions and parameters.
Define parameter rs by

rs =
2

2L0 + |θ|MN +
√

(2L0 + |θ|MN)2 − 4L2
0

. (2.1)

Let

ϕ(t) = L2
0t

2 − (2L0 + |θ|MN)t+ 1. (2.2)

Notice that rs is the smallest positive root of polynomial ϕ. Note also that

rs ≤
1

L0
(2.3)

and ϕ(t) is decreasing for all t ∈ [0, 2L0+|θ|MN
2L2

0
].

Let us define function f on [0, rs) by

f(t) =
1

2

[
L+

MN2

(1− L0t)2 − |θ|MNt

]
t

1− L0t
. (2.4)

Then f(t) is increasing for all t ∈ [0, rs). This can be seen as follows:

f(t) = f1(t)f2(t)

where f1(t) = 1
2

[
L+ MN2

ϕ(t)

]
and f2(t) = t

1−L0t
are increasing for all t ∈ [0, rs).

Define polynomial g by

g(t) = L2
0(L+ 2L0)t3 − [(2L0 + |θ|MN)L+ 2L0(2L0 + |θ|MN) + 2L2

0]t2

+[L+MN2 + 2(2L0 + |θ|MN) + 2L0]t− 2. (2.5)
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It follows from the definition of rs and f that function f is well defined on [0, rs).
We have that g(0) = −2 and g(t) → ∞ as t → ∞. Hence, polynomial g has roots in
(0,∞). Denote by rm the smallest such root. Set

r∗ = min{rs, rm}. (2.6)

Then for

r ∈ [0, r∗), (2.7)

we have that

g(r) < 0 (2.8)

and

f(r) < 1. (2.9)

Then, we can show the following local convergence result for method (1.2) under
(A) conditions

Theorem 2.1. Suppose that the (A) conditions and U(x∗, r) ⊆ D, hold, where r is
given by (2.1). Then, sequence {xn} generated by CHTM method (1.2) for some x0 ∈
U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and converges to
x∗. Moreover, the following estimates hold for each n = 0, 1, 2, · · · .

‖xn+1 − x∗‖ ≤ f(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖. (2.10)

Proof. We shall use induction to show that estimates (2.10) hold and xn+1 ∈ U(x∗, r)
for each n = 0, 1, 2, · · · . Using (A2) and the hypothesis x0 ∈ U(x∗, r) we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.11)

It follows from (2.11) and the Banach Lemma on invertible operators [2, 5, 14] that
F ′(x0)−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
<

1

1− L0r
. (2.12)

We also have by (A4), (A5) and (2.12) that, since

T0 = [F ′(x0)−1F ′(x∗)][F ′(x∗)−1F ′′(x0)][F ′(x0)−1F ′(x∗)]

×[F ′(x∗)−1
∫ 1

0

F ′(x∗ + τ(x0 − x∗))(x0 − x∗)dτ

‖θT0‖ ≤ |θ|‖F ′(x0)−1F ′(x∗)‖2‖F ′(x∗)−1F ′′(x0)‖

×‖F ′(x∗)−1
∫ 1

0

F ′(x∗ + τ(x0 − x∗))dτ‖‖x0 − x∗‖

≤ |θ|MN‖x0 − x∗‖
(1− L0‖x0 − x∗‖)2

≤ |θ|MNr

(1− L0r)2
< 1 (2.13)

by the choice of r and rs.
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It follows from (2.13) and the Banach lemma that (I − θT0)−1 exists and

‖(I − θT0)−1‖ ≤ 1

1− |θ|MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

≤ 1

1− |θ|MNr
(1−L0r)2

. (2.14)

It follows from CHTM for n = 0 that x1 is well defined. We shall show (2.10) holds
for n = 0 and x1 ∈ U(x∗, r). Using CHTM for n = 0, we get the identity

x1 − x∗ = x0 − x∗ − F ′(x0)−1F ′(x0)− 1

2
T0(1− θT0)−1Γ0F (x0)

= −[F ′(x0)−1F ′(x∗)][F ′(x∗)−1
∫ 1

0

(F ′(x∗ + τ(x0 − x∗))

−F ′(x0))dτ(x0 − x∗)]−
1

2
[Tn(1− θTn)−1][F ′(x0)−1F ′(x∗)]

×[F ′(x∗)−1
∫ 1

0

F ′(x∗ + τ(x0 − x∗))dτ(x0 − x∗)]. (2.15)

