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A-Whitehead groups

Ulrich Albrecht

Abstract. This paper investigates various extensions of the notion of Whitehead
modules. An Abelian group G is an A-Whitehead group if there exists an exact
sequence 0 → U → ⊕IA → G → 0 such that SA(U) = U with respect to which
A is injective. We investigate the structure of A-Whitehead groups.
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1. Introduction

A right R-module M is a Whitehead module if Ext1R(M,R) = 0. It is the goal of
this paper to investigate Whitehead modules in the context of A-projective and A-
solvable Abelian groups. The class of A-projective groups, which consists of all groups
P which are isomorphic to a direct summand of ⊕IA for some index-set I, was in-
troduced by Arnold, Lady and Murley ([6] and [7]). An A-projective group P has
finite A-rank if I can be chosen to be finite. A-projective groups are usually investi-
gated using the adjoint pair (HA, TA) of functors between the category Ab of Abelian
groups and the category ME of right E-modules defined by HA(G) = Hom(A,G) and
TA(M) = M ⊗E A for all G ∈ Ab and all M ∈ME . Here, E = E(A) denotes the en-
domorphism ring of A. These functors induce natural maps θG : TAHA(G)→ G and
φM : M → HATA(M) defined by θG(α⊗a) = α(a) and [φM (x)](a) = x⊗a. An Abelian
group G is A-solvable if θG is an isomorphism. If A is self-small, then all A-projective
groups are A-solvable. Here, A is self-small if the natural map HA(⊕IA) → ΠIE
actually maps into ⊕IE for all index-sets I [7].

An Abelian group G is (finitely, κ-) A-generated if it is an epimorphic image of
⊕IA for some index-set I (with |I| <∞, |I| < κ respectively). It is easy to see that G
is A-generated iff SA(G) = G where SA(G) = im(θG). The group G is A-presented if
there exists an exact sequence 0→ U → F → G→ 0 in which F is A-projective and
U is A-generated. A sequence 0 → G → H → L → 0 is A-cobalanced (A-balanced) if
A is injective (projective) with respect to it. For a self-small group A, the A-solvable
groups can be described as those groups G for which we can find an A-balanced exact
sequence 0→ U → F → G→ 0 in which F is A-projective and U is A-generated [4].
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The functor Ext1R can be defined either in terms of equivalence classes of exact
sequences or via projective resolutions. We thus call an A-generated group W an A-
Whitehead splitter if every exact sequence 0 → A → G → W → 0 with SA(G) = G
splits. On the other hand, a group W is an A-Whitehead group if it admits an A-
cobalanced resolution 0 → U → F → W → 0 in which F is A-projective and U
is A-generated. Section 2 investigates how A-Whitehead groups and A-Whitehead
splitters are related. While all A-presented A-Whitehead splitters are A-Whitehead
groups, the converse surprisingly fails in general. Several examples demonstrate the
differences between the classic concepts and our more general situation. We show
that all A-Whitehead groups are A-Whitehead-splitters if E has injective dimension
at most 1 as a right and left E-module. In particular, all countably A-generated A-
Whitehead groups are A-projective if A has a right and left Noetherian, hereditary
endomorphism ring. By [10], strongly κ-projective and Whitehead modules are closely
related. The last results of this paper show that this relation extends to A-Whitehead
groups.

2. A-Whitehead Groups

An Abelian group A is (faithfully) flat if it is flat (and faithful) as a left E-
module. Since every exact sequence 0 → U → G → A → 0 with SA(G) = G splits if
A is faithfully flat [2], A is an A-Whitehead splitter in this case. However, this may
not be true without the faithfulness condition as the next result shows.

Example 2.1. There exists a flat torsion-free Abelian group A of finite rank such that
A is not an A-Whitehead splitter.

Proof. Let p, q, and r be distinct primes, and select subgroups A1, A2, and A3 of Q
such that A1 is divisible by all primes except p and q, A2 is divisible by all primes
except p and r, and A3 is divisible by all primes except q and r. By [8, Section 2],
there exists a strongly indecomposable subgroup G of Q ⊕ Q which is generated by
A1(1, 0), A2(0, 1), and A3(1, 1). Moreover, A4 = G/A1(1, 0) is a subgroup of Q which
is divisible by all primes except q. The group A = Z ⊕ A1 ⊕ A2 ⊕ A3 ⊕ A4 is flat
as a left E-module by Ulmer’s Theorem [16]. Since A1 + A3 = A4, A is not faithful.
However, the exact sequence 0→ A→ G⊕A⊕A2⊕A3⊕Z⊕Z→ A→ 0 cannot split
since otherwise G would be completely decomposable. Because G is A-generated, A
is not an A-Whitehead splitter. �

Proposition 2.2. Let A be a self-small Abelian group. If W is an A-presented A-
Whitehead splitter, then W is an A-Whitehead group.

