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Hermite-Hadamard-Fejér type inequalities
for convex functions via fractional integrals
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Abstract. In this paper, firstly we have established Hermite-Hadamard-Fejér in-
equality for fractional integrals. Secondly, an integral identity and some Hermite-
Hadamard-Fejér type integral inequalities for the fractional integrals have been
obtained. The some results presented here would provide extensions of those given
in earlier works.
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1. Introduction

Let f: I C R — R be a convex function defined on the interval I of real numbers
and a,b € I with a < b. The inequality

f(a;b>§

is well known in the literature as Hermite-Hadamard’s inequality [4].

The most well-known inequalities related to the integral mean of a convex func-
tion f are the Hermite Hadamard inequalities or its weighted versions, the so-called
Hermite-Hadamard-Fejér inequalities.

In [3], Fejér established the following Fejér inequality which is the weighted
generalization of Hermite-Hadamard inequality (1.1):

fla) + f(b)
= 2

(1.1)

Theorem 1.1. Let f : [a,b] = R be convex function. Then the inequality

f<“+b)/ dx</ fla f(a);rf(b)/abg(:c)dz (1.2)

holds, where g : [a,b] = R is nonnegative,integrable and symmetric to (a + b)/2.
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For some results which generalize, improve, and extend the inequalities (1.1) and
(1.2) see [1, 5, 6, 7, 12, 16].

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

Definition 1.2. Let f € L{a,b]. The Riemann-Liouville integrals J&, f and JZ f of
order o > 0 with a > 0 are defined by

I 1) =1 | (@0 f(@)dt, > a
and
b
Je f(z) = ﬁ/ (t—2)* L f()dt, = < b

respectively, where I'(«) is the Gamma function defined by
I(a) = / e dt and O, f(z) = JO_f(2) = f(2).
0

Because of the wide application of Hermite-Hadamard type inequalities and
fractional integrals, many researchers extend their studies to Hermite-Hadamard type
inequalities involving fractional integrals not limited to integer integrals. Recently,
more and more Hermite-Hadamard inequalities involving fractional integrals have
been obtained for different classes of functions; see [2, 8, 9, 10, 14, 15, 17, 18].

In [14], Sarikaya et. al. represented Hermite-Hadamard’s inequalities in frac-
tional integral forms as follows.

Theorem 1.3. Let f : [a,b] — R be a positive function with 0 < a <b and f € L]a,b].
If f is a convex function on [a, b], then the following inequalities for fractional integrals

hold
F(550) = gD s+ g ) < LD )

with o > 0.

In [14] some Hermite-Hadamard type integral inequalities for fractional integral
were proved using the following lemma.

Lemma 1.4. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If f' € Lla,b] then the following equality for fractional integrals holds:

f(a) "2|_ f(b) _ ;((;l_+a1)2,v [Jg;f(b) + Jl;):f(a)] (14)

b—a

= - /O (1= =] f' (ta+ (1 —t)b) dt.
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Theorem 1.5. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b.
If |f'| is convex on [a,b] then the following inequality for fractional integrals holds:

‘ f(a) —; O ;((;f@i}x [T £(b) + T2 f(a)] (15)

b—(l 1 / /
S <1_ 2) 1 @+ 17 ).

Lemma 1.6 ([11, 18]). For 0 < a <1 and 0 < a < b, we have
la® —b¥| < (b—a)”.

In this paper, we firstly represented Hermite-Hadamard-Fejér inequality in frac-
tional integral forms which is the weighted generalization of Hermite-Hadamard in-
equality (1.3). Secondly, we obtained some new inequalities connected with the right-
hand side of Hermite-Hadamard-Fejér type integral inequality for the fractional inte-
grals.

2. Main results

Throughout this section, let ||g||, = sup;cq ) [9(2)], for the continuous function
g:la,b] = R.

Lemma 2.1. If g : [a,b] = R is integrable and symmetric to (a+ b)/2 with a < b, then
(63 (o3 1 @ (o3
Jorg(b) = Jitgla) = 5 [J2g(b) + Ji_g(a)]
with a > 0.

