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Quantitative uniform approximation by
generalized discrete singular operators

George A. Anastassiou and Merve Kester

Abstract. Here we study the approximation properties with rates of generalized
discrete versions of Picard, Gauss-Weierstrass, and Poisson-Cauchy singular op-
erators. We treat both the unitary and non-unitary cases of the operators above.
We establish quantitatively the pointwise and uniform convergences of these oper-
ators to the unit operator by involving the uniform higher modulus of smoothness
of a uniformly continuous function.
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1. Introduction

This article is motivated mainly by [4], where J. Favard in 1944 introduced the
discrete version of Gauss-Weierstrass operator

(Fof) (z) = V% V_i,of (%) exp <n (% _ x)2> , (1.1)

n € N, which has the property that (F,f) (z) converges to f(x) pointwise for each

z € R, and uniformly on any compact subinterval of R, for each continuous function

f (f € C(R)) that fulfills |f(t)] < AeBY” ¢ € R, where A, B are positive constants.
The well-known Gauss-Weierstrass singular convolution integral operators is

(Wi f) (z) = \/Z 7 f(u)exp (—n (u— x)Q) du. (1.2)

We are also motivated by [1], [2], and [3] where the authors studied extensively the
approximation properties of particular generalized singular integral operators such as
Picard, Gauss-Weierstrass, and Poisson-Cauchy as well as the general cases of singular
integral operators. These operators are not necessarily positive linear operators.
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In this article, we define the discrete versions of the operators mentioned above
and we study quantitatively their uniform approximation properties regarding con-
vergence to the unit. We examine thoroughly the unitary and non-unitary cases and
their interconnections.

2. Background

In [3] p.271-279, the authors studied smooth general singular integral operators
O, ¢(f,z) defined as follows. Let £ > 0 and let ¢ be Borel probability measures on
R. For r € N and n € Z, they defined

(_1)7“7](;).]7“? .] = 17"'7T7

R AR I :zl(—nr—i(;?)z'—", j=0

(2.1)

that is >~ «; = 1. Let f : R — R be Borel measurable, they defined
§=0

Onclhin) = [ (S aifte+i0) | duett) (2.2)

— 00

§=0
for z € R.
The operators ©,.¢ are not necessarily positive linear operators. Indeed we have:
Let r = 2, n = 3. Then oy = %, a1 = =2, ap = é. Consider f(t) =t? > 0 and
z = 0. Then

o

2
B¢ (t%0) = / D it | dpe(t)
. \i=o
o0
3 2
o0
given that /thuf(t)<oo.

Authors assumed that ©,¢(f,z) € R for all z € R.
In [3] p.272, the rth modulus of smoothness finite given as

wr(fM h) = sup AL £ ()] o, < 00, h >0, (2.3)
t|<

where||.|| is the supremum norm with respect to z, f € C*(R), n € Z*, and

00,T
r

ALFO) () = 3 (—1)7 (;)ﬂ") (e + ). (2.4)

=0
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They introduced also

= aji*, k=1,..,neN, (2.5)
and the even function
(] = w)
Gnl(t / () neN 2.6
0= | e w (26)
with
Go(t) (fi1t), teR (2.7)

In [3] p.273, they proved

Theorem 2.1. The integrals cp¢ = ffooo thdue(t), k = 1,...,n, are assumed to be
finite. Then

Or¢(f;2) )= f 5kck,§
k=1

< [ Guhauco) (2.8)

Moreover, they showed ([3], p.274)

Corollary 2.2. Suppose w.,.(f,€) < 00,& > 0. Then it holds for n =0 that

Oncfi) ~ F@)| < [ (1t die 1) (2.9)
Furthermore, by using the inequalities
e
Ga(t) < a0, (7, ) (210)
and
wr(fyA) < A+ 1) we(f, ), A\t >0, (2.11)

they obtained

K1 = |0,¢(fi) Z Do (212)
k— 00,T
) o0
S%/_ It (1+?) dpe(t)
and
Ko = [0re(fi2) = f(@)].. 213

<wr(f,6) /Z <1 + @)Tdug(t)'

Additionally, they demonstrated ([3], p.279)
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Theorem 2.3. Let f € C"(R), n € Z*t. Set ¢ ¢ := ffooo thdue(t), k =1,...,n. Suppose
also wy(f™,h) < 00,Yh > 0. It is also assumed that

/O:O It (1 + |§>Tdu5(t) < . (2.14)

n

Té(f7 Z

P
< M |t|” ( > e(t).

