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1. Introduction

Let µ be the Lebesgue measure on the interval [−1, 1] of R and let denote by L1

the Banach space of all measurable functions (equivalence classes of functions with
respect to the equality µ−a.e.) g : [−1, 1]→ R, such that |g| is Lebesgue integrable on

the interval [−1, 1], endowed with the norm ||g||1 =
∫ 1

−1 |g(x)|dx, g ∈ L1. Analogously,

L∞ is the Banach space of all measurable functions (equivalence classes of functions
with respect to the equality µ− a.e) g : [−1, 1]→ R, normed by ||g||∞ = ess sup |g|.

Given a nonnegative function ρ ∈ L∞ such that ρ(x) > 0 µ -a.e. on [-1, 1], let

consider, in accordance with [8], [9], the Banach space (L
(1/ρ)
1 , ||.||(1/ρ)1 ), where L

(1/ρ)
1

is the set of all measurable functions (classes of functions) g : [−1, 1] → R for which
g/ρ ∈ L1 and ||g||(1/ρ) = ||g/ρ||1.

Further, let denote by (C, ||.||) the Banach space of all continuous functions
f : [−1, 1]→ R , where ||.|| stands for the uniform (supremum) norm, and let consider
the Banach space (Cs, ||.||s) of all functions f : [−1, 1] → R , that are continuous
together with their derivatives up to the order s ≥ 1, endowed with the norm

||f ||s =

s−1∑
r=0

|f (r)(0)|+ ||f (s)||;
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we admit f (0) = f and C0 = C.
For each integer n ≥ 1, let denote by xkn = cos θkn, 1 ≤ k ≤ n, 0 < θ1n < θ2n <

... < θnn < π, the zeros of the Jacobi polynomial P
(α,β)
n , with α > −1 and β > −1,

referred to as Jacobi nodes.
We specify, also, the usual notations

(Lnf)(x) =

n∑
k=1

f(xkn)lkn(x), |x| ≤ 1

and

Λn(x) =

n∑
k=1

|lkn(x)|; |x| ≤ 1, n ≥ 1,

denoting the Lagrange polynomials which interpolate a function f : [−1, 1]→ R at the
Jacobi nodes, and the Lebesgue functions associated to the Jacobi nodes, respectively.

In this paper, we deal with product-quadrature formulas of interpolatory type,
as follows:

I(f ; g) = In(f ; g) +Rn(f ; g), n ≥ 1, f ∈ C, g ∈ L(1/ρ)
1 , (1.1)

where

I : C × L(1/ρ)
1 −→ R I(f ; g) =

∫ 1

−1
f(x)g(x)dx, (1.2)

and

In(f ; g) =

∫ 1

−1
(Lnf)(x)g(x)dx, n ≥ 1; f ∈ C, g ∈ L(1/ρ)

1 . (1.3)

Numerous papers have studied the convergence of the product quadrature formu-
las of type (1.1), involving Jacobi, Gauss-Kronrod or equidistant nodes and various
functions g ∈ L1 (i.e. ρ(x) = 1, ∀ x ∈ [−1, 1]), [1, Ch. 5], [3], [4], [5], [7], [8], [9].
Regarding the divergence of these formulas, I.H.Sloan and W.E.Smith, [9, Th.7, ii]
proved the following statement in the case of Jacobi nodes:

If α > −1, β > −1 and ρ(x) = (1 − x)max{0,(2α+1)/4}(1 + x)max{0,(2β+1)/4},

then there exist a function f0 ∈ C and a function g0 ∈ L(1/ρ)
1 so that the sequence

In(f0, g0) : n ≥ 1 is not convergent to I(f0, g0).

In fact, the divergence phenomenon holds on large subsets of L
(1/ρ)
1 and C,

in topological sense. More exactly, the following assertion is a particular case of [6,
Theorem 3.2]:

Suppose that µ{x ∈ [−1, 1] : ρ(x) > 0} > 0. Then, there exists a superdense set

X0 in the Banach space L
(1/ρ)
1 such that for every g in X0 the subset of C consisting

of all functions f for which the product integration rules (1.1) unboundedly diverge,
namely

Y0(g) =

{
f ∈ C : sup

{∣∣∣∣∫ 1

−1
(Lnf)(x)g(x)dx

∣∣∣∣ ;n ≥ 1

}
=∞

}
,

is superdense in the Banach space C.
We recall that a subset S of the topological space T is said to be superdense in

T if it is residual (namely its complement is of first Baire category), uncountable and
dense in T .
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The aim of this paper is to highlight the phenomenon of double condensation
of singularities for the product quadratures formulas (1.1) in the case of the Banach
spaces (Cs, ||.||s), s ≥ 1. If ρ(x) = 1, ∀ x ∈ [−1, 1], and α = β = 2, this property was
emphasized in [5, Th.3], for s = 1 and s = 2. In the next section, we point out the
double superdense unbounded divergence of the formulas (1.1) for α > −1, β > −1
and s ≥ 1 satisfying the inequality s < α + 1/2 or s < β + 1/2 and more general
conditions regarding the function ρ.

In what follows, we denote by m, M , Mk, k ≥ 1, some generic positive constants
which are independent of any positive integer n and we use the notation an ∼ bn if
the sequences (an) and (bn) satisfy the inequalities 0 < m ≤ |an/bn| ≤M .

