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Estimates for the ratio of gamma functions
by using higher order roots

Sorinel Dumitrescu

Abstract. It is the aim of this paper to give a systematically way for obtaining

higher order roots estimates of the ratio E((;_ti)), as ¢ — oo and the Wallis ratio
3

1.3---(2n—1)
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as n — 00.

1. Introduction

The factorial function n! =1-2-3---n (defined for positive integers n), and its

extension gamma function
(o]

L(z) = /tzfleftdt
0
(to the real and complex values z, excepting —1, —2, —3,...) has a great importance
in pure mathematics, as in applied mathematics and other branches of science, such
as chemistry, statistical physics, or cuantum mechanics.
The ratio % is strongly related to the Wallis sequence

1-3--(2n—1)

and to other aspects in the theory of the gamma function, as for example Kershaw-
Gautschi inequalities. For this reason, many mathematicians have been preocuppied
by the approximation of this ratio. There exists a broad literature on this subject. In
particular, many inequalities, sharp bounds for these functions, and accurate approx-
imations have been published. See, e.g. the classical results from [2] and the recent
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article [3] and all references therein. A first result was stated by Kazarinoff [4, pp.
47-48 and pp. 65-67]:

then this result was improved by Chu [3]:
\/n+1— ! <F(n+1)<\/n+l+1
4 (n-27% T(n+3) 4" 16n—4
and then by Boyd [1] and Slavi¢ [23] as:
\/n+i+321 <F(n+11)<\/n+1+£4n_148.
n+32 T'(n+3) 4 32n — 8nggs

Motivated by these formulas, Mortici [5] proposed the following approximations
family:

Fnt1) o

— =~ X/ Py(n), 1.1
where Py (n) is a polynomial of kth order (the notation ” f (n) = g (n)” means that
the ratio f (n) /g (n) tends to 1, as n approaches infinity). Mortici calculated in [5]
the first approximations as n — oo:

7

I'(n+1) oo L]
~ n -n -
I'(n+3) 2 8
I'(n+1) {5/3 3,9 5
Tt — VO ram T 5" s
T(n+1) \8/4 1 1
~ nt+n3+ -n?+ -n.
I'(n+3) 2 8

In [5, p. 427] it is shown that these approximations are increasingly accurate as the
root, order grows.

Mortici used an original method, however, this method doesn’t allow us to de-
termine the general formula of this approximation.

The aim of this paper is to give a systematically method for obtaining the ap-
proximations (1.1) for any order 2k.

The method we propose is related to the theory of asymptotic series and it is
inspired from a recent result of Chen and Lin [2].

2. The theoretical results

The asymptotic theory is a strong tool for improving and obtaining new approx-
imation formulas.
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X«
Let f : (0,00) — R be a function. We say that —Z is an asymptotic series
k=1
expansion for f (x) as x — oo, and denote

f(a:)wz% as x — 00,

if for all m € N*

f(x)zzl]:—(9<x7i+l> as x — oo.

>
Il
—

if for all m € N*
m 1
In f(x)— k:O<> as T — 00.
k=1

Using the idea first presented by Chen and Lin in [2], we give the following theorem:
Theorem 2.1. If the function f has the asymptotic expansion as T — 00:

mww%zﬁ}@>w

k=1

then

where

ki+kot...+k;
b — ’I"l+ 2+...+kj .akl. .akj
J : : kl‘k‘z‘kj' 1 e j

k1+2ka+...+jk;=j

<

Proof. This proof is based on the ideas of Chen and Lin presented in [2]. We have

mbw%zﬁ+mmk
k=1

where
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Thus
m
[f(SU)]T _ er-Rm(x) - exp rog
E : 2k
k=1
m 2
R H roy, 1 (rak)
= e 1+—4+=-(—) +..
xk 2! zk
k=1
" Ron () Zoo 1 rap\korag ke roum "
= ¢ Falkalo kit "\ 2 e\ pm
ki1,k2,..km=0
oo kitkot...4km,
— e""'Rvn(z) L akl . . ak"L . ;
= § : Fqlkale. k! Lo ome ki +2ket A mk,
k1,k2,..km=0
o0
b
= 1 § e
+ 77
j=1
where
rkitkat.. +k; ks
b, — - @ akl . - J
J = kqlkol k! oy

K1 +2ko+...+jk;=j

The proof is now completed.[]

In [23], Slavi¢ gave the following integral representation for every z > 0:

[(z+1) (1 —272%) By
Tx+d) “Xp{zk 1221

[ ]
2t k(2K)!
0 k=1

from which, a more accurate double inequality was established:

~2¥) By I(x+1) — (1-27%) By,
meXp<2k2k l’2k 1><F(x+l) <\/.E€Xp Zka )ka 1

2

for x > 0. Here m and [ are any natural numbers and By for £ € N are Bernoulli
numbers defined by the generating function

t = B
Lt (] < 2m).

t_1 '
et —1 =

The following asymptotic formula is presented in [23], as © — oo :

=, (1 —27%) By,

L+l | rex
T(z+3) P Z

b

ij 1
J:1
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which is equivalent to

I(z+1) = (2—27%) Bra
R \/EeXp{kz_:l k(k + 1)ak } (2.1)

(in the last formula, the terms involving Bs; 1 = 0 were added, for sake of symmetry).

