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Pascu-type p-valent functions associated with
the convolution structure

Birgül Öner and Sevtap Sümer Eker

Abstract. Making use of convolution structure, we introduce a new class of p-
valent functions. Among the results presented in this paper include the coefficient
bounds, distortion inequalities, extreme points and integral means inequalities for
this generalized class of functions are discussed.
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1. Introduction

Let Ap denote the class of functions of the form

f (z) = zp +

∞∑
k=2p+1

akz
k. (p ∈ N = {1, 2, 3, ...}) (1.1)

which are analytic and p-valent in the open unit disk U = {z : z ∈ C and |z| < 1}.
A function f ∈ Ap is β-Pascu convex of order α if

1

p
Re

{
(1− β)zf ′(z) + β

p z (zf ′(z))
′

(1− β)f(z) + β
p zf

′(z)

}
> α (0 ≤ β ≤ 1, 0 ≤ α < 1) .

In the other words (1 − β)f(z) + β
p zf

′(z) is in f ∈ S∗p the class of p-valent starlike

functions (for details [5], see also [1], [3]).

Given two functions f, g ∈ Ap, where f is given by (1.1) and g is given by

g (z) = zp +

∞∑
k=2p+1

bkz
k (p ∈ N) ,
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the Hadamard product (or convolution) f ∗ g is defined (as usual) by

(f ∗ g) (z) = zp +

∞∑
k=2p+1

akbkz
k = (g ∗ f)(z) , z ∈ U. (1.2)

For two functions f and g, analytic in U, we say that the function f(z) is sub-
ordinate to g(z) in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1
such that

f(z) = g(w(z)) (z ∈ U).

In particular, if the function g is univalent in U, the above subordination is
equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

See also Duren [2].
On the other hand, Sălăgean [6] introduced the following operator which is pop-

ularly known as the Sălăgean derivative operator :

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

and, in general,

Dnf(z) = D(Dn−1f(z)) (n ∈ N0 = N ∪ {0}) .

We easily find from (1.1) that

Dnf (z) = pnzp +

∞∑
k=2p+1

knakz
k (f ∈ Ap ; n ∈ N0).

We denote by Tp the subclass of Ap consisting of functions of the form

f (z) = zp −
∞∑

k=2p+1

akz
k, (ak ≥ 0, p ∈ N) (1.3)

which are p-valent in U.
For a given function g ∈ Ap defined by

g (z) = zp +

∞∑
k=2p+1

bkz
k (bk > 0, p ∈ N) , (1.4)

we introduce here a new class AS∗g(n, p, α, β) of functions belonging to the subclass of
Tp which consists of functions f(z) of the form (1.3) satisfying the following inequality:

1

p
Re

{
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)

(1− β)Dn(f ∗ g)(z) + β
pD

n+1(f ∗ g)(z)

}
> α (1.5)

(0 ≤ α < 1, 0 ≤ β ≤ 1, n, p ∈ N)
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In this paper, we obtain the coefficient inequalities, distortion theorems as well
as integral means inequalities for functions in the class AS∗g(n, p, α, β).

We first prove a necessary and sufficient condition for functions to be in
AS∗g(n, p, α, β) in the following:

2. Coefficient inequalities

Theorem 2.1. A function f(z) given by (1.3) is in AS∗g(n, p, α, β) if and only if for
0 ≤ α < 1, 0 ≤ β ≤ 1, n, p ∈ N,

∞∑
k=2p+1

[(k − αp)(p− βp+ βk)] knakbk ≤ pn+2(1− α). (2.1)

Proof. Assume that f ∈ AS∗g(n, p, α, β) . Then, in view of (1.3) to (1.5), we have

1

p
Re

{
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)

(1− β)Dn(f ∗ g)(z) + β
pD

n+1(f ∗ g)(z)

}

=
1

p
Re


pn+1 −

∞∑
k=2p+1

[
(1− β +

β

p
k)

]
kn+1akbkz

k−p

pn −
∞∑

k=2p+1

[
(1− β +

β

p
k)

]
knakbkz

k−p

 > α (z ∈ U).

If we choose z to be real and let r → 1−, the last inequality leads us to desired
assertion (2.1) of Theorem 2.1.

Conversely, assume that (2.1) holds. For f(z) ∈ Ap, let us define the function
F (z) by

F (z) =
1

p

(1− β)Dn+1(f ∗ g)(z) + β
pD

n+2(f ∗ g)(z)

(1− β)Dn(f ∗ g)(z) + β
pD

n+1(f ∗ g)(z)
− α

It suffices to show that ∣∣∣∣F (z)− 1

F (z) + 1

∣∣∣∣ < 1 (z ∈ U).