When n = 0, the sum in L.H.S (2.15) collapses.

Then

OkCh,g (2.15)

0o, T

3. Main Results

Here we study important special cases of ©,.¢ operators for discrete probability
measures .

Let fe C*"(R),neZ",0<£<1, 2 €R.

i) When

18

V=—00

we define the generalized discrete Picard operators as

:ij: (i:oajf(z +j1/)> eiéy‘
e (fix) = - - Z = . (3.2)

V=—00

1) When

pe(v) = ————=» (3.3)
> et

v=—00

we define the generalized discrete Gauss-Weierstrass operators as

v=—o0 \ j=0

> (iajmﬂw) -
v (fia) = :

o0 —v2
N

V=—00
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iii1) Let o« € N, and 8 > % When

2a 2a -B
pe() =~
> (v2e 4 g20)7F

v=—00

we define the generalized discrete Poisson-Cauchy operators as

v=—o00 \ j=0

> (Z o f( +ju>> (12 4 g20) ™"

:,g (f;z) = 50
> (g

v=—00
Observe that for ¢ constant we have

Pre(cx) =W (gr) =05, (c;7) =c.

r

43

(3.5)

(3.7)

We assume that the operators P, (f;z), W (fiz), and ©; ; (f;z) € R, for x € R.

This is the case when || f|| , » < oo.

iv) Let f € Cy(R) (uniformly continuous functions) or f € Cy(R) (continuous

and bounded functions). When

—lv]

e ¢

142 E

pe(v) := pe,p(v) :

we define the generalized discrete non-unitary Picard operators as

> (iww)e!

v=—o00 \ j=0

Pre(fi2) = 14 26e ¢

Here ¢ p(v) has mass

—lv]

S e

V=—00
Mmep = —— 7.
1+ 2¢e ¢
We observe that
—|v]
pep(v) e
- [%S) —|v]
me,p Z e ¢
v=—00

which is the probability measure (3.1) defining the operators P;.
v) Let f € C,(R) or f € Cp(R).When

pe(v) == pew(v) ==

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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x
with erf(z) = % i et dt, erf (00) = 1, we define the generalized discrete non-unitary
0

Gauss-Weierstrass operators as

v=—o0 \ j=0

\/7?5(17erf (%Z)) +1

> (i 0 i +jy>) -
WT,E (f7x) =

(3.13)

Here pie,w (v) has mass

mew = . (314)

We observe that

pewv) e ’ (3.15)

00 —v2
me.w S e e

V=—00

which is the probability measure (3.3) defining the operators Wie.
Clearly, here P ¢ (f;x), Wre (f;2) € R, for z € R.
We present our first result.

Proposition 3.1. Let n € N. Then, there exists K1 > 0 such that

e —lv]

s
> v (1+ ) e
>ooe

V=—00

< K| < o0 (3.16)

—lv

for all € € (0,1].

Proof. We observe that

then
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Therefore, we obtain
o0

v=—00

r  —lvl
> vl (14 ) e

(o]

e

V=—00

<> <1+

v=—00

I:Rl.

We notice that

Since we have % > 1 for v > 1, we get

N

||

3

3= 2/ >
=D S Z o
k=0
we obtain
ZT‘
— < 27rl.
ez

Hence, by (3.18), (3.19), and (3.21), we have

[v]

3

oo
R < 227'+IT!ZV”eTé
v=1

oo
< 2%ty Z Ve
v=1

Now, we define the function f(v) = v™e= for v > 1. Then, we have

).

’

fw)y=v"tez

< (

v
n— —

2

v

-

2 .

