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Some extensions of the Open Door Lemma

Ming Li and Toshiyuki Sugawa

Abstract. Miller and Mocanu proved in their 1997 paper a greatly useful result
which is now known as the Open Door Lemma. It provides a sufficient condition
for an analytic function on the unit disk to have positive real part. Kuroki and
Owa modified the lemma when the initial point is non-real. In the present note,
by extending their methods, we give a sufficient condition for an analytic function
on the unit disk to take its values in a given sector.
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1. Introduction

We denote by H the class of holomorphic functions on the unit disk
D={z:]|z| <1}
of the complex plane C. For a € C and n € N, let #H[a,n] denote the subclass of
H consisting of functions h of the form h(z) = a + ¢ 2" + cpr 12"t + -+ . Here,
N={1,2,3,...}. Let also A, be the set of functions f of the form f(z) = zh(z) for
h € H[1,n].

A function f € A; is called starlike (resp. convez) if f is univalent on D and if
the image f(D) is starlike with respect to the origin (resp. convex). It is well known
(cf. [1]) that f € A, is starlike precisely if ¢¢(z) = zf’(z)/f(z) has positive real part
on |z| < 1, and that f € A; is convex precisely if ¢ ¢(z) = 142 f"(2)/f'(2) has positive
real part on |z| < 1. Note that the following relation holds for those quantities:

2q;(2)

q7(2)

It is geometrically obvious that a convex function is starlike. This, in turn, means the
implication

pr(2) = qr(2) +

2q'(z)

q(2)
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for a function ¢ € H[1, 1]. Interestingly, it looks highly nontrivial. Miller and Mocanu
developed a theory (now called differential subordination) which enables us to deduce
such a result systematically. See a monograph [4] written by them for details.

The set of functions ¢ € H[1,1] with Req > 0 is called the Carathéodory class
and will be denoted by P. It is well recognized that the function

qo(2) = (1+2)/(1=-2)
(or its rotation) maps the unit disk univalently onto the right half-plane and is ex-
tremal in many problems. One can observe that the function
2qp(z)  1+2z 2z 14+4z+2°
go(z) 1—2z 1—22  1-—22

®o(2) = qo(2) +

maps the unit disk onto the slit domain V(—v/3,+/3), where
V(A,B)=C\{iy:y< Aory =B}

for A, B € R with A < B. Note that V (A, B) contains the right half-plane and has the
“window” (Ai, Bi) in the imaginary axis to the left half-plane. The Open Door Lemma
of Miller and Mocanu asserts for a function ¢ € H[1,1] that, if ¢(z) + 2¢'(2)/q(z) €
V(—V/3,V/3) for z € D, then ¢ € P. Indeed, Miller and Mocanu [3] (see also [4])
proved it in a more general form. For a complex number ¢ with Rec > 0 and n € N,

we consider the positive number
2Rec
lcl4/ +1+4+ Ime|.
n

In particular, C,(c) = y/n(n + 2c¢) when c is real. The following is a version of the
Open Door Lemma modified by Kuroki and Owa [2].

n
Rec

Cn(c)

Theorem A (Open Door Lemma). Let ¢ be a complex number with positive real part
and n be an integer with n > 1. Suppose that a function ¢ € H[c,n| satisfies the
condition

2 (2) — c c z
1) + 2oy €V(=Ca(9).Cu(@), = €D.

Then Req > 0 on D.

Remark 1.1. In the original statement of the Open Door Lemma in [3], the slit domain
was erroneously described as V(—C,,(c), Cy(c)). Since Cy,(¢) < Cy(c) when Ime > 0,
we see that V(—C,(¢),Cy,(¢)) C V(—=Cy(c),Cn(€)) C V(—=Cy(c),Cpn(c)) for Ime >0
and the inclusions are strict if Imc > 0. As the proof will suggest us, seemingly the
domain V(—C,(c), Cy(¢)) is maximal for the assertion, which means that the original
statement in [3] and the form of the associated open door function are incorrect for a
non-real c. This, however, does not decrease so much the value of the original article [3]
by Miller and Mocanu because the Open Door Lemma is mostly applied when c is real.
We also note that the Open Door Lemma deals with the function p = 1/q € H[1/c,n]
instead of ¢q. The present form is adopted for convenience of our aim.
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The Open Door Lemma gives a sufficient condition for ¢ € H[e,n] to have
positive real part. We extend it so that |argq| < ma/2 for a given 0 < a < 1. First
we note that the Mobius transformation
c+cz
1-2
maps D onto the right half-plane in such a way that g.(0) = ¢, where ¢ is a complex
number with Rec > 0. In particular, one can take an analytic branch of log g. so that
|Im log g.| < /2. Therefore, the function ¢g = g¢ = exp(alog g.) maps D univalently
onto the sector |argw| < ma/2 in such a way that ¢o(0) = ¢®. The present note is
based mainly on the following result, which will be deduced from a more general result
of Miller and Mocanu (see Section 2).

