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On some generalizations of Nadler’s contraction
principle

Iulia Coroian

Abstract. The purpose of this work is to present some generalizations of the
well known Nadler’s contraction principle. More precisely, using an axiomatic
approach of the Pompeiu-Hausdorff metric we will study the properties of the
fractal operator generated by a multivalued contraction.
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1. Introduction

Let (X,d) be a metric space and P(X) be the set of all subsets of X. Consider
the following families of subsets of X:

P(X):={Y∈ P(X)| Y 6= ∅}, Pb,cl(X):={Y∈ P(X)|Y is bounded and closed}
The following (generalized) functionals are used in the main sections of the paper.

1. The gap functional generated by d:

Dd : P(X )× P(X )→ R+ ∪ {∞}, Dd(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}

2. The diameter generalized functional:

δ : P(X )× P(X )→ R+ ∪ {∞}, δ(A,B) = sup{d(a, b)|a ∈ A, b ∈ B}

3. The excess generalized functional:

ρd : P(X )× P(X )→ R+ ∪ {∞}, ρd(A,B) = sup{D(a,B)|a ∈ A}

4. The Pompeiu-Hausdorff generalized functional:

Hd : P(X )× P(X )→ R+ ∪ {∞}, Hd(A,B) = max{sup
a∈A

Dd(a,B), sup
b∈B

Dd(b, A)}
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5. The H+-generalized functional:

H+ : P(X )× P(X )→ R+ ∪ {∞}, H+(A,B) :=
1

2
{ρ(A,B) + ρ(B,A)}

Let (X,d) be a metric space. If T : X → P (X) is a multivalued operator, then
x ∈ X is called fixed point for T if and only if x ∈ T (x). The following concepts are
well-known in the literature.

Definition 1.1. [7] Let (X, d) be a metric space. A mapping T : X → Pb,cl(X) is called
a multivalued contraction if there exist a constant k ∈ (0, 1) such that:

Hd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X.

Definition 1.2. [5] Let X be a nonempty set and d, ρ two metrics on X. Then, by
definition, d, ρ are called strongly(or Lipschitz) equivalent if there exists c1, c2 > 0
such that:

c1ρ(x, y) ≤ d(x, y) ≤ c2ρ(x, y), for all x, y ∈ X.

Definition 1.3. [7] Let (X, d) be a metric space. Then, by definition, the pair (d,Hd)
has the property (p∗) if for q > 1, for all A,B ∈ P (X) and any a ∈ A, there exists
b ∈ B such that:

d(a, b) ≤ qHd(A,B).

Definition 1.4. [6] Let (X, d) be a metric space. T : X → Pb,cl(x) is called Hd−
upper semi-continuous in x0 ∈ X (Hd-u.s.c) respectively Hd− lower semi-continuous
(Hd−l.s.c) if and only if for each sequence (xn)n∈N ⊂ X such that

lim
n→∞

xn = x0

we have

lim
n→∞

ρd(T (xn), T (x0)) = 0 respectively lim
n→∞

ρd(T (x0), T (xn)) = 0.

2. Main results

Concerning the functional H+ defined below, we have the following properties.

Lemma 2.1. [2] H+ is a metric on Pb,cl(X).

Lemma 2.2. [1] We have the following relations:

1

2
Hd(A,B) ≤ H+(A,B) ≤ Hd(A,B), for all A,B ∈ Pb,cl(X) (2.1)

(i.e., Hd and H+ are strongly equivalent metrics).

Proposition 2.3. [2] Let (X, ||·||) be a normed linear space. For any λ (real or complex),
A,B ∈ Pb,cl(X)

1. H+(λA, λB) = |λ|H+(A,B).
2. H+(A+ a,B + a) = H+(A,B).

Theorem 2.4. [2] If a, b ∈ X and A,B ∈ Pb,cl(X), then the relations hold:
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1. d(a, b) = H+({a}, {b}).
2. A ⊂ S(B, r1), B ⊂ S(A, r2)⇒ H+(A,B) ≤ r where r = r1+r2

2 .