Using (A3), (2.4), (2.9), (2.12)- (2.15) we get in turn

‖x1 − x∗‖ ≤
L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)

+
1

2

MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

1− |θ|MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

N‖x0 − x∗‖
1− L0‖x0 − x∗‖

≤ f(‖x0 − x∗‖)‖x0 − x∗‖
≤ f(r)‖x0 − x∗‖ < ‖x0 − x∗‖, (2.16)

which shows (2.10) for n = 0 and x1 ∈ U(x∗, r). The induction is completed, if we
simply replace x0 by xk in the preceding estimates to obtain that

‖xk+1 − x∗‖ ≤ f(‖xk − x∗‖)‖xk − x∗‖
≤ f(r)‖xk − x∗‖ < ‖xk − x∗‖, (2.17)

which implies that (2.10) holds for each k = 0, 1, 2, · · · , xk+1 ∈ U(x∗, r) for each
k = 0, 1, 2, · · · , and from ‖xk+1−x∗‖ < ‖xk−x∗‖ we deduce that limk→∞ xk = x∗. �

Remark 2.2. (a) Condition (A2) can be dropped, since this condition follows from
(A3). Notice, however that

L0 ≤ L (2.18)

holds in general and L
L0

can be arbitrarily large [2]–[6].

(b) In view of condition (A2) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1[F ′(x)− F ′(x∗)] + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖p,
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condition (A4) can be dropped and N can be replaced by

N(r) = 1 + L0r
p. (2.19)

(c) It is worth noticing that it follows from the first term in (2.16) that r is such
that

r < rA =
2

2L0 + L
. (2.20)

The convergence ball of radius rA was given by us in [2, 3, 5] for Newton’s method un-
der conditions (A1)- (A3). Estimate (2.20) shows that the convergence ball of higher
than two CHTM methods are smaller than the convergence ball of the quadratically
convergent Newton’s method. The convergence ball given by Rheinboldt [15] for New-
ton’s method is

rR =
2

3L
< rA (2.21)

if L0 < L and rR
rA
→ 1

3 as L0

L → 0. Hence, we do not expect r to be larger than rA no
matter how we choose θ, L0, L,M and N.

(d) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method (GMREM), the generalized con-
jugate method(GCM) for combined Newton/finite projection methods and in connec-
tion to the mesh independence principle in order to develop the cheapest and most
efficient mesh refinement strategy [2]– [5], [14, 15].

(e) The results can also be used to solve equations where the operator F ′ satisfies
the autonomous differential equation [2]– [5], [14, 15]:

F ′(x) = T (F (x)),

where T is a known continuous operator. Since

F ′(x∗) = T (F (x∗)) = T (0), F ′′(x∗) = F ′(x∗)T ′(F (x∗)) = T (0)T ′(0),

we can apply the results without actually knowing the solution x∗. Let as an example
F (x) = ex − 1. Then, we can choose T (x) = x+ 1 and x∗ = 0.

3. Numerical Examples

We present numerical examples where we compute the radii of the convergence
balls.

Example 3.1. Let X = Y = R3, D = U(0, 1) and B(x) = F ′′(x) for each x ∈ D.
Define F on D for v = (x, y, z)T by

F (v) = (ex − 1,
e− 1

2
y2 + y, z)T . (3.1)

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 < L =
M = N = e. The values of rs, rm, r

∗, rA and rR are given in Table 1.
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Table 1
θ rs rm r∗ rR rA
0 0.5820 0.0636 0.0636 0.2453 0.3249

0.5 0.1495 0.0527 0.0527 0.2453 0.3249
1 0.0948 0.0448 0.0448 0.2453 0.3248

Example 3.2. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1]
and be equipped with the max norm. Let D = U(0, 1) and B(x) = F ′′(x) for each
x ∈ D. Define function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.2)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = M = 15 and N = N(t) = 1 + 7.5t. The
values of rs, rm, r

∗, rA and rR are given in Table 2.

Table 2
θ rs rm r∗ rR rA
0 0.1333 0.0018 0.0018 0.0444 0.0667

0.5 0.0128 0.0016 0.0016 0.0444 0.0667
1 0.0070 0.0014 0.0014 0.0444 0.0667

Example 3.3. Returning back to the motivational example at the introduction of this
study, we have

Table 3
θ rs rm r∗ rR rA
0 0.0068 0.0045 0.0045 0.0045 0.0045

Note that, since M = 0 the value of rs, rm, r
∗, rA and rR will not change for

different values of θ.
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