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Second Hankel determinant for the class of
Bazilevic functions
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Abstract. The objective of this paper is to obtain a sharp upper bound to the
second Hankel determinant H>(2) for the function f when it belongs to the class
of Bazilevic functions, using Toeplitz determinants. The result presented here
include two known results as their special cases.
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1. Introduction

Let A denote the class of functions f of the form
o0
f(z) :z+2anz" (1.1)
n=2

in the open unit disc £ = {z : |z|] < 1}. Let S be the subclass of A consisting of
univalent functions.

The Hankel determinant of f for ¢ > 1 and n > 1 was defined by Pommerenke
([15]) as

an o
Qp41 Qp42 - Gn4q
Hy(n) =| . A . (@ =1). (1.2)
Up4q—1 Qniq Up4-2q—2

This determinant has been considered by many authors in the literature. Noonan and
Thomas ([13]) studied about the second Hankel determinant of areally mean p-valent
functions. Ehrenborg ([5]) studied the Hankel determinant of exponential polynomials.
One can easily observe that the Fekete-Szego functional is Hs(1). Fekete-Szego then
further generalized the estimate |az — pa3| with p real and f € S. Ali (]2]) found
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sharp bounds for the first four coefficients and sharp estimate for the Fekete-Szego
functional |y3 — ty3|, where t is real, for the inverse function of f defined as

) =w+ > e
n=2

when it belongs to the class of strongly starlike functions of order a (0 < a < 1)

denoted by ST (). In this paper, we consider the Hankel determinant in the case of
q =2 and n = 2, known as the second Hankel determinant, given by

az as

HQ(Q): az a4

= agay — a3. (1.3)

Janteng, Halim and Darus ([8]) have considered the functional |azas — a3| and found
sharp upper bound for the function f in the subclass RT of S, consisting of functions
whose derivative has a positive real part studied by Mac Gregor ([11]). In their work,
they have shown that if f € RT then |asas — a3| < %. Janteng, Halim and Darus
([7]) also obtained the second Hankel determinant and sharp bounds for the familiar
subclasses of S, namely, starlike and convex functions denoted by ST and CV and
have shown that |agay —a| < 1 and |agay — a3| < % respectively. Similarly, the same
coefficient inequality was calculated for certain subclasses of analytic functions by
many authors ([1], [3], [9], [12], [18]).

Motivated by the results obtained by different authors in this direction men-
tioned above, in this paper, we seek an upper bound to the functional |asas — a3
for the function f when it belongs to the class of Bazilevic functions denoted by B,
(0 < < 1), defined as follows.

Definition 1.1. A function f(z) € A is said to be Bazilevic function, if it satisfies the
condition

"(z
Re {zl—vfif(v()z)} >0,Vz€E (1.4)
where the powers are meant for principal values. This class of functions was denoted by
B, studied by Ram Singh ([16]). It is observed that for v =0 and v = 1 respectively,
we get By = ST and By = RT.

Some preliminary Lemmas required for proving our result are as follows:

2. Preliminary results

Let P denote the class of functions consisting of p, such that
p(z) =1+ciz+c2® 4328 +... = 1+chz", (2.1)
n=1

which are regular in the open unit disc E and satisfy Rep(z) > 0 for any z € E. Here
p(z) is called Carathéodory function [4].

Lemma 2.1. ([14], [17]) If p € P, then |ck| < 2, for each k > 1 and the inequality is

. 1+
sharp for the function $=.
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Lemma 2.2. ([6]) The power series for p given in (2.1) converges in the open unit disc
E to a function in P if and only if the Toeplitz determinants

2 c1 Co Cn
C_1 2 C1 e Cp—1
D, =| . , , _ Clin=1,23....
Cn C_nt1 C_pi2 " 2

and c_y, = ¢, are all non-negative. These are strictly positive except for

p(2) = Z prpo(exp(ity)z),

k=1

pr > 0, ty real and ty # t;, for k # j, where po(z) = ifz ;in this case Dy > 0 for
n < (m—1) and D, =0 for n > m.