45

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Thus, f(v) is positive, continuous, and decreasing for v > 2n. Hence, by shifted triple
inequality similar to [5], we get

e —_
> e (3.23)
v=1

2n e’}
= Zyne% + Z Ve
v=1 v=2n+1
2n 0
< Zun’e%—&— / Ve dy + f(2n + 1)
v=1 2n+1
2n o0 )
< Zy”e% —&-/u”e%du—l— (2n + 1)"6_%
v=1 0
oo
(2n+1) —v
= M+ @n+1)" 2 +/V”67du,
0
where
2n
Ap 1= Z Ve < 0o (3.24)
v=1

for all ¢ € (0,1]. Furthermore, by the integral calculation in [3], p.86, we obtain

oo

/V”e%dz/ = npl2"tL (3.25)

0
Thus, by (3.22), (3.23), and (3.25) , we get

R < 22ty ()\n (@2n+1)re Y n!2“+1) (3.26)
< o©

for all £ € (0,1]. Let Ky := 22r+1p] (/\n + (204 1)re= 5 +n!2n+1). Then, by
3.17) and (3.26) , the proof is done. g
(3.17) ; the p

Theorem 3.2. The sums

) —|v
S vke e
Cz,ﬁ = %7 k= 1,...,77,7 (327)
>ooe
v=—00

are finite for all € € (0,1]. Moreover,

" ph) 2
Pre(fsz) = fla) =) f k,(x)ékcz,g < (3.28)
k=1 : > oec
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*

Clearly the operators P

r

Proof. We observe that
0,

—lv]

0o
§ k 00 v
ve ¢ = ==
2§Vke€,

v=—o00 =1

Assume that k is even. Then, since

and

we obtain

oo

< > (1+

Vv=—00

Thus, by (3.30) and Proposition 3.1, we have

v|

£

Ty
e ¢ .

¢ are not necessarily positive operators.
)

k is odd

k is even

for all ¢ € (0,1]. Therefore, by Theorem 2.1, we derive (3.28).

For n = 0, we have the following result

Corollary 3.3. Let f € C,(R).Then

|Pre (fr2) = fla)] < =

Proof. By Corollary 2.2.

Remark 3.4. Inequalities (3.28) and (3.31) give us the uniform estimates

" fk)
e (i)~ 1) - 3 T P
k=1

00,T

<

S Gaw)e

V=—00

—lv|

£

S e

V=—00

—lv

47

(3.29)

(3.30)

(3.31)

(3.32)
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and
3 wnlfiles
H g (f;z) = fl= )Hoo,.rg ~ Oooo —lv]
N
for n=0.

Remark 3.5. By (2.12) and (2.13), we obtain

n k)
Ki =P (fio) - f@) - 20 T e
k=1
00 r  —lv|
(f(n)af) y§m|v|n (1+%) e
>~ n! i e—g\VI
and

io: (1+ %)Tei‘iy‘
gwr(fvg) = %) ]
>oe

v=—00

(3.33)

(3.34)

(3.35)

Hence, by Proposition 3.1, for f(") C.(R), we have Ki — 0 as £ — 0T and since

|v| o0

> (1—1—'%‘) e e Sovm (1—}—%) e

v=—00 v=—00
<

[oe] —|v| — [o'e] —
> e > e

V=—00 V=—0o0

by Proposition 3.1, for f € C,(R), we get K5 — 0 as £ — 0F.

Based on Remark 3.5, we have

Theorem 3.6. Let f € C™(R) with f™ € C,(R), n € N. Then

e (f Z f 51«62,5

(o]

S (1+ l%) e ¢

Wr(f(n)af) v=—00
n! i": e";‘

V=—0o

Proof. By Proposition 3.1 and Remark 3.5.

(3.36)

O

Next, we present our results for generalized discrete Gauss-Weierstrass operators.
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Proposition 3.7. Let n € N. Then, there exists Ko > 0 such that

oo roo—v?
> (14 ) e
—— = —3 < Ky <oo
> oe
for all € € (0,1].
Proof. We observe that
e 7112
doee >1
v=—00
Thus )
= <1
>, e
Therefore, we have
o) roo—v?
S

—v

00
Z e v=—00

V=—00

On the other hand, since

we have

for all £ € (0,1].

Theorem 3.8. The sums

. < > b (H'Z')Te_z

49

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)
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are finite. Furthermore,

n ) () V:Z:oo Gu(v)e <
W:,g (fsz) — fx) - Z %l OxD}, el = = — . (3.42)
= S e

Clearly the operators W ¢ are not necessarily positive operators.