9e(2) =

Theorem 1.2. Let ¢ be a complex number with Rec > 0 and « be a real number with
0 < a < 1. Then the function

oy HOEE) _ (ces\" | 2na(Rec):
Roen(2) = ge(2)" + ge(2) ( 1—=2 ) (1—2)(c+ez)

is univalent on |z| < 1. If a function g € H[c™,n] satisfies the condition

2q'(2)
q(z) + 02 € Roen(D), zeD,

then |argq| < ma/2 on D.

We remark that the special case when a = 1 reduces to Theorem A (see the
paragraph right after Lemma 3.3 below. Also, the case when ¢ = 1 is already proved
by Mocanu [5] even under the weaker assumption that 0 < o < 2 (see Remark 3.6).
Since the shape of R, (D) is not very clear, we will deduce more concrete results as
corollaries of Theorem 1.2 in Section 3. This is our principal aim in the present note.

2. Preliminaries

We first recall the notion of subordination. A function f € H is said to be
subordinate to F' € H if there exists a function w € K]0, 1] such that |w| < 1 on D
and that f = F ow. We write f < F or f(z) < F(z) for subordination. When F' is
univalent, f < F precisely when f(0) = F'(0) and f(D) C F(D).

Miller and Mocanu [3, Theorem 5] (see also [4, Theorem 3.2h]) proved the fol-
lowing general result, from which we will deduce Theorem 1.2 in the next section.

Lemma 2.1 (Miller and Mocanu). Let p,v € C with p # 0 and n be a positive
integer. Let qo € Hlc, 1] be univalent and assume that uqo(z) + v # 0 for z € D and
Re (e + ) > 0. Set Q=) = 2q)(2),/ (ao(=) + v), and

h(z) = qo(2) + nQ(2) = qo(2) +

Suppose further that

(a) Re[zh/(2)/Q(2)] = Re [W(2)(nqo(2) +v)/q5(2)] > 0, and
(b) either h is convex or Q is starlike.

nzqo(2)

B (2.1)
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If ¢ € H]c,n| satisfies the subordination relation
2q'(2)
q(z) + < h(z), 2.2
() + 2 <) (2.2

then q < qo, and qq is the best dominant. An extremal function is given by
q(z) = qo(z").

In the investigation of the generalized open door function R, ., we will need
to study the positive solution to the equation

22+ Az'te —1=0, (2.3)

where A > 0 and 0 < a < 1 are constants. Let F(z) = 2% + Az'*t* — 1. Then F(z) is
increasing in > 0 and F(0) = —1 < 0, F(+00) = +oo. Therefore, there is a unique
positive solution z = £(A, a) to the equation. We have the following estimates for the
solution.

Lemma 2.2. Let 0 < a <1 and A > 0. The positive solution x = £(A, «) to equation
(2.3) satisfies the inequalities

(14 4) 70+ < g(4,0) < (14 4)7V2 (< 1),
Here, both inequalities are strict when 0 < a < 1.

Proof. Set £ = £(A, a). Since the above F(z) is increasing in = > 0, the inequalities
F(z1) < 0= F(&) < F(z2) imply 1 < § < x5 for positive numbers z1,z2 and the
inequalities are strict when x; < & < x9. Keeping this in mind, we now show the
assertion. First we put 2o = (1 4+ A)~/2 and observe

1 A 1 A
>

Flas) = B I N
@) =T At gy ez 12T a 154 0
which implies the right-hand inequality in the assertion.
Next put z; = (1 + A)~/0+) Then
1 A 1 A
F(z) = QI SR
@) =G g T1va 1S15a 114 0

which implies the left-hand inequality. We note also that F(x1) < 0 < F(x2) when
a < 1. The proof is now complete. O

3. Proof and corollaries

Theorem 1.2 can be rephrased in the following.
Theorem 3.1. Let ¢ be a complex number with Rec > 0 and a be a real number with
0 < a < 1. Then the function
nazgl ()

Ra,cm(z) = gc(2)* + 9.(2)
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is univalent on |z| < 1. If a function q € H[c*, n] satisfies the subordination condition

zq'(2)
q(z) + () < Ra.cn(2)

on D, then q(z) < g.(2)® on D. The function g< is the best dominant.