This necessary and sufficient condition found in ([6]) is due to Carathéodory and
Toeplitz. We may assume without restriction that ¢; > 0. On using Lemma 2.2, for
n = 2 and n = 3 respectively, we obtain

2 C1 Co
Dy=|2 2 ¢ |=[8+2Re{cies} — 2leaf? — dles]?] > 0,
cy ¢ 2
it is equivalent to
2cy = {c + x(4 — c2)}, for some z,|z| < 1. (2.2)
2 C1 C2 C3
and D3 = El 2 a o

Co ¢ 2
Gy G 7 2
Then D3 > 0 is equivalent to
|(des — derea +E3) (4 —c3) +c1(2c2 — c)?| < 2(4 — ¢3)? = 2|(2ca — )2 (2.3)
Simplifying the relations (2.2) and (2.3), we get
des = {3 +2c1(4— ) —ci(d—cD)x® +2(4— ) (1 — |z]?)z}, with 2] < 1. (2.4)

To obtain our result, we refer to the classical method devised by Libera and
Zlotkiewicz ([10]).

3. Main result

Theorem 3.1. If f(z) = z + Z apz" € By (0 <~ <1) then

n=2

2 2
gl < | =
lazas — a3] < {2+v}

and the inequality is sharp.
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Proof. Let f(z) = z + Zanz" € B,, by virtue of Definition 1.1, there exists an

n=2
analytic function p € P in the open unit disc E with p(0) = 1 and Re{p(z)} > 0 such
that
201 L) 6 ) = ) (3.1)
f1(2) ’ '

Replacing the values of f(z), f/(z) and p(z) with their equivalent series expressions
in (3.1), we have

o] 00 1-y o]
P {1+Znanz”_1} = {z—i—Zanz”} {1+chz”} . (3.2)
n=2 n=2 n=1

Using the binomial expansion on the right-hand side of (3.2) subject to the condition

oo
|Zanz"| <1—7,
n=2
upon simplification, we obtain

1+ 2a22 + 3az2? + 4a42> + ... = 1+ {c1 + (1 —y)az} 2 (3.3)

+ [CQ +(1—7) {cm + a3 + “;)agﬂ 22

1 —1-
+ {03 +(1—=7) {02a2 + craz +ag+ (—) {201(13 + agas + (6’”(15}}] B4 ...

Equating the coefficients of like powers of z, 22 and 23 respectively on both sides of
(3.3), after simplifying, we get

as = {a il'y); az = 4122+ {20+ 9%+ A =72 +7)ci }
1 2
U PR )BTy T2
F6(1-7)(1 4726 4 Nerea + (- DE NP -5y -9}, (34)

Substituting the values of ag, a3z and a4 from (3.4) in the second Hankel functional
lasas — aj| for the function f € B, which simplifies to

1

T R)PEFPE+)

—12(1+7)°B + )3 + (2 +7)°B +7)(v — Deil-
The above expression is equivalent to
1

121 +7)2(2+7)2(3+~

112(1 4+ 7)%(2 4+ 7)%cic3

|agay — a§|

|a2a4 — a§| = ) |d161(}3 + dgcg + d30411| R (35)

where
di =121 +79)%2+7)%  do= 121 +7)*(3+7);
ds=(2+7)?B+7)(y-1). (3.6)
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Substituting the values of ¢y and c3 from (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.5), we have

1. .
|dicies + doca + dgcﬂ =|dic1 X Z{c‘f +2¢1(4— Az —c1(4 — 2)a?

$2(4— )1~ [aP)z} +do x (e +ald — )Y +dac].
Using the facts that |z| < 1 and |za+yb| < |z||a| + |y||b], where z, y, a and b are real
numbers, after simplifying, we get
4|dycres + dacs + dgcﬂ < |(dy + dy + 4d3)ct 4 2dici (4 — ¢2)
+2(dy + do)c; (4 — )|z — {(d1 + da)c} + 2d1cy — 4da } (4 — c])|z[?). (3.7)
With the values of dy, dy and dsz from (3.6), we can write
di +da + 4ds = 4(v* + 69 + 1297 + 2y — 9);
dy =121+ 7)*(2+ )% di +dy = 12(1 +7)? (3.8)
and
(di +d2)ci +2dicy —ddy = 12(1+7)? {c] +2(2+7)%c1 +4(1+7)B+)}. (3.9)
Consider
{G+22+7)2a+41+7)B+7)}
= _{cl +(2+ 7)2}2 —2+)*+41+7)3+ 7)}

[ 2
— {ar+@2+7)2) - {\/74+873 + 2072 + 167+4} ]

= o1+ {@+)? + VAT 897 + 20y + 167 + 4|

x e+ {@+m)? = VAT + 87 2097 + 167 + 4} (3.10)

