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Improved error analysis of Newton’s method
for a certain class of operators

I.K. Argyros and S.K. Khattri

Abstract. We present an improved error analysis for Newton’s method in order
to approximate a locally unique solution of a nonlinear operator equation using
Newton’s method. The advantages of our approach under the same computational
cost – as in earlier studies such as [15, 16, 17, 18, 19, 20] – are: weaker sufficient
convergence condition; more precise error estimates on the distances involved
and an at least as precise information on the location of the solution. These
advantages are obtained by introducing the notion of the center γ0−condition.
A numerical example is also provided to compare the proposed error analysis to
the older convergence analysis which shows that our analysis gives more precise
error bounds than the earlier analysis.
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1. Introduction

Let X, Y be Banach spaces. Let U(x, r) and U(x, r) stand, respectively, for the
open and closed ball in X with center x and radius r > 0. L(X,Y) denotes the space
of bounded linear operators from X into Y. In the present paper we are concerned
with the problem of approximating a locally unique solution x? of nonlinear operator
equation

F (x) = 0, (1.1)

where F is a Fréchet continuously differentiable operator defined on U(x0, R) for some
R > 0 with values in Y.

Several problems from various disciplines such as Computational Sciences can
be brought in the form of equation (1.1) using Mathematical Modelling [13, 14, 21, 5,
7, 17, 18]. The solution of these equations can rarely be found in closed form. That is
why the solution methods for these equations are iterative. In particular, the practice
of numerical functional analysis and operator theory for finding such solutions is
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essentially connected to variants of Newton’s method [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The study about convergence matter of Newton methods is usually centered
on two types: semi-local and local convergence analysis. The semi-local convergence
matter is, based on the information around an initial point, to give criteria ensuring
the convergence of Newton methods; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. We find in the
literature several studies on the weakness and/or extension of the hypothesis made
on the underlying operators.

There is a plethora on local as well as semi-local convergence results, we refer
the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22]. The most famous among the semi-local convergence of iterative methods is
the celebrated Kantorovich theorem for solving nonlinear equations. This theorem
provides a simple and transparent convergence criterion for operators with bounded
second derivatives F ′′ or the Lipschitz continuous first derivatives [2, 7, 8, 11, 13, 14,
22]. Another important theorem inaugurated by Smale at the International Conference
of Mathematics [17, 18], where the concept of an approximate zero was proposed and
the convergence criteria were provided to determine an approximate zero for analytic
function, depending on the information at the initial point. Wang [20] generalized
Smale’s result by introducing the γ-condition (see (1.3)). For more details on Smale’s
theory, the reader can refer to the excellent Dedieu’s book [10, Chapter 3.3]. Newton’s
method defined by{

x0 is an initial point
xn+1 = xn − F ′(xn)−1 F (xn) for each n = 0, 1, 2, · · · (1.2)

is undoubtedly the most popular iterative process for generating a sequence {xn}
approximating x? [8]. Here, F ′(x) ∈ L(X,Y) denotes the Fréchet-derivative of F at
x ∈ U(x0, R).

In the present paper motivated by the works in [9, 15, 16, 17, 18, 19, 20, 21] and
optimization considerations, we expand the applicability of Newton’s method under
the γ-condition by introducing the notion of the center γ0-condition (to be precised
in Definition 3.1) for some γ0 ≤ γ. This way we obtain more precise upper bounds
on the norms of ‖ F ′(x)−1 F ′(x0) ‖ for each x ∈ U(x0, R) (see (1.3), (2.2) and (2.3))
leading to weaker sufficient convergence conditions and a tighter convergence analysis
than in earlier studies such as [15, 16, 17, 18, 19, 20, 21]. Our approach of introducing
center-Lipschitz condition has already been fruitful for expanding the applicability
of Newton’s method under the Kantorovich-type theory [2, 3, 4, 5, 6, 7, 13, 14, 22].
Wang [20] used the γ−Lipschitz condition which is given by∥∥∥F ′(x0)−1 F ′′(x)

