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Curves with constant geodesic curvature
in the Bolyai-Lobachevskian plane

Zoltán Gábos and Ágnes Mester

Abstract. The aim of this note is to present the curves with constant geodesic cur-
vature of the Bolyai-Lobachevskian hyperbolic plane. By using the Lobachevskian
metric the equations of the circle, paracycloid and hipercycloid are given. Further-
more, we determine a new family of curves with constant curvature which was not
emphasized before. During the analysis we use Cartesian and polar coordinates.
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1. General formulas in Cartesian coordinates

We consider the Lobachevskian metric

ds2 = cosh2 y

k
dx2 + dy2 , (1.1)

where k is the parameter of the two-dimensional hyperbolic plane.
Among the geodesics we can find so-called Euclidean lines too, which can be

used as coordinate axes. Therefore we can define a Cartesian coordinate system in
the hyperbolic plane. If dx = 0, then ds2 = dy2, thus we can use the euclidean method
when determining the value of y. The x-value of a point can only be determined by
the x-axis, because when dy = 0, then the formula ds2 = dx2 can only be used in
the case of y = 0. Now let us consider a point P (x, y) in the hyperbolic plane. The
foot of the perpendicular from P to the x-axis is denoted by P1(x, 0). Then distance
OP1 corresponds with the x-coordinate of P , while the length of PP1 equals the
y-coordinate of P .

As the reflection over the coordinate axes is a symmetry operation, during the
analysis we will consider only the first quadrant of the plane. Note that the lines we
obtain in the first quadrant have segments in the other quadrants, too. From metric
(1.1) it follows that the translation of the origin along the direction of the x-axis is
also a symmetry operation.
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If we use s as variable, the functions characterizing the geodesics are of form
x = x(s), y = y(s). The geodesic lines are determined by the following differential
equations:

d2x

ds2
+

2

k
tanh

y

k

dx

ds

dy

ds
= 0, (1.2)

d2y

ds2
− 1

k
sinh

y

k
cosh

y

k

(
dx

ds

)2

= 0. (1.3)

If we replace variable s with x, equation (1.2) can be written in the following
equivalent form:

cosh2 y

k

dx

ds
= C1, (1.4)

where C1 is constant. Using (1.3) and (1.4) we obtain the

d2 tanh y
k

dx2
− 1

k2
tanh

y

k
= 0 (1.5)

differential equation. If we use variable x, we only need to determine the constants a1
and a2 which appear in the equation

tanh
y

k
= a1 cosh

x

k
+ a2 sinh

x

k
. (1.6)

By using (1.1), (1.4) and (1.6), for the value of C1 we get

1

C2
1

= 1− tanh2 y

k
+ k2

(
d tanh y

k

dx

)2

= 1− a21 + a22. (1.7)

In order to determine the geodesic curvature, we use the formula given by
Schlesinger:

1

rg
=

= cosh
y

k

{(
d2x

ds2
+

2

k
tanh

y

k

dx

ds

dy

ds

)
dy

ds
−

[
d2y

ds2
− 1

k
sinh

y

k
cosh

y

k

(
dx

ds

)2
]
dx

ds

}
.

(1.8)

From (1.2), (1.3) and (1.8) it follows that

1

rg
= 0. (1.9)

Metric (1.1) can also be obtained by using the metric

ds2 = dx21 + dx22 − dx20 (1.10)

defined in the three-dimensional pseudo-Euclidean space, with the help of the follow-
ing formulas:

x1 = k sinh
x

k
cosh

y

k
, x2 = k sinh

y

k
, x0 = k cosh

x

k
cosh

y

k
. (1.11)
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2. General formulas in polar coordinates

Using (1.10) and equalities

x1 = k cosϕ sinh
ρ

k
, x2 = k sinϕ sinh

ρ

k
, x0 = k cosh

ρ

k
, (2.1)

we obtain the metric

ds2 = dρ2 + k2 sinh2 ρ

k
dϕ2, (2.2)

where ρ and ϕ represent polar coordinates.
If we use s as variable, we obtain the following differential equations which

determine the lines of the hyperbolic plane.

d2ϕ

ds2
+

2

k
coth

ρ

k

dϕ

ds

dρ

ds
= 0, (2.3)

d2ρ

ds2
− k sinh

ρ

k
cosh

ρ

k

(
dρ

ds

)2

= 0. (2.4)

If we replace variable s with ϕ, equation (2.3) can be written in the following
equivalent form:

sinh2 ρ

k

dϕ

ds
= C2. (2.5)

Also, from (2.4) we get

d2 coth ρ
k

dϕ2
+ coth

ρ

k
= 0. (2.6)

The geodesics satisfy

coth
ρ

k
= b1 sinϕ+ b2 cosϕ, (2.7)

where b1 and b2 are constant values. From (1.6) and (2.7) it follows that the values
x1, x2 and x0 admit a linear connection.

