Stud. Univ. Babes-Bolyai Math. 60(2015), No. 3, 367-377

On some generalized integral inequalities for
p-convex functions

Mehmet Zeki Sarikaya, Meltem Biiyiikeken and Mehmet Eyiip Kiris

Abstract. The main goal of the paper is to state and prove some new general
inequalities for p-convex function.

Mathematics Subject Classification (2010): 26D15, 41A55, 26D10.

Keywords: Hermite-Hadamard’s inequality, convex function, p-convex function,
Holder’s inequality.

1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very important in the literature (see, e.g.,[4], [8, p.137]). These inequalities state
that if f: I — R is a convex function on the interval I of real numbers and a,b € T

with a < b, then
a+b b a b
f< ;r ) Sbia/a f(x)dxgw_ (1.1)

The inequality (1.1) has evoked the interest of many mathematicians. Especially in the
last three decades numerous generalizations, variants and extensions of this inequality
have been obtained, to mention a few, see ([3]-[15]) and the references cited therein.

Let us consider a function ¢ : [a,b] — [a,b] where [a,b] C R. Youness have
defined the @-convex functions in [16], but we work here with the improved definition,
according to [1]:

Definition 1.1. A function f : [a,b] = R is said to be p- convex on [a,b] if for every
two points x,y € [a,b] and t € [0,1] the following inequality holds:
Flto(@) + (1 = t)p(y) < tf(p(z) + (1 =) f((y)-

Obviously, if function ¢ is the identity, then the classical convexity is obtained
from the previous definition. Many properties of the ¢-convex functions can be found,
for instance, in [1], [2], [16], [17], [18].
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Moreover in [2], Cristescu have presented a version Hermite-Hadamard type
inequality for the ¢-convex functions as follows:

Theorem 1.2. If a function f : [a,b] — R is p- convex for the continuous function
@ : [a,b] = [a,b], then

w(b)
o(a) + o(b) 1 flp(a)) + fle(d))
(%5 < st (/) Jlode = = 2

In this article, we will consider two parts which within the first section we give
some new general inequalities for ¢-convex function. In the second part, using func-
tions whose derivatives absolute values are p-convex function, we obtained new in-
equalities related to the left and the right sides of Hermite-Hadamard inequality are
given with (2.1).

2. Hermite-Hadamard type inequality for ¢-convex function

Theorem 2.1. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f : T CR — R be a p-convex function on I = [a,b], then we
have
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Proof. By definition of the p-convex function

p(e@rety (e em),

b0 @ e ®) +ip() + (=10 )
Jo : )

1

< 5/ [F (L =1) ¢ (a) +tp (b)) + [ (t (a) + (1 = 1) ¢ (b))] dt.
0

Using the change of the variable in last integrals, we get
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By similar way, we have

1 @(b) 1
s L, (et = [ r-new e

< / (1= 1) (¢ (@) + t1 (o (b)) dt

_ f(e(a)) ; fle(®) (2.3)

From (2.2) and (2.3), it is obtained desired result. O

Remark 2.2. If we choose ¢ (x) = = for all € [a,b] in Theorem 2.1, the (2.1)
inequality reduce to the inequality (1.1).

Theorem 2.3. Let J be an interval a,b € J with a < b and ¢ : J — R a con-
tinuous increasing function. Let f be a p-convex function on I = [a,b] and let

w : [p(a),(b)] = R be nonnegative, integrable and symmetric about M. Then

@ +e®)) [ o
(HEE) 7w maee < [ e @ute @)

< LI [ ) (). (2.4)
2 ¢(a)

Proof. Since f be a ¢-convex function and w : [¢(a), ¢(b)] — R be nonnegative,

integrable and symmetric about M, then we obtain

r(FeE) [ ((:) wle@)dp@) = [ ((j) (252 ) wie @) oo

©(b)
< — pla)+ e —plx)) + plx))w(p(r @ (x
<3 U@+ 0 0)— e+ S (e (o @) do @
@(b)
_ / TG @) @
@(b) @(b)
=;/( | [f(w(a)+w(b)—w(x))]w(so(w))dso(fEHQ/( S e w o) de @)

a »(b)
A ));f(w(b))[D w (¢ (z)) dip ()

which completes the proof of Theorem 2.3. O
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Corollary 2.4. Under the same assumptions of Theorem 2.3 with p(x) = x for all
x € [a,b], we have

f(a+b)/ dx</ [ (= );f(b)/abw(m)dx.

