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Helicoidal surfaces with A7r = Ar
in 3-dimensional Euclidean space

Bendehiba Senoussi and Mohammed Bekkar

Abstract. In this paper we study the helicoidal surfaces in the 3-dimensional
Euclidean space under the condition A”r = Ar; J = I, 11,111, where A = (asj)
is a constant 3 x 3 matrix and A7 denotes the Laplace operator with respect to
the fundamental forms I, I1 and I11.
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1. Introduction

Let r = r(u,v) be an isometric immersion of a surface M? in the Euclidean space E3.
The inner product on E3 is

9(X,Y) = 21y1 + 2oy + 23y3,

where X = (z1,2,73),Y = (y1,¥2,y3) € R3. The Euclidean vector product X AY of
X and Y is defined as follows:

X NY = (z2y3 — T3y2, T3y1 — T1Y3, T1Y2 — Tay1)-

The notion of finite type immersion of submanifolds of a Euclidean space has
been widely used in classifying and characterizing well known Riemannian submani-
folds [6]. B.-Y. Chen posed the problem of classifying the finite type surfaces in the
3-dimensional Euclidean space E3. An Euclidean submanifold is said to be of Chen
finite type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian
A [6]. Further, the notion of finite type can be extended to any smooth functions on a
submanifold of a Euclidean space or a pseudo-Euclidean space. Since then the theory
of submanifolds of finite type has been studied by many geometers.

A well known result due to Takahashi [18] states that minimal surfaces and
spheres are the only surfaces in E? satisfying the condition

Ar=Ar, AeR.
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In [10] Ferrandez, Garay and Lucas proved that the surfaces of E? satisfying
AH = AH, A€ Mait(3,3)

are either minimal, or an open piece of sphere or of a right circulaire cylindre.

In [7] M. Choi and Y. H. Kim characterized the minimal helicoid in terms of
pointwise 1-type Gauss map of the first kind. In [2] M. Bekkar and H. Zoubir classified
the surfaces of revolution with non zero Gaussian curvature Kg in the 3-dimensional
Lorentz-Minkowski space E$, whose component functions are eigenfunctions of their
Laplace operator, i.e.

AIITi = /\i’l“i, Ai € R,

In [9] F. Dillen, J. Pas and L. Verstraelen proved that the only surfaces in E3

satisfying
Ar=Ar+ B, A< Mat(3,3), B € Mat(3,1),
are the minimal surfaces, the spheres and the circular cylinders.

In [1] Ch. Baba-Hamed and M. Bekkar studied the helicoidal surfaces without
parabolic points in Ef, which satisfy the condition

Aty =\,

where A is the Laplace operator with respect to the second fundamental form.

In [13] G. Kaimakamis and B.J. Papantoniou classified the first three types of sur-
faces of revolution without parabolic points in the 3-dimensional Lorentz—Minkowski
space, which satisfy the condition

Ay = Ar, A € Mat(3,3).

We study helicoidal surfaces M? in E2? which are of finite type in the sense of
B.-Y. Chen with respect to the fundamental forms I, IT and II1, i.e., their position
vector field r(u, v) satisfies the condition

Alr=Ar; J=1,11,111, (1.1)

where A = (a;;) is a constant 3 x 3 matrix and A’ denotes the Laplace operator with
respect to the fundamental forms I, I1 and I11. Then we shall reduce the geometric
problem to a simpler ordinary differential equation system.

In [14] G. Kaimakamis, B.J. Papantoniou and K. Petoumenos classified and
proved that such surfaces of revolution in the 3-dimensional Lorentz-Minkowski space

E3 satisfying
AT — A7

are either minimal or Lorentz hyperbolic cylinders or pseudospheres of real or imagi-
nary radius, where A1 is the Laplace operator with respect to the third fundamental
form. S. Stamatakis and H. Al-Zoubi in [17] classified the surfaces of revolution with
non zero Gaussian curvature in E? under the condition

Ay = Ar, A € Mat(3,R).
On the other hand, a helicoidal surface is well known as a kind of generalization of

some ruled surfaces and surfaces of revolution in a Euclidean space E3 or a Minkowski
space E? ([5], [8], [12]).
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2. Preliminaries

Let v : I C R — P be a plane curve in E? and let [ be a straight line in P which
does not intersect the curve 7 (axis). A helicoidal surface in E? is a surface invariant
by a uniparametric group G = {g»/ g» : E* — E3; v € R} of helicoidal motions.
The motion g, is called a helicoidal motion with axis [ and pitch c. If we take ¢ = 0,
then we obtain a rotations group about the axis [.