∥∥∥ ≤ 2 γ(
1− γ ‖x− x0‖

)3 for each x ∈ U(x0, r), 0 < r ≤ R (1.3)

where γ > 0 and x0 are such that γ ‖ x− x0 ‖< 1 and F ′(x0)−1 ∈ L(Y,X) to show
the following semi-local convergence result for Newton’s method.
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Theorem 1.1. [20] Let F : U(x0, R) ⊆ X −→ Y be twice-Fréchet differentiable.
Suppose there exists x0 ∈ U(x0, R) such that F ′(x0)−1 ∈ L(Y,X) and∥∥∥F ′(x0)−1 F (x0)

∥∥∥ ≤ β; (1.4)

condition (1.3) holds and for α = γ β

α ≤ 3− 2
√

2; (1.5)

t? ≤ R, (1.6)

where

t? =
1 + α−

√
(1 + α)2 − 8α

4 γ
≤
(

1− 1√
2

)
1

γ
. (1.7)

Then, sequence {xn} generated by Newton’s method is well defined, remains in
U(x0, t

?) for each n = 0, 1, · · · and converges to a unique solution x? ∈ U(x0, t
?)

of equation F (x) = 0.

Moreover, the following error estimates hold

‖xn+1 − xn‖ ≤ tn+1 − tn (1.8)

and

‖xn+1 − x?‖ ≤ t? − tn, (1.9)

where scalar sequence {tn} is defined by
t0 = 0, t1 = β,

tn+1 = tn +
γ (tn − tn−1)2(

2− 1

(1− γ tn)2

)
(1− γtn)(1− γtn−1)2

= tn −
ϕ(tn)

ϕ′(tn)
(1.10)

for each n = 1, 2, · · · , where

ϕ(t) = β − t+
γ t2

1− γ t . (1.11)

Notice that t? is the small zero of equation ϕ(t) = 0, which exists under the hypothesis
(1.5).

The rest of the paper is organized as follows. Section 2 contains the semi-local
and local convergence analysis of Newton’s method. A numerical example is given in
the concluding Section 3.

2. Semi-local convergence of Newton’s method

We need some auxiliary results. We shall use the Banach lemma on invertible
operators [2, 7, 12].
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Lemma 2.1. Let A, B be bounded linear operators, where A is invertible and ‖ A−1 ‖
‖ B ‖< 1.

Then, A+B is invertible and

‖ (A+B)−1 ‖≤ ‖ A−1 ‖
1− ‖ A−1 ‖ ‖ B ‖ . (2.1)

We shall also use the following definition of Lipschitz and local Lipschitz conditions.

Definition 2.2. (see [9, p. 634], [22, p. 673]) Let F : U(x0, R) −→ Y be Fréchet-
differentiable on U(x0, R). We say that F ′ satisfies the Lipschitz condition at x0 if
there exists an increasing function ` : [0, R] −→ [0,+∞) such that

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ `(r) ‖ x− y ‖
for each x, y ∈ U(x0, r), 0 < r ≤ R. (2.2)

In view of (2.2), there exists an increasing function `0 : [0, R] −→ [0,+∞) such that
the center-Lipschitz condition

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ `0(r) ‖ x− x0 ‖
for each x ∈ U(x0, r), 0 < r ≤ R (2.3)

holds. Clearly,

`0(r) ≤ `(r) for each r ∈ (0, R] (2.4)

holds in general and `(r)/`0(r) can be arbitrarily large [2, 3, 4, 5, 6, 7].

Lemma 2.3. (see [9, p. 638]) Let F : U(x0, R) −→ Y be Fréchet-differentiable on
U(x0, R). Suppose F ′(x0)−1 ∈ L(Y,X) and there exist 0 < γ0 ≤ γ such that γ0R < 1,
γ R < 1. Then, F ′ satisfies conditions (2.2) and (2.3), respectively, with

`(r) :=
2 γ

(1− γ r)3 (2.5)

and

`0(r) :=
γ0 (2− γ0 r)
(1− γ0 r)2

. (2.6)

Notice that with preceding choices of functions ` and `0, we have that

`0(r) < `(r) for each r ∈ (0, R]. (2.7)

We also need a result by Zabrejko and Nguen.