Proof. Consider an exact sequence 0 → U
α→ F

β→ W → 0, where F is A-projective
and U = SA(U). For ψ ∈ Hom(U,A), we obtain the push-out diagram

0 −−−−→ U
α−−−−→ F

β−−−−→ W −−−−→ 0yψ yψ1

y1W

0 −−−−→ A
α1−−−−→ X −−−−→ W −−−−→ 0.
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As a push-out, X is A-generated being an epimorphic image of A⊕F . Since W is an
A-Whitehead splitter, the bottom sequence splits, say δα1 = 1A. Now it is easy to
see that δψ1α = ψ. �

However the converse of the last result fails in general:

Example 2.3. There exists a self-small faithfully flat Abelian group A for which we
can find an A-Whitehead group G which is not an A-Whitehead splitter.

Proof. Let P be the set of primes, and consider the groups A = ΠPZp and U = ⊕PZp.
Then, A is a self-small [18, Proposition 1.6], faithfully flat Abelian group, and U is

an A-generated subgroup of A such that A/U ∼= Q(2ℵ0 ). The sequence 0→ U → A→
A/U → 0 is A-cobalanced since each Zp is fully invariant in A and U . Therefore, A/U
is an A-Whitehead group and SA(Xp) = Xp.

Fix a a prime p, and choose a group Xp with E(Xp) = Zp and Xp/Zp ∼= Q.

This is possible by Corner’s Theorem [12]. Then, the induced sequence 0→ Z(2ℵ0 )
p →

X
(2ℵ0 )
p → Q(2ℵ0 ) → 0 does not split although A/U ∼= Q(2ℵ0 ) is an A-Whitehead

group. �

Moreover, A-Whitehead splitters need not be A-presented. To see this, let p
be a prime. If A is any torsion-free Abelian group with pA = A, then Z(p∞) is an
epimorphic image of A. Moreover, Ext(Z(p∞), A) = 0 because pA = A [12]. Therefore,
Z(p∞) is an A-Whitehead splitter. However, no p-group can be A-presented since all
A-generated groups are p-divisible.

If A is faithfully flat, then every exact sequence 0 → U → G → H → 0 with G
and H A-solvable is A-balanced and SA(U) = U [2]. If U is a submodule of HA(G),
let UA = 〈φ(A)|φ ∈ U〉.

Lemma 2.4. If A is a faithfully flat Abelian group, then the following hold for an
A-solvable group G:

a) If U is a submodule of HA(G), then the evaluation map θ : TA(U)→ UA defined
by θ(u⊗ a) = u(a) is an isomorphism.

b) If U and V are submodules of HA(G) with UA = V A, then U = V .

Proof. a) Clearly, θ is onto. To see that it is one-to-one, consider the commutative
diagram

0 −−−−→ TA(U) −−−−→ TAHA(G)yθ o
yθG

0 −−−−→ UA −−−−→ G
whose top-row is exact since A is flat.

b) Since UA = V A = (U + V )A, it suffices to consider the case U ⊆ V . By a),
the evaluation maps TA(U)→ UA and TA(V )→ V A in the commutative diagram

0 −−−−→ TA(U) −−−−→ TA(V ) −−−−→ TA(V/U) −−−−→ 0

o
y o

y
0 −−−−→ UA

=−−−−→ V A −−−−→ 0
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are isomorphisms. Thus, TA(V/U) = 0 which yields V/U = 0 since A is faithfully
flat. �

Theorem 2.5. Let A be a self-small faithfully flat Abelian group. The following are
equivalent for an A-generated Abelian group W :

a) W is an A-Whitehead group.
b) There exists a Whitehead-module M with W ∼= TA(M).

Proof. a) ⇒ b): Consider an A-cobalanced exact sequence 0 → U
α→ F

β→ W →
0 in which U is A-generated and F is A-projective. It induces the sequence 0 →
HA(U)

HA(α)−→ HA(F )
HA(β)−→ M → 0 whereM = Im(HA(β)) is a submodule ofHA(W ).

We obtain the commutative diagram

0 −−−−→ TAHA(U)
TAHA(α)−−−−−−→ TAHA(F )

TAHA(β)−−−−−−→ TA(M) −−−−→ 0

o
yθU o

yθF yθ
0 −−−−→ U

α−−−−→ F
β−−−−→ W −−−−→ 0.

By the 3-Lemma, the induced map θ is an isomorphism, and it remains to show that
M is a Whitehead-module.

For ψ ∈ HomE(HA(U), E), consider TA(ψ) : TAHA(U) → TA(E). Let σ :
TA(E) → A be an isomorphism. By a), there is λ : F → A with λα = σTA(ψ)θ−1U .
An application of HA gives

HA(σ−1λθF )HATAHA(α)) = HA(σ−1λθFTAHA(α))

= HA(σ−1λα)θU = HATA(ψ).