Proof. We first show that the function Q(z) = azg.(z)/g.(z) is starlike. Indeed, we
compute

Q(z) ctez 11—z 2
Thus we can see that Re[2Q'(2)/Q(z)] > 0 on |z| < 1. Next we check condition (a)

in Lemma 2.1 for the functions ¢y = g%, h = Rq,,n With the choice p=1,v = 0. We
have the expression

2Q'(2) cz z 1fc—cz 14z
c+ez 1—z]°

2 (2) 2Q'(2)

Q(z) Qz)
Since both terms in the right-hand side have positive real part, we obtain (a). We now
apply Lemma 2.1 to obtain the required assertion up to univalence of h = Rq ¢ . In
order to show the univalence, we have only to note that the condition (a) implies that
h is close-to-convex, since @ is starlike. As is well known, a close-to-convex function
is univalent (see [1]), the proof has been finished. O

=q.(2)*+n

We now investigate the shape of the image domain R ¢, (D) of the generalized
open door function Ry, ., given in Theorem 1.2. Let z = ¢ and ¢ = re' for 0 €
R,r >0 and —7/2 <t < m/2. Then we have

Reon(e®) = (re“ + Te._“ew)a N 2_nael:9 cost
«,C,n 1 — e (1 _ 629)(6125 4 efztew)

_ (reos(t—0/2) \* i nocost

B < sin (6/2) Z) 2 sin (6/2) cos (t — 6/2)

' . j 1+ cot? (0/2)) cost
_ o mai/2 st cot (0/2 sin ¢)” ETLOé( )
riemt (costeot (6/2) +sint)” + 5 - = ot (872) 1 sint

Let 2 = cot (6/2) cost +sint. When x > 0, we write Ry, (e?) = uy (z) +ivy (z) and
get the expressions

ui(2) = alra)”,

1
vy () = b(ra)™ + 2:3;15 <a:—231nt—|— x) ;

where

am @
a=cos 2L and b=sin 2",
2 2
Taking the derivative, we get

2bre t
vﬁr(x) no |: 2 + ﬂma-ﬂ _ 1:| )

2122 cost n



426 Ming Li and Toshiyuki Sugawa

Hence, the minimum of v () is attained at z = £(4,a), where A = 2br“n=! cost.
By using the relation (2.3), we obtain

n

r0n<1£1v+(x) = vl8) = 2cost

(AE“ + af + ?) — natant

n a+1
= -1 —natant =U
s (o= e+ ©51 ) natant = U(e)
where )
n o+
= —1 — .
U(x) 5 eost ((a Yo+ ) natant
Since the function U(z) is decreasing in 0 < = < 1, Lemma 2.2 yields the inequality

v (&) =U() 2 U((1+A4)7?)

n a—1
= —_— HDV1I+A) - .
2cost (m—i—(a—i— Wi+ ) notant

We remark here that
U1+ A"V >Uu@Q) =

na(l — sint) S 0:
cost ’

namely, vi(z) > 0 for > 0. When 2 < 0, letting y = —2 = —cot (6/2) cost — sint,
we write Ry cn(€?) = u_(y) + iv_(y). Then, with the same a and b as above,

u—(y) = a(ry)®,
no 1
_ =-b - 2gsint + —
v—(y) (G Ry (y+ sin +y>7
We observe here that uy = u_ > 0 and, in particular, we obtain the following.

Lemma 3.2. The left half-plane Q = {w : Rew < 0} is contained in Ry ¢ rn(D).

We now look at v_(y). Since

, no 9, 2br%cost .4
= D -1y,
v-() 2y2 cost [y n 7
in the same way as above, we obtain
n a+1
_(y)=v_(6) = — -1 — nactant
%135” (y) = v-(¢) 2cost ((a )&+ 13 ) natat

S L_l-&-(a—l-l) 1+ A) —natant
— 2cost \ 1+ A ’

where £ = £(A, ) and A = 2br“n~! cost. Note also that v_(y) < 0 for y > 0.
Since the horizontal parallel strip v_(§) < Imw < v4(§) is contained in the im-
age domain Ry (D) of the generalized open door function, we obtain the following.

Lemma 3.3. The parallel strip Qo described by

n a—1
1 tant HNV1I+ A
| Imw + na an|<2cost(m+(a+ W1+ )

is contained in Ry cn(D). Here, t = argc € (—%,%) and A = 2|c|*sin Z2 cost.
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When a = 1, we have uy = 0, that is, the boundary is contained in the imaginary
axis. Since £(A,1) = (1 + A)~'/2 by Lemma 2.2, the above computations tell us

minvy = (n/cost)(vV1+ A —sint) = C,(€).
Similarly, we have
maxv_ = —(n/cost)(vV1+ A+sint) = —C,(c).
Therefore, we have
Ryen(D) = V(=Chn(c), Cn(2))-
Note that the open door function then takes the following form

c+ecz 2n(Rec)z
1—2z (1-=2)(c+ez)
2Rec+n n

= - e
l4ez/e 1—2z 7

Rl,c,n(z) =

which is the same as given by Kuroki and Owa [2, (2.2)]. In this way, we see that
Theorem 1.2 contains Theorem A as a special case.