Theorem 2.5. [2] If the metric space (X, d) is complete, then (Pb,cl(X), H+) and
(Pb,cl(X), Hd) are complete too.

Definition 2.6. [2] Let (X,d) be a metric space. A multivalued mapping T : X →
Pb,cl(x) is called (H+, k)-contraction if

1. there exists a fixed real number k, 0 < k < 1 such that for every x, y ∈ X
H+(T (x), T (y)) ≤ kd(x, y).

2. for every x in X, y in T (x) and ε > 0, there exists z in T (y) such that

d(y, z) ≤ H+(T (y), T (x)) + ε.

Theorem 2.7. [2] Let (X, d) be a complete metric space, T : X → Pb,cl(X) be a
multivalued (H+, k) contraction. Then FixT 6= ∅.
Remark 2.8. [1] If T is a multivalued k-contraction in the sense of Nadler then T is
a multivalued (H+, k)-contraction but not viceversa.

Example 2.9. Let X = {0,
1

2
, 2} and d : X × X → R be a standard metric. Let

T : X → Pb,cl(X) be such that

T (x) =


{0,

1

2
}, for x = 0

{0}, for x =
1

2
{0, 2}, for x = 1

Then T is a (H+, k) contraction (with k ∈
[

2
3 ,1)) but is not an k- contraction

in the sense of Nadler, since

Hd(T (0), T (2)) = Hd({0,
1

2
}, {0, 2}) = 2 ≤ kd(0, 2) = 2k ⇒ k ≥ 1,

which is a contradiction with our assumption that k < 1.

Theorem 2.10. [3] (Nadler) Let (X, d) be a metric space and T : X → Pcp(X) be a
multivalued contraction. Then

Hd(T (A), T (B)) ≤ kHd(A,B) for all A,B ∈ Pcp(X). (2.2)

Lemma 2.11. [4] Let (X,d) be a metric space and A,B ∈ Pcp(X).
Then for all a ∈ A there exists b ∈ B such that

d(a, b) ≤ Hd(A,B).

Theorem 2.12. Let (X, d) be a metric space and T : X → Pcp(X) for which there
exists k > 0 such that:

Hd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X
Then

H+(T (A), T (B)) ≤ 2kH+(A,B) for all A,B ∈ Pcp(X).
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Proof. Let A,B ∈ Pcp(X).
From (2.2) we have ρ(T (A), T (B)) ≤ kHd(T (A), T (B))
Combining the previous result and Lemma(2.2) we obtain

ρd(T (A), T (B)) ≤ kHd(A,B) ≤ 2kH+(A,B) (2.3)

Interchanging the roles of A and B, we get

ρd(T (B), T (A)) ≤ kHd(B,A) ≤ 2kH+(B,A) (2.4)

Adding (2.3) and (2.4), and then dividing by 2, we get

H+(T (A), T (B)) ≤ 2kH+(A,B). �

Let us recall the relations between u.s.c and Hd−u.s.c of a multivalued operator.
If (X, d) is a metric space, then T : X → Pcp(X) is u.s.c on X if and only if T is
Hd − u.s.c.

Theorem 2.13. Let (X, d) be a metric space and T : X → Pcp(X) be a multivalued
(H+, k)-contraction. Then

(a) T is Hd-l.s.c and u.s.c on X.
(b) for all A ∈ Pcp(X)⇒ T (A) ∈ Pcp(X)
(c) there exists k > 0 such that

H+(T (A), T (B)) ≤ 2kH+(A,B) for all A,B ∈ Pcp(X).

Proof. (a) Let x ∈ X such that xn → x. We have:

ρd(T (x), T (xn)) ≤ Hd(T (x), T (xn)) ≤ 2 ·H+(T (x), T (xn) ≤ 2k · d(x, xn)→ 0

In conclusion, T is Hd-l.s.c on X.
Using the relation:

ρd(T (xn), T (x)) ≤ Hd(T (xn), T (x)) ≤ 2 ·H+(T (xn), T (x) ≤ 2k · d(x, xn)→ 0

we obtain that T is Hd-u.s.c on X.
(b) Let A ∈ Pcp(X). From (a) we obtain the conclusion.
(c) If u ∈ T (A), then there exists a ∈ A such that u ∈ T (a).

