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Extension of Karamata inequality for
generalized inverse trigonometric functions

Árpád Baricz and Tibor K. Pogány

Abstract. Discussing Ramanujan’s Question 294, Karamata established the in-
equality

log x

x− 1
≤ 1 + 3

√
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x
, (x > 0, x 6= 1) , (*)

which is the cornerstone of this paper. We generalize the above inequality trans-
forming into terms of arctan and artanh. Moreover, we expand the established
result to the class of generalized inverse p–trigonometric arctanp and to hyper-
bolic artanhp functions.
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1. Introduction

The monumental Analytical Inequalities monograph by Mitrinović [6] contains
several results by the famous Serbian mathematician Jovan Karamata. The first
(Serbo–Croatian) edition’s page 267 presents two Karamata’s inequalities [6, 3.6.15.,
3.6.16.]
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which hold for all x ∈ R+ \ {1}. Both estimates Karamata [4] applied in showing the
monotone decreasing behavior of a sequence occurring in the famous Ramanujan’s

Question 294 [7, p. 128] Show that [if x is a positive integer ]
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where θ lies between 1
3 and 1

2 .
For further information about Question 294 consult [2, p. 46 et seq.], while sub-

sequent results concerning (1.1) belong also to Simić [8], see also the related references
therein.

Being
√
x ≤ (x+ 3

√
x)(1 + 3

√
x)−1, the second Karamata’s upper bound is more

accurate on the whole range of their validity, therefore we concentrate to (∗). In
Mitrinović’s monograph the proofs of inequalities (1.1) belong to B. Mesihović; we
present the sketch of the proof’s idea for the cubic–root–bound. By putting

(1 + x)3(1− x)−3 7→ x,

the radicals disappear in (∗), and it transforms into

3

2x
log
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− x2 + 3

1− x4
< 0, (0 < |x| < 1) . (1.2)

Expanding this expression into a power series, we get
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which finishes in an elegant way the proof.

However, summing up K
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such that gives the new form of (1.2):
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which simplifies into
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, (0 < |x| < 1) , (1.3)
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Here by using the shifted factorial

(a)n = a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)

for a > 0, the power series
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,

stands for the zero-balanced Gaussian hypergeometric series, which converges for
|x| < 1.
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It is worth to mention that as x→ 0, we have the strong asymptotic relation

K
(2)
3,1(4;x) =

12

5
x4 +O(x6) , (1.4)

compare [6, p. 267].

In the sequel our aim is to extend Mesihović’s method to general weighted sum
of zero–balanced Gaussian hypergeometric functions getting appropriate extensions
of Karamata’s inequality (∗).

2. Extending K
(2)
3,1(4;x)

In this section we are going to investigate the sum

K(γ)
p,q (µ;x) := p
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)
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∑
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(
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)
xµk+γ ,

for the widest possible range of the variable x and its representation in a form of a
weighted sum of two zero-balanced hypergeometric terms.

Theorem 2.1. For all p, q, µ > 0, γ ∈ R and 0 < x < 1 we have
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Also, there holds
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Proof. The following conclusion–chain lead us to the asserted expression (2.1) for

K
(γ)
p,q (µ;x), assuming that a, b > 0 and 0 < x < 1 (which enables the convergence of

the following power series):
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where A := b µ−1. Thus, for p, q > 0, because

K(γ)
p,q (µ;x) = pLq(µ;x) + q xγ Lp(µ;x),

relation (2.1) is proved. Finally, since we have K
(γ)
p,q (µ;x) > 0, we deduce the inequality

(2.2) and this completes the proof. �
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Remark 2.2. For even positive integer values of µ and γ, the results achieved in
Theorem 2.1 one extends to all x ∈ (−1, 1). Moreover, it is worth to mention that if
p, q, µ < 0, x ∈ (0, 1) and γ ∈ R, then we get that

K(γ)
p,q (µ;x) = p

∑
k≥0

k

k + q/µ
xµk + q

∑
k≥0

k

k + p/µ
xµk+γ < 0,

that is, the inequality (2.2) is reversed.