Lemma 2.4. (see [22, p. 673]) Let F : U(x0, R) −→ Y be Fréchet-differentiable on
U(x0, R). Suppose F ′(x0)−1 ∈ L(Y,X) and

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ λ(r) ‖ x− y ‖
for each x, y ∈ U(x0, r), 0 < r ≤ R

for some increasing function λ : [0, R] −→ [0,+∞). Then, the following assertion
holds

‖ F ′(x0)−1 (F ′(x+ p)− F ′(x)) ‖≤ Λ(r+ ‖ p ‖)− Λ(r)
for each x ∈ U(x0, r), 0 < r ≤ R and ‖ p ‖≤ R− r,
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where

Λ(r) =

∫ R

0

λ(t) dt.

In particular, if

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ λ0(r) ‖ x− x0 ‖
for each x ∈ U(x0, r), 0 < r ≤ R

for some increasing function λ0 : [0, R] −→ [0,+∞). Then, the following assertion
holds

‖ F ′(x0)−1 (F ′(x0 + p)− F ′(x0)) ‖≤ Λ0(‖ p ‖)
for each 0 < r ≤ R and ‖ p ‖≤ R− r,

where

Λ0(r) =

∫ R

0

λ0(t) dt.

Using the center-Lipschitz condition and Lemma 2.3, we can show the following
result on invertible operators.

Lemma 2.5. Let F : U(x0, R) −→ Y be Fréchet-differentiable on U(x0, R). Suppose
F ′(x0)−1 ∈ L(Y,X) and γ0R < 1 for some γ0 > 0 and x0 ∈ X; center-Lipschitz

(2.3) holds on U0 = U(x0, r0), where `0(r) is given by (2.6) and r0 = (1 − 1√
2

)
1

γ0
.

Then F ′(x)−1 ∈ L(Y,X) on U0 and satisfies

‖ F ′(x)−1 F ′(x0) ‖≤
(

2− 1

(1− γ0 r)2
)−1

. (2.8)

Proof. We have by (2.3), (2.6) and x ∈ U0 that

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ `0(r) r ≤ 1

(1− γ0 r)2
− 1 < 1.

The result now follows from Lemma 2.1. The proof of Lemma 2.5 is complete. �

Using (1.3) a similar to Lemma 2.1, Banach lemma was given in [20] (see also [9]).

Lemma 2.6. Let F : U(x0, R) −→ Y be twice Fréchet-differentiable on U(x0, R).
Suppose F ′(x0)−1 ∈ L(Y,X) and γ R < 1 for some γ > 0 and x0 ∈ X; condition

(1.3) holds on V0 = U(x0, r0), where r0 = (1 − 1√
2

)
1

γ
. Then F ′(x)−1 ∈ L(Y,X) on

V0 and satisfies

‖ F ′(x)−1 F ′(x0) ‖≤
(

2− 1

(1− γ r)2
)−1

. (2.9)

Remark 2.7. It follows from (2.8), (2.9) and γ0 ≤ γ that (2.8) is more precise upper
bound on the norm of F ′(x)−1 F ′(x0). This observation leads to a tighter majorizing
sequence for {xn} (see Proposition 2.11).

We need an auxiliary result on majorizing sequences for Newton’s method (1.2).
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Lemma 2.8. Let β > 0, γ0 > 0, γ > 0 with γ0 > γ be given parameters. Define
parameters si for i = 0, 1, 2 by

s0 = 0, s1 = β, s2 = β +
γ0 β

2[
2− 1

(1− γ0 β)2

]
(1− γ0 β)

(2.10)

and function Ψ on [β, 1/γ0] by

Ψ(t) = (t− β)γ β (1− γ0 t)2 −
(
t− β − (s2 − s1)

)[
2(1− γ0 t)2 − 1

]
(1− γ t)3. (2.11)