Theorem 2.5. Let J be an interval a,b € J with a < b and ¢ : J — R a continuous
increasing function. Let f,w : I CR — R be a @-conver and nonnegative function on

I =la,b] . Then, for allt € [0,1], we have

of (<ﬂ(a) —;w(b)) w (w(a)gw(b)) <

©(b)
(b)iso(a) /( ) f(p(@) w(p(z)) dp(x)

< SM(p(e), o) + 3N (ole) o) (25)

= S

where

M (p(a), (b)) = f(pla)) w(p(a) + f (p(b) w (p(b))
N (p(a), ¢ (b)) = f(p(a)) w (@) + [ (p(b) w (p(a)) .

Proof. Since f and w be p-convex functions, then we have

f<90(a);w(@)w(@(a);w(b)):f(tw(a)+(1—t)w(b)-;(l—t)tﬂ(a)%w(b))

w (tw(a)+(1—t)so(b);r(l—t)w(a)+t<p(b)>

[f (e (a) + (1 =) () + F (1 = 1) (a) + tp (b))]

[w(tep (a) + (1 =) v (b)) +w ((1 1) p(a) +tp (b))]

+ (824 (1= 0) [F(pl@)w(p®) + f®)uwlp@)]] .

Integrating with respect to on [0, 1], we get

s (w(a);@(b)) w (w(a)éﬂp(b))

©(b)
< HM / f(so(x»w(so(x))dsom]

1

% [éM (p(a), ¢(B)) + N (p(a), w(b))}

which completes the proof of Theorem 2.5. O
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Remark 2.6. If we choose ¢ (z) = z for all « € [a,b] in Theorem 2.5, the inequality
(2.5) reduce to the inequality

2f(“+b) (“;b)_ba/f dx<6M(ab)+3N(ab)

which is proved by Cristescu in [2].

Theorem 2.7. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f,w : I CR — R be a p-conver on and nonnegative function

b
on I =la,b]. If w is symmetric about M, then, for allt € [0, 1] ,we have

1 »(b) 1 1
o L, T ) de @) < EM (2(e) o) + 5N (ple) )

where M (p(a), ¢(b)) and N (¢(a), o(b)) are given by (2.6).
p(a) + ¢(b)
2

Proof. Since w is symmetric about ,and f, w be p-convex functions, then

we have

»(b)
e / @ @) d @

»(b)
_ ;/ F o @) w (e (@) + () — ¢ (2) do (2)
@) Jop(a)

= /f(tso (@) + (1 =) ¢ (0))w((1 — 1) ¢ (a) + tp (b))dt
0

[t (@ (a)) + (L =1) F(e (DA = t) w(p (a)) + tw(p (b))] di

IN
S—_ _

= /{t(l — 1) [f(p(a))w(p(a)) + f (b)) w(p(b))]
0
+ 2 f(p(a)w(p®) + (1 = )* f(p(0)w(p(a) } dt

1 1
= M (p(0) 9(0) + 3N ((a), o(0)
This completes the proof. O

Remark 2.8. If we choose ¢ (z) = z for all « € [a,b] in Theorem 2.7, the inequality
(2.5) reduce to the inequality

1
b—a/f dm<6M(ab)+3N(ab)
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which is proved by Cristescu in [2].

3. The left and right sides of Hermite-Hadamard type inequality

In order to prove our results, we need the following lemma (see, [11]):

Lemma 3.1. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f: I CR — R be a differantiable function on I° (the interior
I). If f" € L1 [p(a), o(b)] for p(a),p(b) € I, then the following equality holds:

| o) o(a) + ¢ (D)
o / N f(@(x))dw(x)—f(Q ) (3.1)

where

p@):{ t, teo,3)

t—1, te[3,1].

Proof. A simple proof of the equality can be done by performing integration by
parts. O

Let us begin with the following Theorem.

Theorem 3.2. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f : I C R — R be a differentiable function on I° (the interior
I) and ' € Ly [p(a), o(b)] for p(a),p(d) € I. If |f'| is the v- convex on [a,b], then
the following inequality holds:

L e o (a) + 0 (b)
@(b)_w(a)/ﬂa)f(w(x))dso(l’)f( ! )|

(3.2)

< LOZL@ @)+ I o).

Proof. The proof of this Theorem is done with a similar method of proof Noor et al.
in [11]. O

Remark 3.3. If we take ¢(z) = x for all z € [a,b], then inequality (3.2) coincide with
the left sides of Hermite-Hadamard inequality proved by Kirmanci in [10].