A helicoidal surface in E* which is spanned by the vector (0,0, 1) and with pitch
c € R* as follows:

cosv —sinv 0 U 0
r(u,v) = sinv cosv 0 0 + 0 |,ceR™
0 0 1 o(u) cv

Next, we will use the parametrization of the profile curve v as follows:
Y(u) = (u,0,¢(u)).
Therefore, the surface M? may be parameterized by
r(u,v) = (ucosv,usinv, p(u) + cv) (2.1)

in E3, where (u,v) € I x [0,27], ¢ € R*.

A surface M? is said to be of finite type if each component of its position vector
field 7 can be written as a finite sum of eigenfunctions of the Laplacian A of M?2, that
is, if

k
T =1+ E Ti,
i=1

where r; are E? -valued eigenfunctions of the Laplacian of (M2, r): Ar; = A7, \; € R,
i=1,2,.,k [6]. If \; are different, then M? is said to be of k-type.
The coefficients of the first fundamental form and the second fundamental form are

E = gn= g(T’u,Tu), F=gp= g(Tuarv), G =gy = g(Tu,Tu);
L = hll - g(ruimN)v M = h12 = g(ruvaN)a N = h22 = Q(Tva),

where N is the unit normal vector to M2.
The Laplace-Beltrami operator of a smooth function

with respect to the first fundamental form of the surface M? is the operator A,
defined in [15] as follows:

Alp— -1 0 [ Gpy—Fp, \ 0 [ Foy,— Ep,
4 VIEG — F?| |Ou \ \/|EG — F?] ov \ \/|EG — F?]

The second differential parameter of Beltrami of a function

(2.2)

0 M?* = R, (u,v) — @(u,v)
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with respect to the second fundamental form of M? is the operator A’! which is
defined by [15]

-1 Ny, — M Lo, — M
ATy 9 Pu [ 0 [ Loy 2o V[ 2
VILN — M2| | 9u \ \/]LN — M?2| ov \ \/[LN — M2]|
where LN — M? # 0 since the surface has no parabolic points.
In the classical literature, one write the third fundamental form as
IIT = ey1du® + 2e15dudv + easdv®.

The second Beltrami differential operator with respect to the third fundamental
form I11 is defined by

1,0 0
AIII = W(amz(\/mej@))a (24)

where e = det(e;;) and € denote the components of the inverse tensor of e;;.
If r = r(u,v) = (1 = r1(u,v),r2 = ra(u,v),r3 = r3(u,v)) is a function of class
C? then we set
Alr = (ATr, Ay, Arg); J=1,11,111.

The mean curvature H and the Gauss curvature K¢ are, respectively, defined by

1
and )
LN — M
Kog=—21""_|
¢~ EG - F?

Suppose that M? is given by (2.1).

3. Helicoidal surfaces with A/r = Ar in E3

The main result of this section states that the only helicoidal surfaces M? of E?
satisfying the condition
Alr = Ar (3.1)
on the Laplacian are open pieces of helicoidal minimal surfaces.
The coefficients of the first and the second fundamental forms are:

E=14+¢? F=cy, G=c+u% (3.2)
UQD// c u2§0/

L: M: —_ N: 5 3.3
ANV s 53)

where W = VEG — F2 = \/u?(1 + ¢'2) + ¢2 and the prime denotes derivative with
respect to wu.
The unit normal vector of M? is given by

1 . .
N :W(uap' cosv — c¢sinw, ccosv + uy’ sinv, —u).
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From these we find that the mean curvature H and the curvature K¢ of (3.2) are
given by

H = 2;/3 (W@’ (1 + @) +2¢%¢ + up” (¢ + u?))
-5 (%)
2u \ W
and
Kg = %(uz&(p’cp” - 7). (3.4)

If a surface M? in E3 has no parabolic points, then we have
U3<,0/<,0” . 02 ?é 0.