Proof. We observe that
0o 2 0, k is odd
d vhee = x =2 . (3.43)
23 vke € | kiseven

Assume that k is even. Then, since

* < vl
and ]
v
1+ > 1,
£
we obtain
(oo} 7u2
> Ve (3.44)
0 2
= > e
& Y =
< v |14+ ) e ¢ .
3w (14
Thus, by (3.44) and Proposition 3.7, we have
S roo—v?
X (1+%) e
Pz,g = o) — 2 < oo
> e
for all £ € (0,1]. Therefore, by Theorem 2.1, we derive (3.42). O
For n = 0, we have the following result.
Corollary 3.9. Suppose f € C,(R). Then
o0 7u2
2 wr(filvfe
(Weie (f;2) = fla)] < = ——— (3.45)
R

Proof. By Corollary 2.2. O
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Remark 3.10. Inequalities (3.42) and (3.45) give us the uniform estimates

2

. S Ga(v)e ¢
(k) 2
‘ retra) - f) - ey | < (3.46)
k=1 ' 00, T Z e
and
¥ wlfilve
[Wee (fio) = f@)||, < (3.47)
> oecs
Remark 3.11. By (2.12) and (2.13), we obtain
n (k.)
My = szig (Fi)  f@) =3 T D (3.48)
k=1 ’ 00, T
ST w\" =
Wr(f(n)af) V=z—:oo|y‘ <1+T> ¢
- n! § 67;2 bl
and
M; = |Wye (Fio) = f@)] (3.49)

Hence, by Proposition 3.7, for f(") e Cu(R), we have M7 — 0 as £ — 07 and since

0 r -2 oo r =2
o O R e K
V=—00 <V:700

0 —v2 — 0 —v2 ?

> e >, e

v=—00 v=—00

by Proposition 3.7, for f € C,(R), we get M3 — 0 as £ — 07.

By previous Remark 3.11, we have
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Theorem 3.12. Let f € C™(R) with f™ € C,(R), n € N. Then

. "L R (g .
re(r) — 1) - 3 T o (3.50)
k=1 ’ 0o,
r v2
n L]
w (f(n),f) V;OO|V| (1+ f) ¢
< =
n! $
Proof. By Proposition 3.7 and Remark 3.11. 0

Now, we present our results for generalized discrete Poisson-Cauchy operators.

Proposition 3.13. Letn e N, 5 > %Ta“, and o € N. Then, there exists K3 > 0 such
that

o0

5 (1) s

V=—0Q

< K3 < o0 (3.51)

:i.j: (V20 4 g20)7F

for all € € (0,1].
Proof. We have

oo

S () (3.52)

— E—Qaﬁ +9 Z (V2a + §2a)*5
v=1
> 208,

Therefore
1

£ g

V=—00

< geh, (3.53)

Hence, we get

S n v\" o a\ B

o () e

— = (3.54)
> (v tgre)”

V=—00

£2aﬁ [ i |I/|n <1 I |€1/|)r (Vga +§2a)_6]

22 v <€2(:B + y{z‘iﬁ_l)T (VQ(X + EQQ)iﬁ .
v=1

IN
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We notice that

(V2a +€2a)76 < V_2a’8.
Thus, by (3.54) and (3.55), we obtain
5 b (1) e

V=—00

> ()

v=—00

[eS) [e's)

(3 (23 r -~

S D) § :Vn—2aﬁ <€2TB + Vg—zrﬁ—l) S ) § :Vn—QaB (1 + V)7
=1 v=1

2af—n—r
QZywn_z”“Z() < o0

for all £ € (0,1].
Theorem 3.14. The sums
Sk (V2a +§2a)*ﬂ

Qg = i s k=1,...n,

> ()

V=—00

are finite where 8 > %ZH and o € N. Moreover,

S Gav) (2 4 20) 7"

n ) 2
Ore (1) — 1)~ S T gy | <
k=1 ' Z (V2a+£2o¢)*ﬁ

V=—00

Clearly the operators 9:75 are not necessarily positive operators.
Proof. We observe that
0o 0, k is odd
Z vk (y2a + §2a)—5 n §2a>—/3 . kis even

V=—00

[N}

R
178
<

ol
—

Assume that k is even. Then, since

v

" <|p[" and 1+ 3 > 1,
we obtain
Z ( 52(1 Z |V‘ +£20¢)_5
v=—00 V=—00

< Z K (1+|”> (2 2y ™°

V=—0o0

93

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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Thus, by (3.60) and Proposition 3.13, we have

S (14 8) e e
== s < o0

ke = s
5 e+ g)
for all € € (0,1]. Therefore, by Theorem 2.1, we derive (3.58). O

For n = 0, we have following result.