Suppose that

β < b := min

{
1

γ
,

0.25331131

γ0

}
(2.12)

then, the following hold

0 < s2 − s1 <
1− γ0β
γ0

, (2.13)

γ0β < 1− 1√
2

(2.14)

and function ψ has zeros in (β, 1/γ0). Denote by ρ the smallest zero of the function
Ψ in (β, 1/γ0). Moreover suppose that

s2 ≤ ρ < b (2.15)

where s2 and b are given in (2.10) and (2.12), respectively. Then, for

δ = 1− s2 − s1
ρ− β (2.16)

the following hold

0 <
γβ(1− γ0ρ)2(

2(1− γ0ρ)2 − 1
)

(1− γρ)3
= δ < 1, (2.17)

s2 − s1
1− δ + β = ρ (2.18)

and the iteration {sn} defined by

sn+2 = sn+1 +
γ(sn+1 − sn)2[

2− 1

(1− γ0 sn+1)2

]
(1− γ sn+1)(1− γ sn)2

(2.19)

for each n = 1, 2, . . . is strictly increasing, bounded from above by ρ and converges to
its unique least upper bound s? which satisfies

s2 ≤ s? ≤ ρ. (2.20)

Furthermore, the following estimates hold

sn+2 − sn+1 ≤ δn(s2 − s1) for each n = 1, 2, . . . . (2.21)
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Proof. The left hand side inequality in (2.13) is true by the definition of s1, s2 and
since 2(1 − γ0β)2 − 1 > 0 and 1 − γ0β > 0 by (2.12). The right hand side of (2.13)
shall be true, if

γ0(s1 − s0)2[
2(1− γ0 s1)2 − 1

]
(1− γ0β)

<
1− γ0β
γ0

or (γ0β)2 < (1− γ0β)2
(

2(1− γ0 β)2− 1
)

or for z = 1− γ0β if 2z4− 2z2 + 2z− 1 > 0,

or if z > 0.74668869 which is true by (2.12). Estimate (2.14) follows from (2.12) since

1− 1/
√

2 = 0.292853219 > 0.25331131 . . . . Using (2.11) we have that

Ψ(β) = (s2 − s1)
[
2(1− γ2β)2 − 1

]
(1− γβ)3 > 0,

since s2 − s1 > 0, 2(1− γ0β)2 − 1 > 0 and 1− γβ > 0. We also have that

Ψ(
1

γ0
) =

[ 1

γ0
− β − (s2 − s1)

](
1− γ

γ0

)(
1− γ

γ0

)2
< 0

by (2.13) and γ0 < γ. It follows from the Intermediate mean value theorem applied to
function Ψ on the interval (β, 1/γ0) that function Ψ has zeros on (β, 1/γ0). Denote by
ρ the smallest such zero. Then, it follows from the definition of δ, ρ that the equality
(2.17) holds. The left hand inequality holds by (2.12) and (2.15). The right hand side
inequality in (2.17) holds by (2.13) and (2.15) since β < s2 ≤ ρ. Moreover, we have
by (2.16), (2.17) and (2.19) that

0 < s3 and 0 < s3 − s2 ≤ δ(s2 − s1). (2.22)

Then, we also have by (2.22) that

s3 ≤ s2 + δ(s2 − s1)− s1 + s1 = s1 + (1 + δ)(s2 − s1)

= β +
1− δ2
1− δ (s2 − s1) ≤ β +

s2 − s1
1− δ = ρ.

Hence, we deduce that

s3 ≤ ρ. (2.23)

Suppose that

0 < sn+1, 0 < sn+ − sn ≤ δn(s2 − s1) and sn+1 ≤ ρ. (2.24)

Then, we have by (2.31), (2.27) and (2.36) that

sn+2 ≥ 0,

sn+2 − sn+1 =
γ(sn+1 − sn)(sn+1 − sn)[

2− 1

(1− γ0 sn+1)2

]
(1− γ sn+1)(1− γ sn)2

≤ γβ[
2− 1

(1− γ0 ρ)2

]
(1− γρ)3

(sn+1 − sn) = δ(sn+1 − sn)

≤ δn+1(s2 − s1)
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and

sn+2 ≤ sn+1 + δn+1(s2 − s1) ≤ sn + δn(s2 − s1) + δn+1(s2 − s1)

≤ s1 + (1 + δ)(s2 − s1) + · · ·+ δn(s2 − s1) + δn+1(s2 − s1)

= s1 + (1 + δ + · · ·+ δn + δn+1)(s2 − s1)

= s1 +
1− δn+2

1− δ (s2 − s1) ≤ ρ.