The Laplacian A’ of M2 can be expressed as follows:

Al = —i(((:Qanf)a—2 — 2cy’ o +(1+ ,2)372)
N w2 Ou? ¥ udw PR
7i 3 2 2 2N 2 2 2 2
a (@ (L 97) + cCu(l = ) —u et (c” +u%)) -
1 2 2 2y, 9
e (e (@ + ) + gl (14 6)) o
Accordingly, we get
Alr = —20N. (3.5)

The equation (3.1) by means of (3.2) and (3.5) gives rise to the following system of
ordinary differential equations

(up’ A(u) — a1yu) cosv — (cA(u) + a1au) sinv = ay3(p + cv) (3.6)
(up’ A(u) — agou) sinv + (cA(u) — ag1u) cosv = ags(p + cv) (3.7)
—uA(u) = azrucosv + agausinv + azz(p + cv), (3.8)
where or7
Alu) = W (3.9)
On differentiating (3.6), (3.7) and (3.8) twice with respect to v we have
a1z = agz = azz =0, A(u) =0. (3.10)
From (3.10) we obtain
—ajiucosv —ajpusiny = 0
—agousinv — agqucosv = 0
a3 ucosv + azpusinvy = 0. (3.11)

But cos and sin are linearly independent functions of v, so we finally obtain a;; = 0.
From (3.9) we obtain H = 0. Consequently M?, being a minimal surface.

Theorem 3.1. Let v : M? — E? be an isometric immersion given by (2.1). Then
Alr = Ar if and only if M? has zero mean curvature.
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4. Helicoidal surfaces with A’lr = Ar in E3

In this section we are concerned with non-degenerate helicoidal surfaces M?
without parabolic points satisfying the condition

Ay = Ar. (4.1)

By a straightforward computation, the Laplacian A’ of the second fundamental
form I on M? with the help of (3.3) and (2.3) turns out to be

w 0? 9? 2
AH - _ 2 1Y n Y 2
R (u Y o tup ov? + “Oudv
_Eu( _ (P/(QPI no__ //2)u4 4 /2(pllu3 _ 202 //u _ 402()0/)£
2R2 ¥ 1 ® 2 ou
W 1o 12 r om0
+omrew’ (" + P )u+30¢") o,

3, 1, A

where R = u¢’p" — 2.
Accordingly, we get
(u@’ cosv — csinv)P(u)
Allyr(u,v) = | (ug'sinv + ccosv)P(u) |, (4.2)
ug P(u) — w2 Q(u)

where
P(u) _ TRZ((QOH2+§0/Q0/H)U4—§0/<,0”U3+4C2) (4.3)
w
Q(u) _ W(ZLQOQ@NQUS _02(50”2 +<,0/<,0W)UJ— 7624,0/@”). (4.4)

Therefore, the problem of classifying the helicoidal surfaces M? given by (2.1)
and satisfying (4.1) is reduced to the integration of this system of ordinary differential
equations

(up' P(u) — ajiu) cosv — (cP(u) + ajgu) sinv = ai3(¢ + cv)
(up' P(u) — ageu) sinv + (cP(u) — ag1u) cosv = asz(p + cv)
up?P(u) — u*Q(u) = az1ucosv + agausinv + ass(p + cv).
Remark 4.1. We observe that
A P(u) + u*Q(u) = 2W. (4.5)
But cosv and sinv are linearly independent functions of v, so we finally obtain

azz = az1 = azz = a;3 = a3 = 0.

We put a;1 = ags = a and as; = —a2 = B, a,8 € R. Therefore, this system of
equations is equivalently reduced to

©'P(u) =«

cP(u) = fu (4.6)

©?P(u) —uQ(u) = 0.
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Now, let us examine the system of equations (4.6) according to the values of the
constants o and 3.
Case 1. Let « =0 and 5 # 0.
In this case the system (4.6) is reduced equivalently to
¢ =0
cP(u) = —pu (4.7)
Q(u) = 0.