Using (2.2), (2.5) and (2.7), we get for the value of C2

1

C2
2

= k2

[
coth2 ρ

k
− 1 +

(
d coth ρ

k

dϕ

)2
]

= k2
(
b21 + b22 − 1

)
. (2.8)

The geodesic curvature verifies the formula given by Schlesinger:

1

rg
=k sinh

ρ

k

{(
d2ϕ

ds2
+

2

k
coth

ρ

k

dϕ

ds

dρ

ds

)
dρ

ds
−

[
d2ρ

ds2
− k sinh

ρ

k
cosh

ρ

k

(
dϕ

ds

)2
]
dϕ

ds

}
.

(2.9)
Using (1.11) and (2.1) it follows that the connection between the Cartesian and

polar coordinates is determined by the following equations:

sinh
x

k
cosh

y

k
= cosϕ sinh

ρ

k
, (2.10)

sinh
y

k
= sinϕ sinh

ρ

k
, (2.11)

cosh
x

k
cosh

y

k
= cosh

ρ

k
. (2.12)
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Furthermore, from (2.10) and (2.12) we obtain

tanh
x

k
= cosϕ tanh

ρ

k
. (2.13)

3. The Bolyai-Lobachevskian lines

As the geometry in discussion is based on metric (1.1), we differentiate four types
of lines. The first family contains lines crossing the origin. The second set consists of
lines which cross the x-axis, while the lines of the third family do not cross the x-axis.
Then there are the lines which are parallel to the x-axis.

a) Based on (1.6), the lines crossing the origin satisfy

tanh
y

k
= a2 sinh

x

k
.

Let us consider a point P (x, y) on a line in question, then the tangent vector to the
line in P admits

tanα =
1

cosh y
k

dy

dx
.

In this case

tanα = a2 cosh
x

k
cosh

y

k
,

thus the value of a2 determines the tangent vector in the origin. The angle of inter-
section between the line and the x-axis is denoted by ϕ, which verifies

tanh
y

k
= tanϕ sinh

x

k
. (3.1)

Figure 1
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Obviously, ϕ is the polar angle of point P . If ϕ is set as constant, we get ds2 =
dρ2, thus the value of ρ determines the distance between the origin and point P
measured along the geodesic.

The values of x1 and x2 represented in figure 1 are determined by equation (3.1),
when y −→ −∞ and y −→∞.

Using equation (1.7), we obtain

C1 = cosϕ.

b) From (1.6) it follows that the lines crossing the x-axis and passing through
points P0(a, 0) and P1(0, b) verify

tanh
y

k
= tanh

b

k

(
cosh

x

k
− coth

a

k
sinh

x

k

)
. (3.2)

The values x1 and x2 are determined by equation (3.1) as y −→ −∞ and y −→ ∞
(figure 2).

Figure 2

In the case of polar coordinates we use

coth
ρ

k
= coth

b

k
sinϕ+ coth

a

k
cosϕ (3.3)

obtained from formula (2.7). The value of ϕ is given by equation (3.3) as ρ −→∞.
Using (2.6) and (2.8), we get for the constants C1 and C2 the following formulas:

1

C1
=

√
1 +

tanh2 b
k

sinh2 a
k

,
1

C2
= k

√
coth2 b

k
+ coth2 a

k
− 1. (3.4)
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c) Figure 3 illustrates that the line passing through the y-axis in point P1(0, b)
while not crossing the x-axis has a minimum point.