Since ¢1 € [0, 2], using the result (¢; +a)(c1 +b) > (¢1 — a)(c1 — b), where a,b > 0 on
the right-hand side of (3.10), after simplifying, we get

{d+22+7) % +401+7B+7)}
>{cf =224 7)1 +41+7)3+7)}. (3.11)
From the relations (3.9) and (3.11), we can write
—{(dy + d2)c +2dycy — 4da }
<-120+49)*{ci -2+’ +401+NB+7)}. (3.12)

Substituting the calculated values from (3.8) and (3.12) on the right-hand side of
(3.7), we have

’dlclcg + doc3 + dgcﬂ < |(y* + 693 + 1292 + 2y — 9)cf
+6(1+7)°(2+7)%c1(d—c]) + 6(1+ ) (4 — 7))
—3(1+)%{c} - 2(2+7)%c1 +41+7)(B+7)} 4 — c})|z[*].
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Choosing ¢; = ¢ € [0,2], applying triangle inequality and replacing |z| by u on the
right-hand side of the above inequality, we obtain
’dlclcg + doc2 + dgcﬂ < [(=y* = 693 + 1292 — 2y + 9)c?
+6(1+7)%(2+7)%c(4 =) +6(1+7)*c* (4 — )
+31+79)2{* =22 +7)2c+4(1L+NB+)} (4 — )]
= F(c,p), for 0 < p=lz| <1, (3.13)
where
F(e,p) = [(—7" = 67° +129° — 2y + 9)c!
+6(1+9)%(2+7)%c(4 = ¢*) +6(1+7)*c*(4 — )
+31+ ) { =22+ )’c+4(1+9)(B+7)} (4 — ). (3.14)
We next maximize the function F(c, u) on the closed region [0,2] x [0, 1].
Differentiating F(c, p) in (3.14) partially with respect to p, we get
oF
ou

For 0 < p < 1, for any fixed ¢ with 0 < ¢ < 2 and 0o < v < 1, from (3.15), we
observe that ‘g—i > 0. Therefore, F(c, ) is an increasing function of p and hence it

=6(1+7)%c®+ {22+ 7)%c+4(1+7)B+7)}ul x (4—c*). (3.15)

cannot have maximum value any point in the interior of the closed region [0, 2] x [0, 1].
Moreover, for fixed ¢ € [0, 2], we have

Jnax, F(e, 1) = F(e,1) = G(e). (3.16)

In view of (3.16), replacing p by 1 in (3.14), upon simplification, we obtain
G(c) = F(c,1) = =9(7* + 677 = 37 + 20)c* = 129(1 +7)*(4 +7)¢?
+48(1+7)*(3+ ), (3.17)

G'(c) = —4yc{(v* + 692 =3y +20)c® +6(1 +7)%(4 +7)} - (3.18)

From the expression (3.18), we observe that G'(c¢) < 0, for every ¢ € [0,2] and for
fixed v with 0 < < 1. Therefore, G(c¢) is a decreasing function of ¢ in the interval
[0,2], whose maximum value occurs at ¢ = 0 only. For ¢ = 0 in (3.17), the maximum
value of G(c) is given by

Graz = G(0) = 48(1 +7)*(3 4+ 7). (3.19)
From the expressions (3.13) and (3.19), we have
|dicies + dach + dsct| < 48(1+7)%(3 4 7). (3.20)
Simplifying the relations (3.5) and (3.20), we obtain

2 2
|CL2G4 - a§| S |:2—|—’)/:| . (321)
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Choosing ¢; = ¢ = 0 and selecting z = 1 in (2.2) and (2.4), we find that ¢z = 2 and
cs = 0. Substituting these values in (3.20), we observe that equality is attained which
shows that our result is sharp. For these values, we derive that

1+ 22

p(z)=1+ciz+cz® 432’ +..=14+222 422" +... = 12 (3.22)
Therefore, the extremal function in this case is
. ' 1+ 22
2! 7W=1+2z2+2z4+...:1_22. (3.23)
This completes the proof of our Theorem. 0

Remark 3.2. Choosing v = 0, from (3.21), we get |azas — a3| < 1, this inequality is
sharp and coincides with that of Janteng, Halim, Darus ([7]).

Remark 3.3. For the choice of vy = 1 in (3.21), we obtain |azas —a3| < § and is sharp,
coincides with the result of Janteng, Halim, Darus ([8]) .
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