Hence, by mathematical induction the proof for (2.24) is finished. Hence, sequence
{sn} is monotonically increasing, bounded from above by ρ and as such it converges
to s?. �

We can show the main following semi-local convergence theorem for Newton’s
method.

Theorem 2.9. Suppose that
(a) There exist x0 ∈ X and β > 0 such that

F ′(x0)−1 ∈ L(Y,X) and
∥∥∥F ′(x0)−1 F (x0)

∥∥∥ ≤ β;

(b) Operator F ′ satisfies Lipschitz and center-Lipschitz conditions (2.2) and (2.3)
on U(x0, r0) with `(r) and `(r) are given by (2.5) and (2.6), respectively;

(c) U0 ⊆ U(x0, R);
(d) Hypotheses of Lemma 2.8 hold for sequence {sn} defined by (2.19).
Then, the following assertions hold: sequence {xn} generated by Newton’s method

is well defined, remains in xoverlineU(x0, s
?) for each n = 0, 1, · · · and converges

to a unique solution x? ∈ U(x0, s
?) of equation F (x) = 0. Moreover, the following

estimates hold
‖xn+1 − xn‖ ≤ sn+1 − sn (2.25)

and
‖xn − x?‖ ≤ s? − sn for each n = 0, 1, 2, · · · . (2.26)

Proof. We use Mathematical Induction to prove that

‖ xk+1 − xk ‖≤ sk+1 − sk (2.27)

and
U(xk+1, s

? − sk+1) ⊆ U(xk, s
? − sk) for each k = 1, 2, · · · . (2.28)

Let z ∈ U(x1, s
? − s1). Then, we obtain that

‖ z − x0 ‖≤‖ z − x1 ‖ + ‖ x1 − x0 ‖≤ s? − s1 + s1 − s0 = s? − s0,
which implies z ∈ U(x0, s

? − s0). Note also that

‖ x1 − x0 ‖=‖ F ′(x0)−1 F (x0) ‖≤ η = s1 − s0.
Hence, estimates (2.27) and (2.28) hold for k = 0. Suppose these estimates hold for
natural integers n ≤ k. Then, we have that

‖ xk+1 − x0 ‖≤
k+1∑
i=1

‖ xi − xi−1 ‖≤
k+1∑
i=1

(si − si−1) = sk+1 − s0 = sk+1
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and

‖ xk + θ (xk+1 − xk)− x0 ‖≤ sk + θ (sk+1 − sk) ≤ s? for all θ ∈ (0, 1).

Using (2.2), Lemma 2.1 for x = xk+1 and the induction hypotheses we get that

‖ F ′(x0)−1 (F ′(xk+1)− F ′(x0)) ‖ ≤ 1

(1− γ0 ‖ xk+1 − x0 ‖)2
− 1

≤ 1

(1− γ0 sk+1)2
− 1 < 1.