Figure 3

The line admits

tanh
y

k
= tanh

b

k

(
cosh

x

k
− tanh

xm
k

sinh
x

k

)
, (3.5)

where xm denotes the value of x determined by the minimum point.
The domain of the line is determined by equation (3.5) as y −→∞.
In the case of polar coordinates, by using equations (2.9), (2.10), (2.11) and

(2.12), we get

coth
ρ

k
= coth

b

k
sinϕ+ tanh

xm
k

cosϕ. (3.6)

For the values of C1 and C2, we obtain formulas

1

C1
=

√
1−

tanh2 b
k

cosh2 xm

k

and
1

C2
= k

√
coth2 b

k
+ tanh2 xm

k
− 1. (3.7)

If xm = 0, the line admits

tanh
y

k
= tanh

b

k
cosh

x

k
, coth

ρ

k
= coth

b

k
sinϕ, (3.8)

while the values C1 and C2 verify

C1 = cosh
b

k
, C2 =

1

k
sinh

b

k
. (3.9)

d) If a −→ ∞ and xm −→ ∞, we obtain the line parallel to the x-axis, passing
through P1(0, b). The lines of this family satisfy

tanh
y

k
= tanh

b

k
e−

x
k , coth

ρ

k
= coth

b

k
sinϕ+ cosϕ, (3.10)

while C1 = 1, C2 = 1
k tanh b

k .
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4. The orthogonal curves

If in the formulas obtained in the previous section we set a variable as a varying
parameter, we obtain families of lines. Each family of lines admits orthogonal lines.
Let us denote the original lines by the index 1. The line passing through point P (x, y)
admits the following orthogonality condition:

cosh2 y

k
dxdx1 + dydy1 = 0. (4.1)

The lines verify

y1 = y1(x1, p), p = p(x1, y1), (4.2)

where the parameter is denoted by p. By deriving this equation with respect to variable
x1, we obtain

dy1
dx1

= f(x1, p). (4.3)

Using (4.2) and (4.3), we eliminate the parameter, thus we get

dy1
dx1

= f [x1, p(x1, y1)] = F (x1, y1). (4.4)

From (4.1) and (4.4) it follows that the orthogonal lines verify

cosh2 y

k
dx+ F (x, y)dy = 0. (4.5)

In the case of polar coordinates we use the formula

ρ1 = ρ1(ϕ1, p).

Hence we get
dρ1
dϕ1

= g(ϕ1, p) = G(ρ1, ϕ1). (4.6)

By applying the orthogonality condition

dρdρ1 + k2 sinh2 ρ

k
dϕdϕ1 = 0, (4.7)

we get for the orthogonal lines

G(ρ, ϕ)dρ+ k2 sinh2 ρ

k
dϕ = 0. (4.8)

Now let us consider the distance along the line between points P1(0, b) and
P (x, y) represented in figure 4.

We denote the length of PP1 by d. The distance from the origin to P equals
ρ. In figure 4 a right-angled triangle is formed, where the hypotenuse is equal to ρ
and the other two sides are x and y. Equality (2.12) gives a formula considering these
values.

Let P3 be the foot of the perpendicular from P1 to the line OP . Then two
right-angled triangles, namely OP3P1 and P1P3P are formed.

In OP3P1 the length of the hypotenuse OP1 is denoted by b, while the legs OP3

and P1P3 are denoted by ρ0 and c. Therefore we can write

cosh b
k = cosh ρ0

k cosh c
k .
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Figure 4

In triangle P1P3P the hypotenuse is d, while the value of the legs are ρ− ρ0 and
c, thus we get

cosh
d

k
= cosh

ρ− ρ0
k

cosh
c

k
.

If we eliminate c, we obtain

cosh
d

k
= cosh

b

k

(
cosh

ρ

k
− tanh

ρ0
k

sinh
ρ

k

)
. (4.9)

In triangle OP3P1 the angle between OP1 and OP3 is equal to π
2 − ϕ. Hence,

from (2.13) we can write

tanh
ρ0
k

= sinϕ tanh
b

k
. (4.10)

Applying (4.9) and (4.10), we get

cosh
d

k
= cosh

b

k
cosh

ρ

k
− sinϕ sinh

b

k
sinh

ρ

k
. (4.11)

If we use Cartesian coordinates, from (4.11), (2.12) and (2.11) it follows that

cosh
d

k
= cosh

b

k
cosh

x

k
cosh

y

k
− sinh

b

k
sinh

y

k
. (4.12)

In the following sections we determine the orthogonal lines. During the analysis
our choice of coordinates may vary depending on the form of calculations.