Proof. Since g is symmetric to (a+b)/2, we have g (a + b — z) = g(z), for all z € [a, b].
Hence, in the following integral setting x = a + b — ¢t and dx = —dt gives

b

1 o

Ta®) = o [ (=0 gla)da

b

1 a—1
b

1 a—1 o

= e [ -0 a0 = 5 g(o).
This completes the proof. O

Theorem 2.2. Let f : [a,b] = R be conver function with a < b and f € Lla,b]. If
g : [a,b] = R is nonnegative,integrable and symmetric to (a +b)/2, then the following
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inequalities for fractional integrals hold
(50 e + @] < DRG0 O+ 5 (@] )

2
fla) + f(b)
2

A

IN

[ g(b) + 5 g(a)]
with a > 0.

Proof. Since f is a convex function on [a, b], we have for all ¢ € [0, 1]
a+b ta+ (1 —t)b+th+ (1 —t)a
f = f
2 2
< flta+ (1 —=t)b)+ f(tb+ (1 —t)a)
- 2
Multiplying both sides of (2.2) by 2t 1g (tb + (1 — t)a) then integrating the resulting
inequality with respect to ¢t over [0, 1], we obtain

2f (a+b) /Oltalg(thr (1—t)a)dt

. (2.2)

2

IN

/1 7 (ta+ (L= D) + £ (tb+ (1 - )] g (th+ (1 — Ha) dt
0

_ /1t“‘1f(ta+(1—t)b)g(tb+(1—t)a)dt
0

+ /1 t*7 L (th+ (1 —t)a) g (tb + (1 — t)a) dt.
0

Setting = tb+ (1 — t)a, and dz = (b — a) dt gives

(b —2a)af (a ; b) /ab (¢ —a)" g (z)de

b b
: 7 {/ (w—a)a_lf(aer—l‘)g(x)der/ (¢ —a)*"" f(z) g (x)da

< -
- (b-a

1

b b
= —F —2)* Vf(@)gla+b—2)da z—a)* ' f(x)g(z)da
- (b_a)a{/a p=a)" @ gl tb-a)dit [ @0 f@)gle)d

b b
= {/ p-a)" " @ g @+ [ (@ —a)alf(w)g(x)dw} .
Therefore, by Lemma 2.1 we have
o) <a+b> [J&9(b) + T g(a)] <
(b—a)” 2 at b= -
and the first inequality is proved.

For the proof of the second inequality in (2.1) we first note that if f is a convex
function, then, for all ¢ € [0,1], it yields

fta+ (1 —=1)b) + f(tb+ (1 —t)a) < fla) + f(b). (2.3)

(o)
(b—a)®

(724 (f9) (0) + J5 (f9) (a)]
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Then multiplying both sides of (2.3) by 2t !g (tb+ (1 —t)a) and integrating the
resulting inequality with respect to ¢ over [0, 1], we obtain

/1 t* U (ta+ (1 —t)b) g (tb+ (1 — t)a) dt
0

+/1 t* L (b + (1 —t)a) g (th+ (1 — t)a) dt

1
< [f(a)+ F(O) / (g (th + (1~ t)a) dt

e 72 ) 0+ 5 (o) @) < e (LETOY [ g0) -+ 55000
The proof is completed. d

Remark 2.3. In Theorem 2.2,

(i) if we take @ = 1, then inequality (2.1) becomes inequality (1.2) of Theorem 1.1.
(ii) if we take g(z) = 1, then inequality (2.1) becomes inequality (1.3) of Theorem
1.3.

Lemma 2.4. Let f : [a,b] = R be a differentiable mapping on (a,b) with a < b and
f € La,b]. If g : [a,b] = R is integrable and symmetric to (a+Db)/2 then the following
equality for fractional integrals holds

( w ) [72,9(0) + T g(@)] — [J2, (f9) (0) + T (fg) (a)]

1 b t ol b . /
= m/@ l/a (b—s) g(S)dS—/t (s —a) g(s)ds] f/(t)dt (2.4)

with « > 0.