We note that ∣∣∣∣F (z)− 1

F (z) + 1

∣∣∣∣
=

∣∣∣∣∣∣
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)− p(α+ 1)

[
(1− β)Dn(f ∗ g)(z) + β

pD
n+1(f ∗ g)(z)

]
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)− p(α− 1)

[
(1− β)Dn(f ∗ g)(z) + β

pD
n+1(f ∗ g)(z)

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
−αpn+1 −

∞∑
k=2p+1

[
(k − αp− p)(1− β +

β

p
k)

]
knakbkz

k−p

(2− α)pn+1 −
∞∑

k=2p+1

[
(k − αp+ p)(1− β +

β

p
k)

]
knakbkz

k−p

∣∣∣∣∣∣∣∣∣∣
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≤

αpn+2 +

∞∑
k=2p+1

[(k − αp− p)(p− βp+ βk)] knakbk

(2− α)pn+2 −
∞∑

k=2p+1

[(k − αp+ p)(p− βp+ βk)] knakbk

The last expression is bounded above by 1, if

αpn+2 +

∞∑
k=2p+1

[(k − αp− p)(p− βp+ βk)] knakbk

≤ (2− α)pn+2 −
∞∑

k=2p+1

[(k − αp+ p)(p− βp+ βk)] knakbk

which is equivalent to our condition (2.1). This completes the proof of our theorem. �

Corollary 2.2. Let f(z) given by (1.3). If f ∈ AS∗g(n, p, α, β), then

ak ≤
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
(2.2)

with equality for functions of the form

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk

Proof. If f ∈ AS∗g(n, p, α, β), then by making use of (2.1), we obtain

[(k − αp)(p− βp+ βk)] knakbk ≤
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] knakbk

≤ pn+2(1− α)

or

ak ≤
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
.

Clearly for

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk,

we have

ak =
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
. �
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3. Distortion inequalities

In this section, we shall prove distortion theorems for functions belonging to the
class AS∗g(n, p, α, β).

Theorem 3.1. Let the function f(z) of the form (1.3) be in the class AS∗g(n, p, α, β).
Then for |z| = r < 1, we have

|f(z)| ≥ rp − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1 (3.1)

and

|f(z)| ≤ rp +
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1, (3.2)

provided bk ≥ b2p+1 (k ≥ 2p+ 1). The result is sharp with equality for

f(z) = zp − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
z2p+1.

at z = r and z = re
i(2m+1)π
p+1 , m ∈ Z.

Proof. Since f(z) ∈ AS∗g(n, p, α, β), we apply Theorem 2.1, we obtain

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1

∞∑
k=2p+1

ak

≤
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] knakbk ≤ pn+2(1− α).

Thus, we obtain

∞∑
k=2p+1

ak ≤
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
. (3.3)

From (1.3) and (3.3), we have

|f(z)| ≤ |z|p+ |z|2p+1
∞∑

k=2p+1

ak ≤ rp+
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1

and

|f(z)| ≥ |z|p−|z|2p+1
∞∑

k=2p+1

ak ≥ rp−
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1.

This completes the proof of Theorem 3.1. �

Theorem 3.2. Let the function f(z) of the form (1.3) be in the class AS∗g(n, p, α, β).
Then for |z| = r < 1, we have

|f ′(z)| ≥ prp−1 − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
r2p (3.4)
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and

|f ′(z)| ≤ prp +
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
r2p, (3.5)

provided bk ≥ b2p+1 (k ≥ 2p+ 1). The result is sharp with equality for

f(z) = zp − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
z2p

at z = r and z = re
i(2m+1)π

p , m ∈ Z.

Proof. From Theorem 2.1 and (3.3), we have
∞∑

k=2p+1

kak ≤
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
.

and the remaining part of the proof is similar to the proof of Theorem 3.1. �

4. Extreme points

Theorem 4.1. Let fp(z) = zp and

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk

(bk > 0, 0 ≤ α < 1, 0 ≤ β ≤ 1, n, p ∈ N, k = 2p+ 1, 2p+ 2, ...) .

Then f(z) ∈ AS∗g(n, p, α, β) if and only if it can be expressed in the following form:

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z),

where λp ≥ 0, λk ≥ 0 and λp +

∞∑
k=2p+1

λk = 1.