From (4.7) we have P”(u) = 0. From (4.5) and the fact that ¢ # 0 we have a
contradiction. Hence there are no helicoidal surfaces of E3 in this case which satisfy
(4.1).

Case 2. Let « # 0 and 8 = 0.
In this case the system (4.6) is reduced equivalently to
©'Plu) =«
P(u) =0.
But this is not possible. So, in this case there are no helicoidal surfaces of E3.

Case 3. Let a = 5 =0.
In this case the system (4.6) is reduced equivalently to

{ P(u)=0

Q(u) = 0.

From (4.5) we have W = 0, which is a contradiction. Consequently, there are no
helicoidal surfaces of E? in this case.

Case 4. Let a # 0 and 8 # 0.
In this case the system (4.6) is reduced equivalently to

olu) = % In(u) + k, k€R. (4.8)

By using (4.6) and (4.8), we obtain

P(u) = 8u
€2 4.9
{szﬁ. (19)
Substituting (4.9) into (4.5), we get
20,2 1 72)2 2 2
c(a® + 57) u2=4(u2—|—c a L.

B2 B?
A?+5%)=0
{ 02(a2 +52)2 — 4ﬁ2~
From the first equation we have o = 8 = 0, which is a contradiction. Hence,
there are no helicoidal surfaces of E3 in this case.
Consequently, we have:

Then

Theorem 4.2. Letr : M? — E? be an isometric immersion given by (2.1). There are no
helicoidal surfaces in E® without parabolic points, satisfying the condition AMr = Ar.
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Theorem 4.3. If Kq = a € R\{0}, then
Ay (u,v) = —2N. (4.10)

Proof. If Kg = a € R\{0}, then 2Xc =0.
From (3.4) we obtain

7()0/()0//“4 + S0//2us + 76290/%0//,“2 + 02@”2113 o 380/290”2U5 + 462u o S0,3<,0HU4 + 46290/2u

_ 7(90/()0/// + @/3¢///)u5 _ 6290/30”'11,3 (4.11)

By using (4.3), (4.4) and (4.11) we get

uP(u) _U2Q(u) _ TRQ(@IBQO/,ML —40290’2u— g0'3<p/”u5 _ 80/280//27-’45)

= —uP(u). (4.12)

From (4.2) and (4.12) we deduce that
Ar(u,v) = WP(u)N. (4.13)

From (4.5) and (4.12) we have that
2

P(u) = W (4.14)
By using (4.13) and (4.14) we get (4.10). O

5. Helicoidal surfaces with A///r = Ar in E?

In this section we are concerned with non-degenerate helicoidal surfaces M?
without parabolic points satisfying the condition

ATy = Ar, (5.1)

The components of the third fundamental form of the surface M? is given by

1
el = W(CQ(QPI +up”)? + 2 +ute?), (5.2)
c
e =~ g,
1
€y = ﬁ(CQ 4 u2<p'2)7
hence )
e = 7(u3<p/g0” _ 02)2_
W6
The Laplacian of M? can be expressed as follows:
1 C2 + U2<,0/2 82 S0/ + uap” 82
AT W 4 2W 5.3
|6| ( (02 _ u3<p'<p”)au2 +2c (02 _ UBQO/@”)auav + ( )
i(62(¢/+u@//)2+62+u4¢//)i2 i ( 02+u2<p’2 )g
w 02 _ USw/SD// 81)2 du 02 _ U3(,0/Q0” ou
d @/ —I—U(p// )
—W(——""—)=).
+Cdu (02 — u3<p’g0”)5'v)
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By using (5.1) and (5.3) we get

AT (ycosv) = —ug'Q(u) cosv — cQ(u) sinv
AT (ysinv) = ¢Q(u) cos v — up'Q(u) sinwv
A (o(u) + cv) = P(u).
Hence
—u@'Q(u) cosv — cQ(u) sinw
Ay (y,v) = cQ(u) cosv — up’Q(u) sinw , (5.4)
P(u)
where
2
Q(u) w (W2U2(02 + UQ(,O/Q)QDW 4 30211/2(,0/ 4 30211,2(,0/3 (55)