Corollary 3.15. Suppose [ € C,(R). Then

_Z: wr(f, |1/|) <V2a + £2a)—l3
05 (fi2) = f2)] £ ——= . (3.61)
S (e + gy
Proof. By Corollary 2.2. 0
Remark 3.16. Inequalities (3.58) and (3.61) give us the uniform estimates
= « a\ P
* = f(k)(x) * l/:zOO Gn(u) (VQ * 52 )
¢ (fi2) = f(z) - Z Il Okr,¢ < = (3.62)
k=1 : oz S (v 52(1)—5
and
_2: Wr(f7 ‘VD (]/2a + §2a)—5
|67 (fi2) = f(@)] ., < = . (3.63)
S (v 4 £2a)—/3
Remark 3.17. By (2.12) and (2.13), we obtain
Fy = ré (fsz) — f(z) - Z %&ch,g (3.64)
k=1 00,T
o n M " 2ce 2ce —B
- | 00 9
n: S (2 g20) 78
and
(3.65)

Fy = |05 (fi2) — f@)] .,
> (1+4) v

v=—00

< wr(f,€) S
> (v sgre)”

V=—00




Quantitative uniform approximation 55

Hence, by Proposition 3.13, for f € C,(R), we have Fj" — 0 as £ — 01 and since

§ (1 + %)T (V2a + 62&)_5 § |V‘n (1 + %)T (V2a +€2a)_6
— e 7
_2: (V2 +£20¢)_ﬁ _z: (V2 _|_§2a)—ﬁ

by Proposition 3.13, for f € C,(R), we get Ff — 0 as & — 07.
As a conclusion, we state

Theorem 3.18. Let f € C™(R) with f™ € C,(R), n € N, and § > odrtl  Then, we
have

e (fi2) = fla) - Z Téqu,g (3.66)
k=1 ) 00,T
= n M " 2a 2a -8
Wr(f("),f) VZX_:OOM <1+ 5) (V +¢€ )
< 0 = -
n: Z (V2oc + §2a) B
Proof. By Proposition 3.13 and Remark 3.17. g

Remark 3.19. Let p be a positive finite Borel measure on R with mass m, i.e. 4 (R) =
m. And let f, g1, 92 : R — R be Borel measurable functions, © € R. We observe that

/g1du+/gzdu— f(x) (3.67)
R R
- /ﬁwu+/ﬁwu—ﬂm—nﬁ@»+mﬂm
R R
- /mw+/mw—mﬂm+ﬂwm—n.
R R

Hence, it holds

e

mw+/mw—ﬂm (3.68)
R

IA
—

mw+/mw—mﬂ@+vwmm—ﬂ
R

IN

m| [0+ [0 = s + 1@ m - 1.
R

m
R
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That is

[ordn+ [ gudn = () (3.69)

R R

du dp
< | [0+ [0l - s@)| @] -1,
m m
R R
where now £ is a probability measure on R.

We prove that me p — 1 and me w — 1 as & — 0F. We observe that the function
g(v) = e ¢ is positive, continuous,and decreasing for v > 1. Thus, by [5], we have

/e—%du <N et<et +/e—?du. (3.70)
1 v=1 1
Thus,
1+2/e*%dy < Y e F it +2/e*%du. (3.71)
1 v=mo0 1

. v -1 .
Since /e ¢dv = e €, we obtain
1

1 s |v 1 1
L42ce < 3 e F <142e7F 42 E, (3.72)

V=—00

We have 1 + 266_% —land 1+ 27t + 266_% — 1 as £ — 0. Therefore,

Y e s laseo ot (3.73)
Thus,
-]
> o
mep=-—-—r —las— 0", (3.74)
142" ¢
2
Now, define the function h(r) = e~ € for v > 1. Observe that h(v) is positive,
continuous, and decreasing for v > 1. Then, by [5], we have
V2 s 1/2 by 1/2
/e‘Tdy <N et et /e—?du. (3.75)
1 v=1 1
Thus,
7 v2 > v2 1 7 v2
1 +2/67Tdu < e T <1427 ¢ +2/67Tdu. (3.76)
1 1
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As in [2], we have

2/6*”?2@ — /e (1 ~erf <\}5)> . (3.77)
Therefore, 1
1+ /7t (1 —erf (&)) < Vioo e (3.78)
< 1+2¢ +\/7T§(1erf (2)) .