(2.29)

It follows from (2.29) and the Banach lemma 2.1 on invertible operators that
F ′(xk+1)−1 exists and

‖ F ′(xk+1)−1 F ′(x0) ‖≤
(

2− 1

(1− γ0 sk+1)2

)−1
. (2.30)

Using (1.2), we obtain the approximation

F (xk+1) = F (xk+1)− F (xk)− F ′(xk) (xk+1 − xk)

=

∫ 1

0

(F ′(xτk)− F ′(xk)) dτ (xk+1 − xk),
(2.31)

where xτk = xk + τ (xk+1 − xk) and xτ sk = xk + τ s (xk+1 − xk) for each 0 ≤ τ, s ≤ 1.
Using (2.9) for k = 0 we obtain∥∥∥F ′(x0)−1F (x1)

∥∥∥ ≤ ∫ 1

0

∥∥∥∥F ′(x0)
[
F ′(x0 + τ(x1 − x0))− F ′(x0)

]∥∥∥∥dτ‖x1 − x0‖

≤
∫ 1

0

[ 1

(1− γ0τ‖x1 − x0‖)2
− 1
]
dθ‖x1 − x0‖

≤ γ0‖x1 − x0‖2
1− γ0‖x1 − x0‖

≤ γ0(s1 − s0)

1− γ0 s1
.

Then, using (2.9) for k = 1, 2, . . . , we get

‖ F ′(x0)−1 F (xk+1) ‖
≤
∫ 1

0

‖ F ′(x0)−1 (F ′(xτk)− F ′(xk)) ‖ dτ ‖ xk+1 − xk ‖

≤
∫ 1

0

∫ 1

0

2 γ τ ds dτ ‖ xk+1 − xk ‖2
(1− γ ‖ xτ sk − x0 ‖)3

≤
∫ 1

0

∫ 1

0

2 γ τ ds dτ ‖ xk+1 − xk ‖2
(1− γ ‖ xk − x0 ‖ −γ τ s ‖ xk+1 − xk ‖)3

=
γ ‖ xk+1 − xk ‖2

(1− γ ‖ xk − x0 ‖ −γ ‖ xk+1 − xk ‖) (1− γ ‖ xk − x0 ‖)2

≤ γ (sk+1 − sk)2

(1− γ sk+1) (1− γ sk)2

(‖ xk+1 − xk ‖
sk+1 − sk

)2

≤ γ (sk+1 − sk)2

(1− γ sk+1) (1− γ sk)2
.

(2.32)
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(see also [16, p. 33, estimate (3.19)]) Then, in view of (1.2), (2.19), (2.30) and (2.32)
we obtain that

‖x2 − x1‖ ≤
∥∥∥F ′(x1)−1F ′(x0)

∥∥∥∥∥∥F ′(x0)−1F (x1)
∥∥∥

≤ 1

2− 1

(1− γ0s1)2

γ0(s1 − s0)2

1− γ0s1
= s2 − s1

and furthermore for k = 1, 2, . . . we obtain

‖ xk+2 − xk+1 ‖=‖ (F ′(xk+1)−1 F ′(x0)) (F ′(x0)−1 F (xk+1)) ‖
≤‖ F ′(xk+1)−1 F ′(x0) ‖ ‖ F ′(x0)−1 F (xk+1) ‖
≤ 1

2− 1

(1− γ0 sk+1)2

γ (sk+1 − sk)2

(1− γ sk+1) (1− γ sk)2
= sk+2 − sk+1.

(2.33)

Hence, we showed (2.27) holds for all k ≥ 0. Furthermore, let w ∈ U(xk+2, s
?−sk+2).

Then, we have that

‖ w − xk+1 ‖ ≤ ‖ w − xk+2 ‖ + ‖ xk+2 − xk+1 ‖
≤ s? − sk+2 + sk+2 − sk+1 = s? − sk+1.

(2.34)

That is w ∈ U(xk+1, s
?−sk+1). The induction for (2.27) and (2.28) is now completed.

Lemma 2.5 implies that {sn} is a complete sequence. It follows from (2.27) and
(2.28) that {xn} is also a complete sequence in a Banach space X and as such it
converges to some x? ∈ U(x0, s

?) (since U(x0, s
?) is a closed set).

By letting k −→∞ in (2.32) we get F (x?) = 0. Estimate (2.26) is obtained from
(2.25) by using standard majorization techniques [2, 7, 12, 13].