2. The unbounded divergence of the product quadrature formulas
(1.1)

Let Tnf : Cs → (L
(1/ρ)
1 )∗, be the continuous linear operators given by Tnf :

L
(1/ρ)
1 → R, f ∈ Cs and (Tnf)(g) =

∫ 1

−1 g(x)(Lnf)(x)dx, g ∈ L
(1/ρ)
1 n ≥ 1, where

(L
(1/ρ)
1 )∗ is the Banach space of all continuous linear functionals defined on L

(1/ρ)
1 .

By standard reasoning, via the Theorem of Riesz concerning the representation
of continuous linear functionals, we get:

||Tn|| = sup{||ρLnf ||∞ : f ∈ Cs, ||f ||s ≤ 1}. (2.1)

Now, we are in the position to state the following divergence result:

Theorem 2.1. Suppose that the integer s ≥ 0 and the real numbers A > 0, a ∈ (0, 1),
α > −1, β > −1 satisfy at least one of the following conditions:

(i) s < α+ 1/2 and ρ(x) ≥ A, for x ∈ (a, 1);
(ii) s < α+ 1/2 and ρ(1) > 0;
(iii) s < β + 1/2 and ρ(x) ≥ A, for x ∈ (−1,−a);
(iv) s < β + 1/2 and ρ(−1) > 0.

Then, there exists a superdense set X0 in the Banach space L
(1/ρ)
1 , such that

for every g in X0 the subset of Cs consisting of all functions f for which the product
integration rules (1.1) unboundedly diverge, namely

Y0(g) =

{
f ∈ Cs : sup

{∣∣∣∣∫ 1

−1
(Lnf)(x)g(x)dx

∣∣∣∣ ;n ≥ 1

}
=∞

}
,

is superdense in the Banach space Cs.

Proof. For each integer n ≥ 2, let us define the numbers δkn, 1 ≤ k ≤ n, and δn as
follows: 3δkn = min{xk−1n − xkn, xkn − xk+1

n }, 1 ≤ k ≤ n, with x0n = 1, xn+1
n = −1, and

δn = max{δkn, 1 ≤ k ≤ n}.
In analogy with [5, Th.2.3], we obtain:

||Tn|| ≥M1
ρ(τn)

(δn)s+2

n∑
k=1

(δkn)2s+2|lkn(τn)|, (2.2)

where τn is an arbitrary number of [−1, 1].
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For the beginning, let us suppose that the hypothesis (i) of this theorem is
satisfied. The estimate sin θkn ∼ k/n, [7], implies

θkn ∼ k/n. (2.3)

The relations P
(α,β)
n (x1n) = 0 and P

(α,β)
n (1) ∼ nα, [10], lead to the existence of a point

τn so that

τn ∈ (x1n, 1); P (α,β)
n (τn) = (1/2)P (α,β)

n (1) ∼ nα. (2.4)

Now, let us estimate δkn, δn and |lkn(τn)|.
The estimates θkn − θk−1n ∼ 1/n, sin θkn ∼ k/n and θ ∼ θkn , if θk−1n ≤ θ ≤ θkn , [7] ,
combined with xk−1n − xkn = 2 sin(θkn − θk−1n )/2 sin(θkn + θk+1

n )/2, yield:

δkn ∼ k/n2, 1 ≤ k ≤ n; δn ∼ 1/n. (2.5)

The relation τn ∈ (x1n, 1) of (2.4), together with (2.3) and x1n ≥ xkn, 1 ≤ k ≤ n, gives
|τn − xkn| = τn − xkn ≤ 1− xkn = 2 sin2(θkn/2) ∼ k2/n2, namely

|τn − xkn| ≤M2k
2/n2, 1 ≤ k ≤ n. (2.6)

Now, by combining the inequality (2.6) with the estimates (2.4) and |(P (α,β)
n (xkn))′| ∼

nα+2k−α−3/2, if 0 < θkn < π/2, [10], we get:

|lkn(τn)| = |P (α,β)
n (τn)||τn − xkn|−1|(P (α,β)

n (xkn))′|−1 ≥M2k
α−1/2. (2.7)

Further, the relation (2.3) with k = 1, together with (2.4), implies τn ∈ (a, 1), for n
sufficiently large, which leads to:

ρ(τn) ≥ A > 0. (2.8)

Finally, the relations (2.2), (2.4), (2.7) and (2.8) provide the inequality

||Tn|| ≥M4n
α+1/2−s, (2.9)

for n sufficiently large. Secondly, if the condition (ii) is fulfilled, we proceed in a similar
manner, taking τn =1 in (2.2) and obtaining the unboundedness of the set of norms
{||Tn|| : n ≥ 1} from an analogous inequality of (2.9). Also, it is easily seen that the
hypotheses (iii) and (iv) lead to an inequality of type (2.9), namely:

||Tn|| ≥M4n
β+1/2−s, (2.10)

for n sufficiently large.

To complete the proof, we apply, in a standard manner, firstly the principle of
condensation of singularities, [2,Th.5.4], and the relations (2.9) and (2.10), in order
to conclude that the set of unbounded divergence of the family {Tn : n ≥ 1} is
superdense in the Banach spaces (Cs, ||.||s) and secondly, based on this result, the
principle of double condensation of singularities, [2, Th.5.2], to provide the conclusion
of this theorem. �
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[10] Szegö, G., Orthogonal Polynomials, Amer. Math. Soc. Providence, 1975.

Alexandru I. Mitrea
Technical University of Cluj-Napoca
Department of Mathematics
25, Baritiu Street
400027 Cluj-Napoca, Romania
e-mail: Alexandru.Ioan.Mitrea@math.utcluj.ro