We have 1+\/7r7§(1—erf(\/ig)> -1 and1—|—2e_%+\/7?§<1—erf ﬁ)) — 1 as
¢ — 0%, Hence,

Y e s lasg o0t (3.79)
Thus, T
> o
W= —— —~las¢— 0t 3.80
T v (e () .
We define the following error quantities:
Eop(f,2) == Pre(fiz) — f(2) (3.81)
00 r —lvl
5 (zo o f( +ju>> e e
vV=—0o0 1=
- 1—}—25@7% _f(x)v
Eow(f,z) == Wye(fiz) — f(2) (3.82)

V:i:oo (ioajf(z +jl/)> e_TUQ

G 1Y
Furthermore, we define the errors (n € N):
Bur(fi) = Prcl ) = 1) =3 o, e 6%
and

(3.84)
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Next, working as in inequality (3.69) to the errors Ey p, Eow, En p, and E, w, we
obtain

|Eo,p(f,@)| < mep |Pre(fiz) — f(@)| +|f (@) Ime.p — 1] (3.85)
and
|Eow (f, )] < mew [We(fr2) = f(2)| + [ f(@)] [mew — 1. (3.86)
Furthermore, we obtain (n € N) :
|En,p(f, )] (3.87)
- f
< mep |Pre(fia Z 5kck§ +1f(@)] fmep — 1]
=1
and
| Enw (f,2)] (3.88)
< mew | Wie(fsx) Z 5kpk§ + | f(@)] [me,w — 1]
=1

Based on Remark 3.19, we derive

Theorem 3.20. It holds

> G
|En,p(f,2)] < | ———— + [f ()] [me.p —1]. (3.89)
1+ 2e ¢

Clearly, the operators P, ¢(f;x) are not necessarily positive operators.
Proof. By (3.28) and (3.87). O
For n = 0,we have the following result

Corollary 3.21. Let f € C,(R). Then
0 v
> we(fy[v]e ¢

|Eo.p(f,2)| < V:_Ool pY= +|f(@)] fme.p — 1] (3.90)

Proof. By (3.31) and (3.85) . O
We have also the following result
Theorem 3.22. Let f € C™(R) with f) € C,(R), n € N,and [ flloo g < o00. Then
1 En,p(f,2)]l o 4 (3.91)

=] roo vl

i (14 M) e
a0 (2o (1)
n! 1+2¢e ¢

F [ fllo r Ime,p =1 -
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Proof. By (3.36) and (3.87). O
Next, we present our results for Eow(f,z) and E, w(f, ).

Theorem 3.23. It holds

i Gn(u)e_é
|Enw (f,2)| < —— + (@) [me,w — 1. (3.92)

\/ﬁ(l—erf (%)) +1

Clearly, the operators W, ¢(f;x) are not necessarily positive operators.
Proof. By (3.42) and (3.88). O
For n = 0, we have following result

Corollary 3.24. Let f € C,(R). Then

> wfilve
E o) < | ——= + —1]. 3.93
|Eo,w (f,2)] \/ﬁ(l—erf (\/%))H |f(@)] [me,w — 1] (3.93)
Proof. By (3.45) and (3.86) . O

We have also the following result
Theorem 3.25. Let f € C™(R) with f) € C,(R), n € N,and [ flloo g < 00. Then
[ Enw (fs )]l oo (3.94)

00 v2

o (fm g [ 2= (1+ %)T 2

n! \/ﬁ(l—erf (ﬁ))—i—l

Proof. By (3.50) and (3.88). O

oo g e, w = 11

Conclusion. All of our results presented above imply the higher order of approximation
with rates of discrete singular linear operators P 6 WT* & @,’iyg, P, ¢, and W, ¢ to the
unit operator I, as £ — 0. Our convergences are pointwise and uniform.
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