Proof. Tt suffices to note that

r- b [ / (b 5 g(s)ds - / C(s—apt g(s)ds] 7' ()t

[ ([ 0ot stmas) s [ (— [ -ar g(s)ds> oy

I + L.
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By integration by parts and Lemma 2.1 we get

n - (/ <b—s>“g<s>ds) £)
b ‘ b

( / (b—s)“%(s)ds) F(b) - / (b—1)""" (fo)(t)at

P() [F(0)T,9(b) — I2, (F)(D)]

re) [ L (2,000 + 55 0(0) - 22, (000

b

b
- / (b— )" glt) f()dt

and similarly

b
I = (—/t (S—G)alg(S)d8> f(t)
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~

= 1@ | L o) + g0t - 5 1) (@)
Thus, we can write

I = L+
= v { (L) [z g0+ g 000 - 2 G0 0+ 5 (o) @)}

Multiplying the both sides by (I'(a)) ™" we obtain (2.4) which completes the proof. [

Remark 2.5. In Lemma 2.4, if we take g(x) = 1, then equality (2.4) becomes equality
(1.4) of Lemma 1.4.

Theorem 2.6. Let f : I C R — R be a differentiable mapping on I° and f' € L]a,b]
with a < b. If |f'| is convex on [a,b] and g : [a,b] = R is continuous and symmetric
to (a+0)/2, then the following inequality for fractional integrals holds

‘ ( w ) [78,9(0) + 2 g(a)] — [J2, (£g) (0) + T (£9) (a)]

(b—a)* " lgll
(a+1)D(a+1)
with « > 0.

(1= 5) 17 @l +17 O] (25)

Proof. From Lemma 2.4 we have

() o)+ 53 at@) - 2 ) @)+ 5 (7))

i /.

t b
/ (b— 5)° g(s)ds — / (s — )" g(s)ds| [/ (D) dt.  (2.6)
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Since | f’| is convex on [a, b], we know that for ¢ € [a, b]

b— - b -
P (jotat =) s i@l ol @)

FOI=1 = =2t | =%

and since g : [a,b] = R is symmetric to (a + b)/2 we write

b a+b—t a+b—t
/t (s —a)* " g(s)ds = / (b—3s)"""gla+b—s)ds = / (b—5)*""g(s)ds,

then we have

IN

Jﬂtar‘rb*t (b _ 8)(1—1 g(s)‘ dS, t
t a—1
Jivoi|0=9) t
A combination of (2.6), (2.7) and (2.8), we get

'(f(a);f(b)

) isol®) + J5-a(0)] ~ [J5, () 0)+ . (o) o)
. (/ta+b_t\<b—s>“1g<s>)ds> (=t @i+ =217 o)) a
+F(1a)/ ([, Je=artaw]as) ((=tir @i+ =2 1 o) ar

a+tb

(b%ﬁm{/ (b=0)" = (t=a) 1 (b= OIS @] + (=) Bt

IN

AN

b
+ [, 1t=a" = 6= 0" @01 @]+ ¢ - a)|f <b>|>dt} (29)

Since
[(b—1)* = (t—a)*] (b—t)dt

[
/b (t—a)® = (b— )] (t — a) dt

- fa+1 1
T (a+1) (a+2_20‘+1) (2.10)
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and
a;b
[ -0 -aa
o
= [l - ot o
a;b
b—a)*? [ 1 1
_ (b-aq _ (2.11)
(a+1) a+2 20+l
Hence, if we use (2.10) and (2.11) in (2.9), we obtain the desired result. This completes
the proof. O

Remark 2.7. In Theorem 2.6, if we take g(z) = 1, then equality (2.5) becomes equality
(1.5) of Theorem 1.5.