From Lemma 2.11 we have that there exists b ∈ T (B) such that

d(a, b) ≤ Hd(A,B) ≤ 2H+(A,B).

Since

D(u, T (B)) ≤ D(u, T (b)) ≤ ρd(T (a), T (b)) (2.5)

taking supu∈T (A) in (2.5), we have

ρd(T (A), T (B)) ≤ ρd(T (a), T (b)) (2.6)

Interchanging the roles of A and B, we get

ρd(T (B), T (A)) ≤ ρd(T (a), T (b)) (2.7)

Adding (2.6) and (2.7), and then dividing by 2, we get for all A,B ∈ Pcp(X) the
following result:

H+(T (A), T (B)) ≤ H+(T (a), T (b)) ≤ kd(a, b) ≤ 2kH+(A,B). �
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As a consequence of the previous result we obtain the following fixed set theorem
for a multivalued contraction with respect to H+.

Theorem 2.14. Let (X, d) be a complete metric space and T : X → Pcp(X) be a
multivalued operator for which there exists k ∈ [0, 1

2 ) such that

H+(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X
Then, there exists a unique A∗ ∈ Pcp(X) such that T (A∗) = A∗.

Proof. From Theorem 2.13 we obtain that:

H+(T (A), T (B)) ≤ 2kH+(A,B), for all A,B ∈ Pcp(X)

Since k <
1

2
we obtain that T is a 2k-contraction on the complete metric space

(Pcp(X), H+). By Banach contraction principle we get the conclusion. �

In the second part of this section, we will study when the property (p∗) given in
Definition 1.3 can be translated between equivalent metrics on a nonempty set X.

Lemma 2.15. Let X be a nonempty set, d1, d2 two Lipschitz equivalent metrics such
that there exists c1, c2 > 0 with c1 ≤ c2 i.e

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y), for all x, y ∈ X (2.8)

If the pair (d1, Hd1) has the property (p∗), then the pair (d2, Hd2) has the property
(p∗).

Proof. Let c1, c2 such that

c1d1(a, b) ≤ d2(a, b) ≤ c2d1(a, b) for all a ∈ A, b ∈ B (2.9)

and for all q > 1, for all A,B ∈ P (X) and for all a ∈ A, there exists b∗ ∈ B such that

d1(a, b∗) ≤ qHd1(A,B) (2.10)

From (2.9) and (2.10) we obtain:

d2(a, b∗) ≤ c2d1(a, b∗) ≤ c2qHd1(A,B).

If, in c1d1(a,B) ≤ d2(a,B) we take infb∈B , then

c1Dd1(a,B) ≤ Dd2(a,B) | sup
a∈A
⇔ c1ρd1(A,B) ≤ ρd2(A,B).

In a similar way,
c1ρd1(B,A) ≤ ρd2(B,A).

Taking maximum, we get

c1Hd1(A,B) ≤ Hd2(A,B).

Therefore,

d2(a, b∗) ≤
c2

c1
qHd2(A,B),

which means that there exists b′ = b∗ ∈ B such that

d2(a, b∗) ≤ q1Hd2(A,B),
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where q1 :=
c2

c1
q > 1. �

Lemma 2.16. Let X be a nonempty set, d1, d2 two metrics on X such that:

there exists c > 0: d2(x, y) ≤ cd1(x, y) for all x, y ∈ X (2.11)

and G1, G2 two metrics on Pb,cl(X) such that:

there exists e > 0: eGd1(A,B) ≤ Gd2(A,B), for all A,B ∈ Pb,cl(X) (2.12)

with e ≤ c. If the pair (d1, G1) has the property (p∗) then, the property (p∗) is also
true for the pair (d2, G2).

