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On a functional differential inclusion

Aurelian Cernea

Abstract. We consider a Cauchy problem associated to a nonconvex functional
differential inclusion and we prove a Filippov type existence result. This result
allows to obtain a relaxation theorem for the problem considered.
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1. Introduction

In this note we study functional differential inclusions of the form
Z'(t) € F(t,z(t),z(A\t)), x(0) = zo, (1.1)

where F(.,.,.) : [0,7] x R x R — P(R) is a set-valued map with non-empty values,
A € (0,1) and g € R. The present note is motivated by a recent paper [5], where
it was studied problem (1.1) with F single valued and several results were obtained
using fixed point techniques: existence, uniqueness and differentiability with respect
with the delay of the solutions. The study in [5] contains, as a particular case, the
problem
7' (t) = —az(t) + ax(\t), z(0) = =z,

which appears in the radioactive propagation theory ([2]).

The aim of this note is to consider the multivalued framework and to show
that Filippov’s ideas ([3]) can be suitably adapted in order to obtain the existence
of solutions of problem (1.1). We recall that for a differential inclusion defined by a
lipschitzian set-valued map with nonconvex values Filippov’s theorem ([3]) consists in
proving the existence of a solution starting from a given ”quasi” solution. Moreover,
the result provides an estimate between the starting ”quasi” solution and the solution
of the differential inclusion.

As an application of our main result we obtain a relaxation theorem for the
problem considered. Namely, we prove that the solution set of the problem (1.1) is
dense in the set of the relaxed solutions; i.e. the set of solutions of the differential
inclusion whose right hand side is the convex hull of the original set-valued map.
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The paper is organized as follows: in Section 2 we briefly recall some preliminary
results that we will use in the sequel and in Section 3 we prove the main results of
the paper.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X,d) be a metric space. The Pompeiu-Hausdorff distance of the closed
subsets A, B C X is defined by

dy (A, B) = max{d*(A, B),d"(B,A)}, d*(A, B) = sup{d(a, B); a € A},

where d(z, B) = inf{d(z,y);y € B}. Let T > 0, I := [0,7] and denote by L(I) the
o-algebra of all Lebesgue measurable subsets of I. Denote by P(R) the family of all
nonempty subsets of R and by B(R) the family of all Borel subsets of R. For any
subset A C R we denote by clA the closure of A and by ¢6(A) the closed convex hull
of A.

As usual, we denote by C(I,R) the Banach space of all continuous functions
z(.) : I = R endowed with the norm

|z = sup | (t)]
tel

and by L1(I,R) the Banach space of all integrable functions z(.) : I — R endowed

with the norm -
2l = / (b)),
0

The Banach space of all absolutely continuous functions z(.) : I — R will be denoted
by AC(I,R). We recall that for a set-valued map U : I — P(R) the Aumann integral

of U, denoted by /U(t)dt7 is the set
I

/IU(t)dt - {/u(t)dt; u() € LNILR), ult) € U(t) ace. (I)} .

I
We recall two results that we are going to use in the next section. The first one
is a selection result (e.g., [1]) which is a version of the celebrated Kuratowski and
Ryll-Nardzewski selection theorem. The proof of the second one may be found in [4].

Lemma 2.1. Consider X a separable Banach space, B is the closed unit ball in X,
H: 1 — P(X) is a set-valued map with nonempty closed values and g : I — X, L :
I — R, are measurable functions. If

Ht)N(g(t)+ L{t)B) #0 a.e.(I),
then the set-valued map t — H(t) N (g(t) + L(¢t)B) has a measurable selection.

Lemma 2.2. Let U : I — P(R) be a measurable set-valued map with closed nonempty
mmages and having at least one integrable selection. Then

T T
cz< /0 coU(t)dt)zcl( /O U(t)dt).
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3. The main results

In what follows we assume the following hypotheses.

Hypothesis. i) F(.,.,.) : I x R x R = P(R) has nonempty closed values and is
L(I) ® B(R x R) measurable.
ii) There exist I1(.),l2(.) € L'(I,R,) such that, for almost all t € I,
du (F(t, 1,91), F(t, 22, y2)) < li(t)|w1 — 22| + 12(t)|y1 — yo| V1,22, 51,92 € R.
Theorem 3.1. Assume that Hypothesis is satisfied and |l1]1 + |l2]1 < 1.
Let y(.) € AC(I,R) be such that there exists p(.) € L'(I,Ry) verifying
d(y(t), F(t, y(t), y(M))) < p(t) a.e. (I).
Then there exists x(.) a solution of problem (1.1) satisfying for allt € T
1
ll]1 + [l2]1)

Proof. We set xo(.) = y(.), fo(-) = ¢/(.). It follows from Lemma 2.1 and Hypothesis
that there exists a measurable function fi(.) such that fi(t) € F(t, zo(t), zo(\t)) a.e.
(I) and, for almost all ¢ € I, |f1(t) — ¢'(t)| < p(t). Define

x1(t) = g +/O fi(s)ds

|z —ylo < T (lzo = y(0)[ + [p1)- (3.1)

and one has
t
l21(t) — y(B)] < 2o — y(0)] + / p(s)ds < o — y(0)] + [pls.