Remark 3.4. In [2], they proposed another open door function of the form

_ 2n|c| [2Rec 1 (¢ —2)(1—(2) Ime,
~ Rec n (1-C2)2—(C—2)2 Rec

2 2R
(=1-2, w=4/ = 4141,
w |e| n

It can be checked that R(z) = Ry . n(—wz/@). Hence, R is just a rotation of Ry .

R(z)

where

We next study the argument of the boundary curve of Ry ¢ n (D). We will assume
that 0 < a < 1 since we have nothing to do when o = 1.
As we noted above, the boundary is contained in the right half-plane Rew > 0.
When z > 0, we have
vp(x) b no

1
= = —2sint|.
ur(z) a * 2ar®z® cost [I+ x S }

We observe now that vy (z)/uy(x) = 400 as  — 0+ or & — +o00. We also have

!/
vt B no 5 _
Therefore, vy (x)/uy(x) takes its minimum at x = &, where

—asint ++v1 — a?cos?t

11—«

&=
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is the positive root of the equation (1 — a)z? + 2axsint — (1 + «) = 0. It is easy to
see that 1 < ¢ and that

<

T, = i = = — _
T up(x)  up(§) a * 2are€> cost

ma  n(E—&7Y
=tan — + —>—> L
) + 2are€ cost

When z = —y < 0, we have

vi(z)  ve(§) b na [5+;_25mt}

_ b 1
o) b me f L g
u_(y) a 2ar®y“cost Yy
and
/
v_ _ —na 2 .
(u_) (y)—m[(l—a)y —2aysint — (14 a)].

Hence, v_(y)/u—(y) takes its maximum at y = n, where

asint ++v/1 — a2 cos?t

11—«

Note that

B €7) N ) I L S LU e/ I

o<y u_(y) u—(n) 2 2aren®cost’

Therefore, the sector {w : T_ < argw < T} is contained in the image Rq ¢ (D).
It is easy to check that T_ < —tan(ra/2) < tan(ra/2) < T4. In particular 7 <
arg c® = at < T}. We summarize the above observations, together with Theorem 1.2,
in the following form.

Corollary 3.5. Let 0 < a < 1 and ¢ = re'* withr > 0,—7/2 <t < 7/2, and n be a
positive integer. If a function q € H|[c*, n] satisfies the condition

—O_ < arg <q(z) + Zjég)> <o,

on |z| < 1, then |argq| < ma/2 on D. Here,

T n(éx — &5
O, = arctan |tan — 7
= T atctan [ Y + 2raég cos(ma/2) cost
and
Fasint +v1 — a?cos? t
£+ = 1 .
—«
It is a simple task to check that x'~% — 717 is increasing in 0 < z. When

Ime > 0, we see that £- > £, and thus ©_ > O,. It might be useful to note the
estimates £_ < /(1 +a)/(1 —a) < &4 and € < 1/sint for Imc > 0.

Remark 3.6. When ¢ =1 and n = 1, we have

=& =V/1+a)/(I-0a), £-¢'=20/V1-02
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and thus
T g—¢t
O, = arctan [tan > + m
tan [tan o + -
= arctan |tan — — —
cos TX(1 — )= (14 a)

juxe’
« COS )

1-a 1ta N,
1-a) 2 (14+a) 2 +asinfy

TQ
= 7 -+ arctan

Therefore, the corollary gives a theorem proved by Mocanu [6].

Since the values ©4 and ©_ are not given in an explicitly way, it might be
convenient to have a simpler sufficient condition for |argq| < ma/2.

Corollary 3.7. Let 0 < a < 1 and ¢ with Rec > 0 and n be a positive integer. If a
function q € H[c™, n| satisfies the condition

zq'(2)
q(z) + € Q,
) q(z)
then |argq| < ma/2 on D. Here, Q = Q4 U Qy U Q3, and Oy and Qs are given in
Lemmas 3.2 and 3.3, respectively, and Q3 = {w € C: |argw| < ma/2}.

Proof. Lemmas 3.2 and 3.3 yield that Q; U Qs C Rg e n(D). Since ©O4 > ma /2, we
also have Q3 C Ry c.n(D). Thus Q C Ry ¢ n(D). Now the result follows from Theorem
1.2. |

See Figure 1 for the shape of the domain § together with R, (D). We remark
that Q = Ry ¢n(D) when o = 1.

FIGURE 1. The image Ry (D) and Q for a« =1/2,¢ =4+ 3i,n = 2.
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