Proof. Let A,B ∈ Pb,cl(X). The pair (d1, Gd1) has the property (p∗) i.e for all q > 1
and for all a ∈ A there exists b∗ ∈ B such that

d1(a, b∗) ≤ qHd1(A,B) (2.13)

From (2.11), (2.12) and (2.13) we obtain:

d2(a, b′) ≤ cd1(a, b′) ≤ cqGd1(A,B) ≤
c

e
qGd2(A,B).

Therefore,

d2(a, b′) ≤
c

e
qGd2(A,B)

which means that there exists b = b′ ∈ B such that

d2(a, b) ≤ q1Gd2(A,B)

where q1 :=
c

e
q > 1 i.e the pair (d2, Gd2) has the property (p∗). �

Lemma 2.17. Let X be a nonempty set, d1, d2 two metrics on X such that:

there exists c > 0: d2(x, y) ≤ cd1(x, y) for all x, y ∈ X (2.14)

and G1, G2 two metrics on Pb,cl(X) such that:

there exists e > 0: Gd2(A,B) ≤ eGd2(A,B), for all A,B ∈ Pb,cl(X) (2.15)

with c · e < 1. If the pair (d1, Gd2) has the property (p∗) then, the property (p∗) is also
true for the pair (d2, Gd1).

Proof. Let A,B ∈ Pb,cl(X). The pair (d1, Gd2) has the property (p∗) i.e for all q > 1
and for all a ∈ A there exits b∗ ∈ B such that

d1(a, b∗) ≤ qGd2(A,B) (2.16)

From (2.14), (2.15) and (2.16) we obtain:

d2(a, b′) ≤ cd1(a, b′) ≤ cqGd2(A,B) ≤ c · e · qGd1(A,B).

Therefore,
d2(a, b′) ≤ c · e · qGd2(A,B)

which means that, there exists b = b′ ∈ B such that

d2(a, b) ≤ q1Gd2(A,B)
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where q1 := c · e · q > 1 i.e the pair (d2, Gd1) has the property (p∗). �

In the next part of this paper we will give some general abstract results for the
metric space Pb,cl(X).

Let (X, d) be a metric space, U ⊂ P (X) and Ψ : U → R+. We define some
functionals on U × U as follows:

1. Let x∗ ∈ X, U ⊂ Pb(X)

GΨ1(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B

where Ψ1(A) := δ(A, x∗).
2. Let U := Pb(X) and A∗ ∈ Pb(X)

GΨ2(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B

Where Ψ2(A) = Hd(A,A
∗).

Lemma 2.18. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ1
(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B

Where Ψ1(A) = δ(A,A∗), A∗ ∈ Pcp(X). Then GΨ1
is a metric on Pcp(X).

Proof. We shall prove that the three axioms of the metric hold:
a) GΨ1

(A,B) ≥ 0 for all A,B ∈ Pcp(X)
GΨ1(A,B) = δ(A,A∗) + δ(B,A∗) ≥ 0
GΨ1(A,B) = 0⇔ A = B.

This is equivalent to Ψ1(A) = 0 and Ψ1(B) = 0 i.e

δ(A,A∗) = 0 and δ(B,A∗) = 0⇔ A = A∗ and B = A∗ ⇒ A = B.

b) GΨ2
(A,B) = GΨ2

(B,A) is quite obviously.
c) For the third axiom of the metric, let consider A,B,C ∈ Pcp(X). We need to show
that:

GΨ1
(A,C) ≤ GΨ1

(A,B) +GΨ(B,C)⇔
⇔ Ψ1(A) + Ψ1(C) ≤ Ψ1(A) + Ψ1(B) + Ψ1(B) + Ψ1(C)⇔

⇔ 0 ≤ 2Ψ1(B) = δ(B,A∗) which is true. �

Lemma 2.19. If (X, d) is a complete metric space, then (Pcp(X), GΨ1
) is complete

metric space.