Thus |21 — ylc < [zo — y(0)| + [pl1-
From Lemma 2.1 and Hypothesis we deduce the existence of a measurable func-
tion fy(.) such that fo(t) € F(t,z1(t), z1(\t)) a.e. (I) and for almost all t € T

|f1(t) = fo(B)] < d(f1(t), F(t,21(t), 21(\t))) < du (F(t, 2o(t), w0 (AL)),

F(t,$1(ﬁ),$1()\t>)) S ll(t>|$1(t) - l’g(t)l + lg(t>|$1()\t) — $2()\t>|
Define

t
x2(t) = g —|—/ fa(s)ds
0
and one has

21 (t) — 22 (1) < / Fu(s) — fals)lds

< /0 [l1(s)|z1(s) — w2(s)] + l2(s)|z1(As) — 22(As)|]ds

< (i + Jl2f0)lzr = 220 < (Jll1 + [l21)(Jzo — y(0)] + [pl)-
Assume that for some p > 1 we have constructed (z;)?_; with x,, satisfying

lzp — 2p-1lc < (Jlhly + l2]1)P (Jzo — y(0)] + |p1)-
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Using Lemma 2.1 and Hypothesis we deduce the existence of a measurable function
fp+1(.) such that fp1(t) € F(t,zp(t), zp(At)) a.e. (I) and for almost all t € I

[fora(8) = Fp (O] < d(fp41 (), F(E, 2p1(8), 2p-1 ()
< dH(F(t7 :Ep(t)7 xp()‘t))7 F(t7 xpfl(t)ﬂ mpfl()‘t)))
< h@)|ep(t) = zpa ()] + L) |zp(At) — zp1(A)].
Define .
$p+1(t> =9 —‘r/o fp+1(8)d8. (3.2)
We have .
2p1(®) = 0] < [ 1ia(s) = il
0

S/ [1(8)|zp(s) = zp-1(s)] + la(5)|2p(As) — 2p1(As)][]ds
0

< (lhh + [L2l)]zp — zp-1]c < ([l + [i2[1)P (lzo — y(0)] + |pl1).
Therefore (x,(.))p>0 is a Cauchy sequence in the Banach space C(I,R), so it converges
to z(.) € C(I,R). Since, for almost all ¢t € I, we have

[fot1() = fo()] < Li@)]2p(8) = 2p-1 ()] + l2(8) 2 (ML) — 2p-1(AD))]

< L) + L@z, - zple,

{f»(1)} is a Cauchy sequence in the Banach space L'(I,R) and thus it converges
to f(.) € LY(I,R). Passing to the limit in (3.2) and using Lebesgue’s dominated
convergence theorem we get z(t) = xo + fot f(s)ds, which shows, in particular, that
z(.) is absolutely continuous.

Moreover, since the values of F'(., .,.) are closed and fp11(t) € F(t,zp(t), 2p(At))
passing to the limit we obtain f(t) € F(t,z(¢), z(\t)) a.e. (I).

It remains to prove the estimate (3.2). One has

|z, — zolc < |2p — Tp—1|c + - + |22 — 21]c + |21 — 20|

< (i +l210)P (Jzo =y (0) [+ |pl1)+-- ([l |1+ |l2[1) (Jzo =y (0) [+ [p[1) + (w0 —y(0) | +|pl1)

1
< zo —y(0)| + |pl1)-
17(|ll|1+|l2|1)<| 0 y( >| | |1>
Passage to the limit in the last inequality completes the proof. 0

Remark 3.2. a) If we consider the space C'(I, R) endowed with a Bielecki type norm of
the form |z|p = sup,c; e~ *|z(t)| with an appropriate choice of a € R, the condition
[11]1 4 |i2]1 < 1 can be removed from the assumptions of Theorem 3.1.

b) The statement in Theorem 3.1 remains valid for the more general problem

'(t) € F(t,2(t), x(9(1)), (0) = o,

with g(.) : I — I a continuous function.
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As we already pointed out, Theorem 3.1 allows to obtain a relaxation theorem for
problem (1.1). In what follows, we are concerned also with the convexified (relaxed)
problem

2/ (t) e oF(t,z(t),z(A\t)), x(0)= zq. (3.3)
Note that if F(.,.,.) satisfies Hypothesis, then so does the set-valued map
(t,z,y) — COF(t,z,y).

Theorem 3.3. We assume that Hypothesis is satisfied and |l1]1 + |l2|1 < 1. Let T(.) :
I — R be a solution to the relaxed inclusion (3.3) such that the set-valued map
t — F(t,z(t), T(\t)) has at least one integrable selection.

Then for every € > 0 there exists x(.) a solution of problem (1.1) such that

|l’ — E|C <e.
Proof. Since Z(.) is a solution of the relaxed inclusion (3.3), there exists f(.) €

LY(I,R), f(t) € coF(t,Z(t),T(At)) a.e. (I) such that

t
Z(t) = xo —l—/ f(s)ds.
0
From Lemma 2.2, for § > 0, there exists f(t) € F(t,%(t), Z(\t)) a.e. (I) such that

sup < 6.

tel

/ (F(s) — F(s))ds
0

Define
Z(t) = xo +/0 f(s)ds.

Therefore, | — T|c < 4.
We apply, now, Theorem 3.1 for the ”quasi” solution Z(.) of (1.1). One has

p(t) = d(f(t), F(t,(t),#(\))) < d (F(t,T(t), T(At)),
F(t,2(t),2(At))) < L()[z(t) — 2(t)] + L2(t)[T(At) — Z(At)]

< h(@®)F —Tlo +1()]E —Tlo < (L) +12(1))5,
which shows that p(.) € L*(I,R).

From Theorem 3.1 there exists z(.) a solution of (1.1) such that

1 L)1 + 21

< .
Tl 1l P S T (il =+ 1ial)

It remains to take § = [1 — (|l1]1 + |l2]1)]e and to deduce that

— e <
|z x|c_1_

|z —Zlo < |z — Z|c + |2 —T|]c < e. 0
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