We will prove that the curvature of the orthogonal lines is constant. Moreover,
any two orthogonal lines from the same family are parallel. We define parallelism
in the following way: let us consider a geodesic and its two orthogonal lines passing
through the line in two different points. If the distance between the two points of
intersection is constant in the case of any geodesic, we say that the two orthogonal
lines are parallel.
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5. The orthogonal curves of the radial lines

Radial lines are lines which pass through a common point. We will consider four
family of lines.

a) The first family consists of lines crossing the origin, which are determined by
equation (3.1). Here we use

p = tanϕ

as parameter. In this case we can write

F (x, y) = coth
x

k
sinh

y

k
cosh

y

k
.

Therefore, by using (4.5) we get

cosh y
k

sinh x
k

d
(

cosh
x

k
cosh

y

k

)
= 0.

The expression in bracket is constant. From equation (2.12) it follows that the
points of an orthogonal curve are always at the same distance from the origin. Hence
we obtain a circle with center O.

cosh
x

k
cosh

y

k
= cosh

R

k
, ρ = R, (5.1)

where R denotes the radius of the circle.
If we use polar coordinates, from (5.1) and (2.2) it follows that

dϕ

ds
=

1

k sinh R
k

.

From (2.9) we obtain the formula characterizing the curvature:

1

rg
=

1

k
coth

R

k
. (5.2)

b) Now we determine the orthogonal curves of lines crossing point P0(a, 0) ∈ Ox.
As the translation of the origin along the direction of the x-axis into point P0 is a
symmetry operation, we obtain circles with center P0, which verify

cosh
x− a
k

cosh
y

k
= cosh

R

k
. (5.3)

The curvature of the orthogonal lines is determined by formula (5.2).
If we use polar coordinates, from (5.3), (2.10) and (2.12) it follows that the

circles verify

cosh
a

k
cosh

ρ

k
− cosϕ sinh

a

k
sinh

ρ

k
= cosh

R

k
.

c) The lines parallel to the x-axis admit the

p = tanh
b

k

parameter and satisfy equation (3.10).
As

F = − sinh
y

k
cosh

y

k
,
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from (4.5) it follows that

d
(

ln cosh
y

k
− x

k

)
= 0.

The orthogonal curve crossing point P (x0, 0) is called paracycloid, which verifies

cosh
y

k
= e

x−x0
k . (5.4)

We can also determine the equation of the paracycloid by the following way.
If a > x0, the circle with center P0(a, 0) passing through P (x0, 0) has the radius
R = a−x0. If a −→∞, from (5.3) we obtain formula (5.4). Thus the paracycloid can
be considered a semicircle with infinite radius.

d) The orthogonal curves of lines passing through point P1(0, b) are lines which
cross or do not cross the x-axis. By the use of polar coordinates we obtain

coth
ρ

k
= coth

b

k
sinϕ+ p cosϕ. (5.5)

Here the parameters are given by

coth
a

b
and tanh

xm
k
.

The orthogonal lines admit the following formula:

G(ρ, ϕ) = − k

cosϕ
sinh2 ρ

k

(
coth

b

k
− sinϕ coth

ρ

k

)
.

Using (4.8), we get

− 1

cosϕ

(
coth

b

k
− sinϕ coth

ρ

k

)
dρ+ kdϕ =

= − k

cosϕ sinh b
k sinh ρ

k

d

(
cosh

b

k
cosh

ρ

k
− sinϕ sinh

b

k
sinh

ρ

k

)
= 0.

Hence, by using (4.11) it follows that the orthogonal lines are circles with center
P1(0, b), which verify the following equations:

cosh
b

k
cosh

ρ

k
− sinϕ sinh

b

k
sinh

ρ

k
= cosh

R

k
, (5.6)

cosh
b

k
cosh

x

k
cosh

y

k
− sinh

b

k
sinh

y

k
= cosh

R

k
. (5.7)

We obtain the curvature by considering (2.2) and using the formulas below:

sinϕ = f(ρ), f(ρ) = coth
b

k
coth

ρ

k
−

cosh R
k

sinh b
k sinh ρ

k

. (5.8)

Hence we obtain
dρ

ds
=

sinh b
k

sinh R
k

√
1− f2. (5.9)

From (5.8) we get

cosϕdϕ =
√

1− f2dϕ =
df

dρ
dρ.



Curves with constant geodesic curvature 459

Thus by using (5.9) we obtain

dϕ

ds
=

sinh b
k

sinh R
k

df

dρ
. (5.10)

The derivatives of the second kind are as follows:

d2ρ

ds2
= −

sinh2 b
k

sinh2 R
k

f
df

dρ
,

d2ϕ

ds2
=

sinh2 b
k

sinh2 R
k

√
1− f2 d

2f

dρ2
.