Proof. We will prove that each Cauchy sequence in (Pcp(X), GΨ1
) is convergent. Let

(An)n∈N, (Am)m∈N ∈ Pcp(X), we have:

GΨ1
(An, Am)→ 0, m, n→ 0⇔ δ(An, A

∗) + δ(Am, A
∗)→ 0⇒

⇒ δ(An, A
∗)→ 0.

Therefore,
GΨ1

(An, A
∗) = δ(An, A

∗) + δ(A∗, A∗)→ 0, n→ 0. �
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Lemma 2.20. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ1
(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B

where Ψ1 : Pcp(X) → R+,Ψ1(A) = δ(A,A∗) with A∗ ∈ Pcp(X). Then, the pair
(d,GΨ1

) has the property (p∗).

Proof. We have to show

d(a, b) ≤ qGΨ1
(A,B) ⇐⇒ d(a, b) ≤ q(Ψ1(A) + Ψ1(B))⇔

⇔ d(a, b) ≤ q(δ(A,A∗) + δ(A,A∗))

Suppose, by absurdum, that there exists a ∈ A and there exists q > 1 such that for
all b ∈ B we have:

d(a, b) > q(δ(A,A∗) + δ(B,A∗)).

Then, δ(A, b) ≥ d(a, b) > q(δ(A,A∗) + δ(B,A∗)).
Then, taking supb∈B , we obtain:

δ(A,A∗) + δ(A∗, B) ≤ δ(A,B) ≥ q(δ(A,A∗) + δ(B,A∗))

which is a contradiction with q > 1. �

Theorem 2.21. Let (X, d) be a metric space and T : X → Pcp(X) be a multivalued
operator for which there exists k ∈ (0, 1) such that

δ(T (x), T (y) ≤ kd(x, y).

For all A,B ∈ Pcp(X) we consider

GΨ1
(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B,

where Ψ1 : Pcp(X) → R+, Ψ1(A) = δ(A,A∗) (with A∗ ∈ Pcp(X) is a given set
satisfying A∗ = T (A∗)). Then,

GΨ1(T (A), T (B)) ≤ kGΨ1(A,B) for all A,B ∈ Pcp(X).

Proof. We shall prove that for each A,B ∈ Pcp(X) we have

δ(T (A), A∗) + δ(T (B), A∗) ≤ k(δ(A,A∗)) + δ(B,A∗)) (2.17)

Since A∗ = T (A∗), we have:

δ(A∗, T (A)) + δ(A∗, T (B)) = δ(T (A∗), T (A)) + δ(T (B∗), T (B))

Since
δ(T (a), T (b)) ≤ kd(a, b) for all a ∈ A and b ∈ B

We have (taking supa∈A,b∈B) that

δ(T (A), T (B)) ≤ kδ(A,B)

We obtain:

δ(A∗, T (A)) + δ(A∗, T (B)) = δ(T (A∗), T (A)) + δ(T (A∗), T (B))

≤ kδ(A∗, A) + kδ(A∗, B) = kGψ1
(A,B)
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which means:

GΨ1
(T (A), T (B)) ≤ kGΨ1

(A,B) for all A,B ∈ Pcp(X). �

Lemma 2.22. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ2
(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B

where Ψ2 : Pcp(X) → R+, Ψ2(A) = Hd(A,A
∗) with A∗ ∈ Pcp(X). Then GΨ2 is a

metric on Pcp(X).

Proof. We shall prove that the three axioms of the metric hold:
a) GΨ2

(A,B) ≥ 0 for all A,B ∈ Pcp(X)
GΨ2

(A,B) = Hd(A,A
∗) +Hd(B,A

∗) ≥ 0
GΨ2(A,B) = 0⇔ A = B.
This is equivalent to Ψ2(A) = 0 and Ψ2(B) = 0 i.e

Hd(A,A
∗) = 0 and Hd(B,A

∗) = 0⇔ A = A∗ and B = A∗ ⇒ A = B.

b) GΨ2(A,B) = GΨ2(B,A) is quite obviously. c) For the third axiom of the metric,
let consider A,B,C ∈ Pcp(X). We need to show that:

GΨ2
(A,C) ≤ GΨ2

(A,B) +GΨ2
(B,C)⇔

⇔ Ψ2(A) + Ψ2(C) ≤ Ψ2(A) + Ψ2(B) + Ψ2(B) + Ψ2(C)⇔

⇔ 0 ≤ 2Ψ2(B) = 2Hd(B,A
∗) which is true. �

Lemma 2.23. If (X, d) is a complete metric space, then (Pcp(X), GΨ2
) is complete

metric space.