Proof. Suppose that

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z) = zp −
∞∑

k=2p+1

λk
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk.

Then from Theorem 2.1, we have
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] knλk
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
bk

=

∞∑
k=2p+1

λkp
n+2(1− α) = pn+2(1− α)(1− λp) ≤ pn+2(1− α)

Thus, in view of Theorem 2.1, we find that f(z) ∈ AS∗g(n, p, α, β).
Conversely, suppose that f(z) ∈ AS∗g(n, p, α, β). Then, since

ak ≤
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
(p ∈ N),
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we may set

λk =
[(k − αp)(p− βp+ βk)] knbk

pn+2(1− α)
ak (p ∈ N)

and

λp = 1−
∞∑

k=2p+1

λk.

Thus, clearly, we have

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z).

This completes the proof of theorem. �

Corollary 4.2. The extreme points of the class AS∗g(n, p, α, β) are given by

fp(z) = zp

and

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk, (k ≥ 2p+ 1, p ∈ N) . (4.1)

Theorem 4.3. The class AS∗g(n, p, α, β) is a convex set.

Proof. Suppose that each of the functions fi(z), (i = 1, 2) given by

fi(z) = zp −
∞∑

k=2p+1

ak,iz
k, (ak,i ≥ 0)

is in the class AS∗g(n, p, α, β). It is sufficient to show that the function g(z) defined
by

g(z) = ηf1(z) + (1− η)f2(z), (0 ≤ η < 1)

is also in the class AS∗g(n, p, α, β). Since

g(z) = η

zp − ∞∑
k=2p+1

ak,1z
k

+ (1− η)

zp − ∞∑
k=2p+1

ak,2z
k


= zp −

∞∑
k=2p+1

[ηak,1 + (1− η)ak,2] zk

with the aid of Theorem 2.1, we have
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] kn [ηak,1 + (1− η)ak,2] bk

= η

∞∑
k=2p+1

[(k − αp)(p− βp+ βk)] knak,1bk

+(1− η)

∞∑
k=2p+1

[(k − αp)(p− βp+ βk)] knak,2bk
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≤ ηpn+2(1− α) + (1− η)pn+2(1− α) = pn+2(1− α). �

5. Integral means inequalities

In 1925, Littlewood proved the following subordination theorem.

Theorem 5.1. (Littlewood [4]) If f and g are analytic in U with f ≺ g, then for µ > 0
and z = reiθ(0 < r < 1) ∫ 2π

0

|f(z)|µ dθ 5
∫ 2π

0

|g (z)|µ dθ.

We will make use of Theorem 5.1 to prove

Theorem 5.2. Let f(z) ∈ AS∗g(n, p, α, β) and fk(z) is defined by (4.1). If there exists
an analytic function w(z) given by

w(z)k−p =
[(k − αp)(p− βp+ βk)] knbk

pn+2(1− α)

∞∑
k=2p+1

akz
k−p,

then for z = reiθ and 0 < r < 1,∫ 2π

0

∣∣f(reiθ)
∣∣µ dθ ≤ ∫ 2π

0

∣∣fk(reiθ)
∣∣µ dθ (µ > 0).

Proof. We must show that∫ 2π

0

∣∣∣∣∣∣1−
∞∑

k=2p+1

akz
k−p

∣∣∣∣∣∣
µ

dθ ≤
∫ 2π

0

∣∣∣∣1− pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk−p

∣∣∣∣µ dθ.
By applying Littlewood’s subordination theorem, it would suffice to show that

1−
∞∑

k=2p+1

akz
k−p ≺ 1− pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk−p.

By setting

1−
∞∑

k=2p+1

akz
k−p = 1− pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
[w(z)]

k−p
,

we find that

[w(z)]
k−p

=
[(k − αp)(p− βp+ βk)] knbk

pn+2(1− α)

∞∑
k=2p+1

akz
k−p

which readily yields w(0) = 0.
Furthermore, using (2.1), we obtain

|w(z)|k−p ≤

∣∣∣∣∣∣ [(k − αp)(p− βp+ βk)] knbk
pn+2(1− α)

∞∑
k=2p+1

akz
k−p

∣∣∣∣∣∣
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≤ [(k − αp)(p− βp+ βk)] knbk
pn+2(1− α)

∞∑
k=2p+1

ak |z|k−p ≤ |z|k−p < 1.

This completes the proof of the theorem. �
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