Hence, from (2.9) and (5.5) it follows that the curvature is given by formula
(5.2).

If we consider two circles, the distance between the intersections with a geodesic
is equal to the difference of the two radiuses, which is a constant value. This proves
that the orthogonal lines determined above are parallel.

6. The orthogonal curves of lines not having common point

We will consider two different cases.
a) The first family consists of lines being parallel to the y-axis. The orthogonal

lines are called hipercycloids having

y = b, (6.1)

where b is a constant value. In the upper half-plane b > 0, while below the x-axis
b < 0. The hipercycloids satisfy the orthogonality condition (4.1), because in the case
of the geodesic satisfying dx1 = 0 its orthogonal curve verifies dy = 0.

From (2.2) and (6.1) we obtain

dx

ds
=

1

cosh b
k

. (6.2)

Using (6.1), (6.2) and (1.8), we get for the curvature

1

rg
=

1

k
tanh

b

k
.

b) The lines of the second family do not cross the x-axis and have minimum
point on the y-axis. By using (3.8), these lines verify

tanh
y

k
= p cosh

x

k
, p = tanh

b

k
, (6.3)

where b can be either positive or negative value.
In this case

F (x, y) = tanh
x

k
sinh

y

k
cosh

y

k
.

From the (4.5) orthogonality condition we get

tanh
x

k
sinh

y

k
dy + cosh

y

k
dx =

k

cosh x
k

d
(

sinh
x

k
cosh

y

k

)
= 0.
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Thus the orthogonal curve passing through point P (x0, 0) verifies

sinh
x

k
cosh

y

k
= sinh

x0
k
. (6.4)

Figure 5 illustrates the geodesics determined by b and −b, and their orthogonal
curves passing through points P (x0, 0) and P ′(−x0, 0).

Figure 5

The tangent field of the orthogonal line admits

tanα =
1

cosh y
k

dy

dx
= −

√
coth2 x0

k
coth2 y

k
− 1.

Thus as y −→∞, we obtain

tanα = − 1

sinh x0

k

.

We use polar coordinates in order to determine the curvature of the lines. From
(6.4) and (2.10) we obtain

cosϕ sinh
ρ

k
= sinh

x0
k
. (6.5)

Also, from (2.2) and (6.5) it follows that

dρ

ds
=

√
1− tanh2 x0

k
coth2 ρ

k
= g(ρ).

Hence, by using equation (6.5) we obtain

dϕ

ds
=
g(ρ)

k
cotϕ coth

ρ

k
=

1

k
tanh

x0
k

cosh ρ
k

sinh2 ρ
k

.

The derivatives of the second kind are as follows:

d2ρ

ds2
=

1

2

dg2

dρ
,
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d2ϕ

ds2
=

tanh x0

k

k2 sinh ρ
k

(
1− 2 coth2 ρ

k

)
g.

From (2.9) we obtain for the curvature the following formula:

1

rg
=

1

k
tanh

x0
k
. (6.6)

The orthogonal curves are parallel to the y-axis. We will prove this by determining
the distance between the points P0(0, b) and P1(x1, y1), illustrated on figure 5. Point
P1 is the intersection point of the geodesic and its orthogonal curve. The coordinates
are given by the formulas

tanh
y1
k

= tanh
b

k
cosh

x1
k
, sinh

x1
k

cosh
y1
k

= sinh
x0
k
.

Hence we obtain

sinh
y1
k

= sinh
b

k
cosh

x0
k
, cosh

x1
k

=
tanh y1

k

tanh b
k

.

From (4.12) we get

cosh
d

k
= cosh

b

k
cosh

x1
k

cosh
y1
k
− sinh

b

k
sinh

y1
k

= cosh
x0
k
,

thus

d = x0.

The distance of two orthogonal lines is given by the difference of the values x0, which
proves the parallelism of the orthogonal curves.

These orthogonal lines are the duals of the hipercycloids, fact which is illustrated
also by the curvatures determined above. This family of lines was not considered in
the past.

Note that any orthogonal line can be described by formula (1.11). In the case
of hipercycloids the value of x2, while in the case of (6.4) the value of x1 is constant.
Along the circles (5.1), (5.3) and (5.7) the following values are constant:

cosh
a

k
x0 − sinh

a

k
x1, cosh

b

k
x0 − sinh

b

k
x2.
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