Finally, to show the uniqueness part, let y? ∈ U(x0, s
?) be a solution of equation

(1.1). Using (2.3) for x replaced by z? = x? + τ (y? − x?) and G =

∫ 1

0

F ′(z?) dτ we

get as in (2.9) that ‖ F ′(x0)−1 (G − F ′(x0)) ‖< 1. That is G−1 ∈ L(Y,X).

Using the identity 0 = F (x?)− F (y?) = G (x? − y?), we deduce x? = y?. �

Remark 2.10. (a) The convergence criteria in Theorem 2.9 are weaker than in Theorem
1.1. In particular, Theorem 1.1 requires that operator F is twice Fréchet-differentiable
but our Theorem 2.9 requires only that F is Fréchet-differentiable.

Notice also that if F is twice Fréchet-differentiable, then (2.2) implies (1.3).
Therefore, Theorem 2.9 can apply in cases when Theorem 1.1 cannot.

Notice also in practice the computation of constant γ requires the computation
of constant γ0 as a special case.

(b) Concerning the choice of constants γ and γ0 let us suppose that the following
Lipschitz conditions hold. Operator F satisfies L−Lipschitz condition at x0∥∥∥∥F ′(x0)−1

[
F ′(x)− F ′(y)

]∥∥∥∥ ≤ L‖x− y‖ for each x, y ∈ U(x0, R0). (2.35)
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Operator F satisfies the center L0−Lipschitz condition at x0∥∥∥∥F ′(x0)−1
[
F ′(x)− F ′(x0)

]∥∥∥∥ ≤ L0‖x− x0‖ for each x ∈ U(x0, R0). (2.36)

Then, (2.35) implies (2.3) for γ0 = L0/2 and l0(r) = γ0(2−γ0 r)/(1−γ0 r)2. Moreover,
if F is continuously twice-Fréchet differentiable, the (2.34) implies (2.2)for l(r) =
2γ/(1 − γ r)3 and we can set γ = L/2. Examples where γ0 < γ or L0 < L can be
found in [2, 3, 4, 5, 6, 7].

Proposition 2.11. Let F : U(x0, R) −→ Y be twice Fréchet-differentiable on U(x0, R).
Suppose that hypotheses of Theorem 1.1 and the center-Lipschitz condition (2.3) hold
on U(x0, r0). Then, the following assertions hold

(a) Scalar sequences {tn} and {sn} are increasingly convergent to t?, s?, respec-
tively.

(b) Sequence {xn} generated by Newton’s method is well defined, remains in
U(x0, r0) for each n = 0, 1, · · · and converges to a unique solution x? ∈ U(x0, r0) of
equation F (x) = 0. Moreover, the following estimates hold for each n = 0, 1, · · ·

sn ≤ tn, (2.37)

sn+1 − sn ≤ tn+1 − tn, (2.38)

s? ≤ t?, (2.39)

‖ xn+1 − xn ‖≤ sn+1 − sn
and

‖ xn − x? ‖≤ s? − sn.
Proof. According to Theorems 1.1 and 2.9 we only need to show (2.37)–(2.39). Using
the definition of sequences {tn}, {sn} and γ0 ≤ γ, a simple inductive argument shows
(2.37) and (2.38). Finally, (2.39) is obtained by letting n −→∞. �

Remark 2.12. (a) In view of (2.37)–(2.39), our error analysis is tighter and new in-
formation on the location of the solution x? at least as precise as the old one. Notice
also that estimates (2.37) and (2.38) hold as strict inequalities for n > 1 if γ0 < γ
(see also the numerical example) and these advantages hold under the same or less
computational cost as before (see Remark 2.10).

(b) If F is an analytic operator, then a possible choice for γ0(or γ) is given by

γ0 = sup
n>1

∥∥∥∥∥F ′(x0)−1F (x0)n

n!

∥∥∥∥∥
1

n− 1

This choice is due to Smale [17] (see also [15, 16, 17, 18, 19, 20]).

We complete this section with an useful and obvious extension.