Proof. We will prove that each Cauchy sequence in (Pcp(X), GΨ2) is convergent. Let
(An)n∈N, (Am)m∈N ∈ Pcp(X), we have:

GΨ2
(An, Am)→ 0, m, n→ 0⇔ Hd(An, A

∗) +Hd(Am, A
∗)→ 0⇔

⇔ Hd(An, A
∗)→ 0

Therefore,

GΨ2(An, A
∗) = Hd(An, A

∗) +Hd(A
∗, A∗)→ 0, n→ 0. �

Theorem 2.24. Let (X, d) be a metric space and T : X → Pcp(x) be a multivalued
contraction with respect to Hd and A,B ∈ Pcp(X). Let

GΨ2
(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B

Where Ψ2 : Pcp(X) → R+, Ψ2(A) = Hd(A,A
∗) (with A∗ ∈ Pcp(X) is a given set

satisfying A∗ = T (A∗)). Then, there exists k ∈ (0, 1) such that

GΨ2
(T (A), T (B)) ≤ kGΨ2

(A,B) for all A,B ∈ Pcp(X).
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Proof. We shall prove that for each A,B ∈ Pcp(X) we have

Hd(T (A), A∗) +Hd(T (B), A∗) ≤ k(Hd(A,A
∗)) +Hd(B,A

∗)).

From (2.2) we have ρd(T (A), T (B)) ≤ Hd(T (A), T (B)).

Then

ρd(T (A), A∗) = ρd(T (A), T (A∗)) ≤ Hd(T (A), T (A∗)) ≤ kHd(A,A
∗).

Interchanging the roles of A and B, we get

ρd(A
∗, T (A)) = ρd(T (A∗), T (A)) ≤ Hd(T (A∗), T (A)) ≤ kHd(A

∗, A).

Making maximum, we get

Hd(T (A), A∗) ≤ kHd(A,A
∗). (2.18)

Similarly for B ∈ Pcp(X), we have

Hd(T (B), A∗) ≤ kHd(B,A
∗). (2.19)

Adding (2.18) and (2.19) we get:

Hd(T (A), A∗) +Hd(T (B), A∗) ≤ k(Hd(A,A
∗)) +Hd(B,A

∗))

which means:

GΨ2
(T (A), T (B)) ≤ kGΨ2

(A,B) for all A,B ∈ Pcp(X). �

Lemma 2.25. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ2(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B,

where Ψ2 : Pcp(X) → R+, Ψ2(A) = Hd(A,A
∗) with A∗ ∈ Pcp(X). Then, the pair

(d,Gψ2) has the property (p∗).

Proof. We have to show

d(a, b) ≤ qGΨ2(A,B) ⇐⇒ d(a, b) ≤ q(Ψ2(A) + Ψ2(B))⇔

⇔ d(a, b) ≤ q(Hd(A,A
∗) +Hd(A,A

∗))

Supposing again contrary: there exists q > 1 and there exists a ∈ A such that for all
b ∈ B we have:

d(a, b) > q(Hd(A,A
∗) +Hd(B,A

∗)).

Then, taking inf
b∈B

Hd(A,B) ≥ ρd(A,B) ≥ D(a,B) ≥ q(Hd(A,A
∗) +Hd(B,A

∗)).

But

Hd(A,A
∗) +Hd(A

∗, B) ≥ Hd(A,B) ≥ q(Hd(A,A
∗) +Hd(B,A

∗)).

Hence q ≤ 1, a contradiction. �
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1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: coroian.iulia@gmail.com