The generalized trigonometric and generalized inverse trigonometric functions
were introduced by Lindqvist [5]. For p > 0 the inverse p–trigonometric and p–
hyperbolic functions are defined as special zero-balanced hypergeometric series, that
is,

arctanp(x) =

∫ x

0

(1 + tp)−1 dt = x 2F1

[
1, 1

p
1
p + 1

;−xp
]
,

artanhp(x) =

∫ x

0

(1− tp)−1 dt = x 2F1

[
1, 1

p
1
p + 1

;xp
]
.

Note that these functions were investigated by many authors in the recent years,
see for example [1, 3] and the references therein. The following result is a variant of
Theorem 2.1 in terms of generalized inverse trigonometric functions.

Theorem 2.3. For all p, q, µ > 0, γ ∈ R and x ∈ (0, 1) we have

px−q artanhµ
q

(xq) + qxγ−p artanhµ
p

(xp) <
p+ qxγ

1− xµ
. (2.3)

Also for all p > 0 and x ∈ (0, 1) it follows

artanhp(x) <
x

1− xp
. (2.4)

Moreover, we have the asymptotic relation as x→ 0
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q
(xq)− q
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p
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=
p µ
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xµ +O
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)
. (2.5)

Proof. Transforming
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[
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p
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]

= 2F1

[
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µ/p
1
µ/p + 1

; (xp)
µ
p

]
,

by means of (2.2) we deduce (2.3). Now, taking p = q in (2.3) and then substituting
x 7→ x1/p, µ = p2, we get (2.4). Finally, expanding (2.1), we have for x→ 0:

K(γ)
p,q (µ;x) =

p µ

q + µ
xµ +O

(
xµ+min(γ,µ)

)
.

Since K
(γ)
p,q (µ;x) coincides with the left hand side expression in (2.5), the assertion is

proved. �
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Now, in establishing the companion inequality associated with (1.3), we study
the expression

K
(2)

3,1(4;x) := 3
∑
k≥0

(
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)
x4k −
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To establish the positivity of K
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3,1(4;x) for all 0 < |x| < 1, it is enough to observe
that
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∑
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Thus, rewriting K
(2)

3,1(4;x) in terms of hypergeometric series, and then in inverse
trigonometric and hyperbolic terms, we conclude that

K
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3− x2

1− x4
− 3

x
arctanx .

Having in mind that K
(2)

3,1(4;x) > 0, we get

3

x
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1− x4
,

(
0 < |x| < 1

)
.

Also, the following asymptotic behavior holds true

K
(2)

3,1(4;x) =
12

5
x4 +O(x6), (x→ 0)

which coincides with the one in (1.4).
Now, the counterpart result of Theorem 2.1 reads as follows.

Theorem 2.4. For all p, q, µ, γ > 0 such that p ≥ q and for all 0 < x < 1 we have

px−q artanhµ
q

(xq)− qxγ−p artanhµ
p

(xp) <
p− qxγ

1− xµ
. (2.6)

Proof. Consider the linear combination of power series

K
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∑
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(
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)
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∑
k≥0

(
1− p
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)
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For all x ∈ (0, 1) and γ > 0 it follows

K
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p,q (µ;x) > µ
∑
k≥0

(
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µk + q
− qk

µk + p

)
xµk

= µ(p− q)
∑
k≥0

k(µk + p+ q)

(µk + q)(µk + p)
xµk ;

the last estimate is non–negative for p ≥ q. Transforming the constituting sums of

K
(γ)

p,q (µ;x) into hypergeometric expressions, and following the lines of the proof of
Theorem 2.3, we arrive at the desired inequality (2.6). �
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We mention that the expression Lb(µ;x) can be expressed also in another way as

Lb(µ;x) =
∑
k≥0

µk

µk + b
xµk = x

∑
k≥0

µk

µk + b
xµk−1 =

x

µ

d

dx

∑
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=
x

µ

d
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µ ) Γ(k + 1)

(k + b
µ )Γ(k + b

µ )

xµk

k!

=
xΓ( bµ )

µΓ(1 + b
µ )

d

dx

∑
k≥0

( bµ )k (1)k

(1 + b
µ )k

xµk

k!

=
x

b

d

dx
2F1

[
b
µ , 1
b
µ + 1

;xµ

]
=

µ

b+ µ
xµ 2F1

[
b
µ + 1, 2
b
µ + 2

;xµ

]
.

However, by this expression we cannot reach any rational upper bound for K
(γ)
p,q (µ;x).
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