3. Approximations for FF((;H}))

2

By applying Theorem 1 to the function

I(z+1)
)= ——"-—~ (xz>0). 3.1
@)= oy @0 (31)
with the coefficients of the asymptotic series
(2—27%) Brya
= T '2
ok k(k+1) (32)

see (2.1), and then replacing r by 2r, we obtain:

2r
[(x+1) b,
(ﬁf(:v+§)> R o)

(ZT.)k1+k2+...+kj X
k14+2ko+...+jkj=j
Then, we deduce that

where

lm ~ X/am+ et 4+ .+ bz +b,
where by, bs, ...b,. are given in (3.3). Concrete values are presented below:
e
r_2:>b1:;,b2:;:>1féii?)z,4/3;2+;$+1
r:3:>b1:i,b2:32,b3—1;égéiié))z\/x3+ix2+ +%
T:4:>b1—1,bz—;,b3:,b4—0:>1f‘8::—_1;>%§/$4+x3+ $2+éx
S SRA FU SO O S B
%z \/5+ix4—|—§; 3+%58 2+2;—i8 T+ 202
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4. Approximations for Wallis ratio

Let us now apply once again Theorem 1 to the function f given by (3.1), with
ay given by (3.2). Now we replace r by —2r to obtain:

—2r
[(z+1) Ny ¥
(ﬁF(H%)> AP

(,QT)k1+k2+...+kj

;) k1 kj
b; = Z Tl )T oyt (4.1)
by -2kt gk =j

2r
I(z+3 A
I'(z+1) Z @)
Jj=1
where by, bo, ...b, are given in (4.1). Furthermore, we obtain:

L (z+ l) . 1 a8
A\ 27 ~ J
(r(x+1)> PR D

Jj=1

where

Hence

and therefore

Catd) o1, W, %

D(z+1) ar ottt g2
Using this result, we obtain the following asymptotic expansion for the Wallis se-
quence, using the relation:

+

p_@-nt_ 1 I'(n+3) (4.2)
o2t Vm T(n+1)° '
We get
1 ,./1 b} A
Br Ve Tt et
which is equivalent to
1 .. by b
Porm— 1+ 4+ 2
N T n? +

We present the following particular cases:

PHN— 1——

in
\/7 \/

,ﬁm\/ 32n2 B 128n3
1

anigl—— —_
\/mr\/ n+2n2 8n3
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1 {)/ 5 25 35 75 3
P~ — /1 —— - — = 0. 4.3
/nm 4n + 32n?  128n3 + 2048n*  8192n° (43)
5. Conclusions
Mortici’s formula stated in [5]:
I'(n+1) §/4 s 1, 1
F(n—i—%) R AInT+n +2n +8n
can be rewritten using (4.2) in the form
1
P, ~ = - (5.1)
LN n4+n3+%n2+%n

Our formula (4.3) gives results of the same order of accuracy with Mortici’s formula
(5.1). A comparison table is given below:

n ‘Pn_,un| |Pn_5n|
10 [ 1.4655 x 10710 [ 1.8666 x 10 1°
50 | 4.8252 x 10715 | 4.8432 x 10~ 15
100 | 5.4202 x 10717 [ 5.2798 x 10~17
200 | 6.0379 x 10719 | 5.7940 x 10~
500 | 1.5718 x 1072 | 1.4948 x 10~2!
1000 | 1.7395 x 10~23 [ 1.6493 x 1023
The formula (4.3) can be equivalently written in terms of gamma function as
follows:
L(n+3) \/ 35 N 53
I'(n+ 1 \f 32n2 128n3 © 2048n%  8192n5°
The associated function satisfies the follovvlng properties:
Theorem 5.1. The function ¢ : [2,00) = R, defined by
1 1
¢(xz) = InT <x+2> —InT(zx+1)+ ilnx
—l—iln 1 5+ 25 _ 35 n 75 _ 3
10 3222 128x3 20484  8192x°

18 monotonically increasing and concave.

The proof of this theorem is now classical. The same method was used by Chen

and Lin, or Mortici in some of their papers. See, e.g., [2], [6]-[22

3 /7 1
N=In"y /T ¢ —In
v (2) n4\/g+

for sake of simplicity.
As

10

141141

262 262144 °

]. We omit the proof
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(numerically 7 = —0.1238 ---) and lim,_, ¢ () = 0, we deduce that
T<p(x)<0 (x €eR; x>2).
By exponentiating this double inequality, we get the following result:

Theorem 5.2. The followz'ng double inequality holds true, for every real number x > 2 :

\/_+ 3% 3
NE: 3222 12823 ' 2048z% 819225
o Ll+3)
- T(z+1)
_ 041\0/1_5+ 25 35 N B3
Nz 3222 12823 ' 2048z%  8192z5°
The constants
a = 1.0000

3 [x /141141
= =2 /2.1 —0.8835- -
p ¢ 4\[2 262 144

Further studies on ratio of gamma functions are highly motivated since a deep
knowledge of the quotient ' (z + a) /T (x +b) (a,b € R; & — o) is required in many
problems, such as the theory of Mellin-Barnes integrals, the theory of the generalized
weighted mean values, or in the theory of hypergeometric functions.

are sharp.
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