2 _ 03003
(2 —uPp'y”)
+7c2u3¢’2<p” + 502713@” +021114('0/80//2 JrZ164,“40// _ UGQDIQD/Q
+u7<p"3 +02u5<p”3 +204<p’ _ 211,6(,0/3(,0”2),
-w? 2 2 2 12\2, I 4,2 1
702u4cp'2<p” 72u7¢/3¢//2 Jr306‘.('0// + 15c4u2g0’2g0”
—302u5<p’3<p”2 T 9C2U4§0/4§0" _ 3@07(,0/5%0”2 + 26411(,0/
+4C4U(‘013 +3C2u3<p/3+362u3<p/5

—|—3C4u3(p/90”2 +C2U5§0/<,0H2 + CQ'U,G(p”?’ —|—c4u4gp”3).

From (5.5) and (5.6) we have

3
£
I
|

—u C2 +’LL2Q0/2
u

Jwe)

where L(u) = hyije'! + 2hige'? + hoge?? = ?(—H
Remark 5.1. We observe that
uP(u) + (2 +u?¢)Q(u) = —W () : (5.8)
The equation (5.1) by means of (2.1) and (5.4) gives rise to the following system

of ordinary differential equations

—up' Q(u) cosv — eQ(u) sinv = ajjucosv + ajpusinv + ay3(e + cv)
cQ(u) cosv — up'Q(u) sin v = ag u cosv + azeusinv + asz(p + cv)
P(u) = azjucosv + agausinv + agz(¢ + cv).

But cosv and sin v are linearly independent functions of v, so we finally obtain

azz = az1 = azz = a;3 = a3 = 0.
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We put —ai; = —age = A1 and as; = —a12 = A2, A1, Ao € R. Therefore, this system
of equations is equivalently reduced to

©'Qu) =M
cQ(u) = Aau (5.9)
P(u)=0

Therefore, the problem of classifying the surfaces M? given by (2.1) and satisfy-
ing (5.1) is reduced to the integration of this system of ordinary differential equations.
Case 1. Let A\; =0 and Ay # 0.

In this case the system (5.9) is reduced equivalently to

' Qu) =0
cQ(u) = Aau (5.10)
P(u) =0.

Differentiating (5.10), we obtain P”(u) = 0, which is a contradiction. Hence
there are no helicoidal surfaces of E3 in this case which satisfy (5.1).
Case 2. Let \; # 0 and Ay = 0.

In this case the system (5.9) is reduced equivalently to

¢'Qu) =M
cQ(u) =0
P(u) =0.

But this is not possible. So, in this case there are no helicoidal surfaces of E3.
Case 3. Let A\ = Ay = 0.
In this case the system (5.9) is reduced equivalently to
{ ¢'Qu) =0
Q(u) =0.
From (5.8) we have H = 0. Consequently M?, being a minimal surface.

Case 4. Let Ay # 0 and A3 # 0.
In this case the system (5.9) is reduced equivalently to

o(u) = % In(u) +a, a€R. (5.11)
2

If we substitute (5.11) in (5.5) we get Q(u) = 0. So we have a contradiction and
therefore, in this case there are no helicoidal surfaces of E3.
Consequently, we have:

Theorem 5.2. Let r : M? — E3 be an isometric immersion given by (2.1). Then
A = Ar if and only if M? has zero mean curvature.

Theorem 5.3. If % = o € R\{0}, then

AMy(g,y) = —Z=N.
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Proof. From (5.7) we have
P(u) = uQ(u). (5.12)
Finally, (5.12) and (5.4) give

AMTr(u,v) = Q(u)(—uy cosv + esinv, —ccosv — ug’ sinv, u)
1 2H , . .
= W(K—G)(—wp cosv + ¢sinv, —ccosv — up’ sinwv, u)
. om
= &z
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