Theorem 2.13. Suppose there exists an integer N ≥ 1 such that

s0 < s1 < · · · < sN < R0 = min

{
1

γ
,
(

1− 1√
2

) 1

γ0

}
.
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Let δN = γ βN and βN = tN − tN−1. Conditions of Lemma 2.8 are satisfied for δN
replacing δ. Then, the conclusions of Theorem 2.9 hold. Notice that if N = 1 Theorem
2.13 reduces to Theorem 2.9.

3. Numerical example

We illustrate the theoretical results with a numerical example.

Example 3.1. Let X = Y = R2, x0 = (1, 0), D = U(x0, 1 − κ) for κ ∈ (0, 1). Let us
define function F on D as follows

F (x) = (ζ31 − ζ2 − κ, ζ1 + 3 ζ2 − 3
√
κ) with x = (ζ1, ζ2). (3.1)

Using (3.1) we see that the γ-Lipschitz condition is satisfied for γ = 2 − κ and γ0-
Lipschitz condition is satisfied for γ0 = (3− κ)/2. We also have that β = (1− κ)/3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

·10−2

κ ≈ 0.6255180805

κ

α = γ β

3− 2
√
2

Figure 1. The condition (1.5) of the Theorem 1.1 [20].

The Figure 3.1 plots the condition (1.5) of the Theorem 1.1 [20]. In the Figure

3.1, we notice that for κ ≤ 3/2 −
(√

37− 24
√

2
)
/2, the condition (1.5) fails. As a

consequence the Theorem 1.1 [20] is not applicable. Thus according to the Theorem
1.1 [20] there is no guarantee that the Newton’s method starting from x0 will converge
to the solution x? = ( 3

√
κ, 0).

To compare the error bounds for the Theorem 1.1 and the Lemma 2.8, we con-
sider κ = 0.7. From the Figure 3.1, it is clear that the condition (1.5) holds as a result
the Theorem 1.1 is applicable. For the hypotheses (2.12) and (2.15) of Lemma 2.8 we
obtain

0.1000000000 < 0.2202707044,

0.1179672 < 0.1280403078 < 0.2202707044

respectively. Thus our Lemma 2.8 is applicable and the Newton’s method starting at
x0 = (1, 0) will converge to the solution x? = ( 3

√
κ, 0) for κ = 0.7. Now we compare
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the error bounds generated by the sequence {tn} given in (1.10) and the sequence
{sn} defined in (2.19).

Table 1. Comparison between the sequences {sn} (2.19) and {tn} (1.10) [20].

n sn tn sn+1 − sn tn+1 − tn
0 0.000000× 10+00 0.000000× 10+00 1.000000× 10−01 1.000000× 10−01

1 1.000000× 10−01 1.000000× 10−01 1.796716× 10−02 2.201246× 10−02

2 1.179672× 10−01 1.220125× 10−01 9.900646× 10−04 1.683820× 10−03

3 1.189572× 10−01 1.236963× 10−01 3.196367× 10−06 1.069600× 10−05

4 1.189604× 10−01 1.237070× 10−01 3.341751× 10−11 4.338887× 10−10

5 1.189604× 10−01 1.237070× 10−01 3.652693× 10−21 7.140132× 10−19

6 1.189604× 10−01 1.237070× 10−01 4.364065× 10−41 1.933579× 10−36

7 1.189604× 10−01 1.237070× 10−01 6.229418× 10−81 1.417992× 10−71

8 1.189604× 10−01 1.237070× 10−01 1.269287× 10−160 7.626002× 10−142

9 1.189604× 10−01 1.237070× 10−01 5.269686× 10−320 2.205685× 10−282

In the Table 1, we notice that the error bounds given by the proposed sequence
{sn} are tighter than those given by the older sequence {tn} [20].

Conclusions. Using the notion of the center γ0-Lipschitz condition, we presented a new
convergence analysis for Newton’s method for approximating a locally unique solution
of nonlinear equation in a Banach space setting. Under the same computational cost
– as in earlier studies such as [15, 16, 17, 18, 19, 20] – new analysis provide larger
convergence domain, weaker sufficient convergence conditions and better error bounds.
A numerical example validating the theoretical results is also reported in this study.
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