Theorem 2.8. Let f : I C R — R be a differentiable mapping on I° and f' € L]a,b]
with a < b. If |f'|*,q > 1, is convezx on [a,b] and g : [a,b] = R is continuous and
symmetric to (a+b)/2, then the following inequality for fractional integrals holds

‘ ( w > (T2 g(b) + T g(a)] — [J& (f9) (0) + T3 (f9) (a)]

(2.12)

2(6— a)"* gl (1- L) (el <b>|q)”q
T -a) (a+ D (a+1) 2o 2
where > 0 and 1/p+1/qg=1.

Proof. Using Lemma 2.4, Holder’s inequality, (2.8) and the convexity of | f/|%, it follows
that

(P50 o) + 5 at)] - 2 () 00+ 5 (79) (@)

(/ab /tﬁbt (b— )21 g(s)ds dt) o

b| ratb—t 1/a
/ / (b— 5)° g(s)ds| |/ <t>|"dt>

< ﬁ [/@‘Bb (/ta+b_t ‘(b— s)ailg(s)‘ ds> dt




Hermite-Hadamard-Fejér type inequalities 363

+ /b </+b o= ot ds) SOl dt] i

2

a 1-1/q
o 27l (0—a)™ [1 _ 1}
T b—a)T(a+1) \ o+l 2>

x {/2 (b= = (t=a)*] (0= [f" (@)|" + (t —a) |f" (B)|") dt

b 1/q
[ = = =07 (- 01f @+ (- | G)F) dt} (2.13)

a+b

2
where it is easily seen that

a+b

/a i (/tﬁbt (b—s)a_lds> dt+/; </a:bt (b—s)a_lds> dt

Hence, if we use (2.10) and (2.11) in (2.13), we obtain the desired result. This com-
pletes the proof. O

We can state another inequality for ¢ > 1 as follows:

Theorem 2.9. Let f : I CR — R be a differentiable mapping on I° and f' € L]a,b]
with a < b. If |f'|*,q > 1, is convex on [a,b] and g : [a,b] = R is continuous and
symmetric to (a +b)/2, then the following inequalities for fractional integrals hold:

0 (XD oty + 5 0t0)] - 2 () 0+ 55 () @)

217 ||gll o, (b—a)**! LAY (1 @1+ 1 @)Y
<ty (Ca) (FUSE) 244
with a > 0.
() | (L g0 + 3 ata] = g 1) )+ 9 1) @)
gl (0= a)*™  (1f @]+ | (B)]7\
= lap+ )T (a+ 1) ( 2 ) (2.15)

for0<a <1, wherel/p+1/q=1.
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Proof. (i) Using Lemma 2.4, Holder’s inequality, (2.8) and the convexity of |f/|?, it
follows that

‘(f(a)‘;f(b)) [J2g(b) + T g(a)] — [T, (fg) (b) + J& (fg) (a)]‘

1 b N Y4 b 1/q
< w(/ dt) (/ )l dt) .

1/p
191l o a ap b a ap
r(a“)(/ (b= = (t—a)] dt+[ [(t = )" = (b= 1)°] dt)

X </ (s=atr @+ ;=51 or) dt> .

a+1 1 1 1/p
_ gl (0= a)*" (/2 [(1_t)a_ta]l’dt+/ [ta_(1—t)“]pdt>

MNa+1) 1

"(a)]? / a\ 1/4q
(o 2.16)

a+b—t
| o= s

-

F(Oé + ].) 1

M : _ £\ _ ap ' ap _ (1 _ 4\OP v
< (/0 (1= )" —¢ ]dt+[[t (1-1) }dt)
/ q / a\ /¢
(Lerrory

2
2

oo™ 2y L]) (M SOy

Here we use
(1= =t < (1—)P -t
for t € [0,1/2] and
[t = (1= <tP — (1-)*
for ¢ € [1/2,1], which follows from
(A-B)" < A?- B4,
for any A > B > 0 and g > 1. Hence the inequality (2.14) is proved.
(ii) The inequality (2.15) is easily proved using (2.16) and Lemma 1.6. O

Remark 2.10. In Theorem 2.9, if we take oz = 1, then equality (2.15) becomes equality
in [18, Corollary 13].
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