Theorem 3.4. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f : I C R — R be a differentiable function on I° (the interior
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I) and f" € Ly [p(a), o(b)] for (a),o(b) € I. If |f'|* is the o- convex on [a,b], ¢ > 1,
then the following inequalities hold:

1 e p(a) +(b)
@(b)_w(a)/w(a)f(w(w))dso(w)—f< ! )‘

(g () — g(a)) [(If’ (¢ (@) +3]f'(¢ (W);
Ap+1)7 8

s (3 e <a>>|q8+ 1F/(p (W) 1 (3.3)

) L1 o @)+ 17 (e ).
where % 4+ % =1

Proof. From Lemma 3.1 , using Hélder’s inequality and the op-convexity of |f’|?, we

find
1 e p(a) + o (b)
M@()L(a)f<w<x>>dw<x>—f( ! )‘

W{(/ﬂ’dt) (/f (t (@) + (1 - 1) (b))th)z
( (11 )(/f (t (a) + (1 - ) <b>>th)é}
{( [t1£ (o — 1)1/ (>>]dt>é
+( [ ’(@(a))“r(lt)f’(b)q]dt);}
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Let a1 = |f' (a)|?, b1 =3|f'(b)|?, a2z = 3|f" (a)|?, ba = |f(b)|?. Here , 0 < % <1 for
q > 1. Using the fact that,

n n n

Z(ak+bk)s < Zaz+2bz

k=1 k=1 k=1

For (0 <s<1),a1,a2,...,an >0, by,ba,...,b, > 0, we obtain

»(b) a
o= /. f(so(ar))dso(x)—f(*”()”(b))‘
(

@ (a) 2

SM(S) (17 (o @)+ 3% 172 ®)]) + (37 1 (e @) + 1 (e o)1)
_ %M (;) [(1+35) 1F (0 @)l + 17" (0 )]

IN

e ()= (@) (1T 0
e (5) 07 @ 15 e o),

This completes the proof. O

Remark 3.5. If we thake p(z) = = for all x € [a,b], then inequality (3.3) coincide
with the left sides of Hermite-Hadamard inequality proved by Kirmanci in [10].

Lemma 3.6. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f : I CR — R be a differantiable function on I° (the interior
I). If f' € Ly [p(a), p(b)] for p(a),p(b) € I, then the following equality holds:

©(b)
fp(a) + f(p(0) 1 et
2 SO (/) Flo)de@) — (34)

Proof. A simple proof of the equality can be done by performing integration by parts.
O

Let us begin with the following Theorem.

Theorem 3.7. Let J be an interval a,b € J with a < b and ¢ : J = R a continuous
increasing function. Let f: I CR — R be a differantiable function on I° (the interior
I) and ' € L1 [p(a), p(b)] for p(a),o(b) € I. If |f'| is the - convex on [a,b] , then
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the following inequaliy holds:

»(b)
Fe@) + o) 1
it el RACCILECI BNCE

»(a)

< ) —pla) (If’(w(b)) + If’(w(a))|>
< 1 5 :

Proof. From Lemma 3.6 and by using ¢—convexity function of |f’|, we have

@ (b)
f(p(a)) + f (#(b) 1
: - o | e

v(a)

IN

=D [t 1115 (190 + (1~ 0 ola)
0

IN

M / 126 = 1/ [t |/ (0(b))] + (1 — £) | £ ((a))[] dt
0

_ #(0) = () [If’(w(b)) + 1 (¢(a))]
2 4

which completes the proof. O

Remark 3.8. If we thake p(x) = z for all z € [a, b], then inequality (3.5) coincide with
the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal in

[5]-

Theorem 3.9. Let J be an interval a,b € J with a <b and ¢ : J — R a continuous
increasing function. Let f: I CR — R be a differantiable function on I° (the interior
I) and " € Li[p(a), p(b)] for p(a),o(b) € I. If |f'|? is the p- convex on [a,b] ,
q > 1, then the following inequaliy holds:

»(b)
fpla)) + f(p(®) _ 1 et
Z SR (/) Fle)de@)|  (36)
(B) ~wla) (1 NP (1 e®) + 1 (@@l
< ¥ 2@ (p+1) ( @ : © )
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Proof. From Lemma 3.6 and by using Holder’s integral inequality, we have

»(b)
Flola) +f o) 1 ot
! e (/) 7 (o) dp(a)

IA

o020 ([ ypa
0

17 wott) + (1= ) pt@)

Since |f’|? is ¢—convex on [a, b] , we get

»(b)
[ (p(a)) + [ (p(b) 1 - .
: e (/) 7 (o) dp(a)
b) — v(a » / , q '
< AP (L) O/tlf £ 1) IF (pla)|] de
which completes the proof. O

Remark 3.10. If we thake ¢(x) = z for all x € [a,b], then inequality (3.6) coincide
with the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal
in [5].
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