Since HATA(ψ)φHA(U) = φEψ, we have

φ−1E HA(σ−1λθF )φHA(F )HA(α) = φ−1E HA(σ−1λθF )HATAHA(α)φHA(U)

= φ−1E HATA(ψ)φHA(U) = ψ,

and M is a Whitehead-module.

b) ⇒ a): Consider an exact sequence 0 → U
α→ F

β→ M → 0 in which F is a
free right E-module. Since A is faithfully flat, φU is an isomorphism by [4]. It remains

to show that the induced sequence 0 → TA(U)
TA(α)−→ F

TA(β)−→ TA(M) → 0 is A-
cobalanced. For this, consider a map ψ ∈ Hom(TA(U), A). Because Ext1E(M,E) = 0,
there exists λ : F → E with HA(ψ)φU = λα. Then,

θATA(λ)TA(α) = θATAHA(ψ)TA(φU )

= ψθTA(U)TA(φU ) = ψ

since θTA(U)TA(φU )(u⊗ a) = θTA(U)(φU (u)⊗ a) = u⊗ a for all u ∈ U and a ∈ A. �

Example 2.6. There exists a self-small faithfully flat Abelian group A and a A-
Whitehead group W such that W ∼= TA(M) for some right E-module M with
Ext1R(M,E) 6= 0.
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Proof. Let A and U be as in Example 2.3, and consider the A-Whitehead-group
W = A/U . In view of the proof of Theorem 2.5, it suffices to construct an exact
sequence 0 → V → P → W → 0 such that P is A-projective and V is A-generated
which is not A-cobalanced.

Since A/U is a Zp-module, there are index-sets I and J and an exact sequence
0→ ⊕IZp → ⊕JZp → A/U → 0. Because of ExtZp

(Q,Zp) 6= 0, this sequence cannot
be A-cobalanced. It is easy to see that it cannot be A-balanced either. �

If G and H are A-solvable, and A is a self-small faithfully flat Abelian group, then
the equivalence classes of exact sequences 0 → H → X → G → 0 with SA(X) = X
form a subgroup of Ext(G,H) denoted by A−Bext(G,H) [3].

Theorem 2.7. Let A be a self-small faithfully flat Abelian group. The following are
equivalent for an A-generated group W :

a) W is an A-solvable A-Whitehead splitter.
b) W is an A-solvable A-Whitehead group.
c) W is A-solvable and HA(W ) is a Whitehead module.
d) There exists an exact sequence 0→ U → ⊕IF →W → 0 with SA(U) = U which

is A-balanced and A-cobalanced.
e) W is an A-solvable group with A−Bext(W,A) = 0.

Proof. Since a)⇒ b) holds by Proposition 2.2, we consider anA-solvableA-Whitehead
group W . As in the proof of Theorem 2.5, there exists a submodule M of HA(W ) with
Ext1E(M,E) = 0 such that the evaluation map θ : TA(M) → W is an isomorphism.
Consider the commutative diagram

0 −−−−→ TA(M) −−−−→ TAHA(A) −−−−→ TA(HA(W )/M) −−−−→ 0

o
yθ o

yθW
W

1W−−−−→ W

which yields TA(HA(W )/M) = 0. Since A is faithfully flat, HA(W ) = M is a
Whitehead-module.

c) ⇒ d): Since W is A-solvable where exists an A-balanced sequence 0 → U →
F →W → 0 with SA(U) = U and F A-projective. By the Adjoint-Functor-Theorem,
there exists an isomorphism λG : Hom(G,A) → HomE(HA(G), E) for all A-solvable
groups G. We therefore obtain the commutative diagram

HomE(HA(F ), E) −−−−→ HomE(HA(U), E) −−−−→ Ext1E(HA(W ), E) = 0

o
xλF o

xλU

Hom(F,A) −−−−→ Hom(U,A)

whose top-row is exact since the original sequence is A-balanced.

d)⇒ a): Since there exists an A-balanced sequence 0→ U → F →W → 0 with
SA(U) = U and F A-projective, we know that W is A-solvable. Using the maps λG
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as before, we obtain the commutative diagram

HomE(HA(F ), E) −−−−→ HomE(HA(U), E) −−−−→ Ext1E(HA(W ), E) −−−−→ 0

o
xλF o

xλU

Hom(F,A) −−−−→ Hom(U,A) −−−−→ 0

from which it follows that HA(W ) is a Whitehead module. Since A is faithfully flat,
an exact sequence 0 → A → G → W → 0 with SA(G) = G is A-balanced. There-
fore, it induces the exact sequence 0 → HA(A) → HA(G) → HA(W ) → 0 which
splits because HA(W ) is a Whitehead module. We therefore obtain the commutative
diagram

0 −−−−→ TAHA(A) −−−−→ TAHA(G) −−−−→ TAHA(W ) −−−−→ 0

o
yθA yθG o

yθW
0 −−−−→ A −−−−→ G −−−−→ W −−−−→ 0

whose top-row splits. Since θG is an isomorphism by the 3-Lemma, the bottom row
splits too.

Since A−Bext(G,H) ∼= Ext1E(HA(G), HA(H) whenever G and H are A-solvable
[3], c) and e) are equivalent. �

3. Groups with Endomorphism Rings of Injective Dimension 1

We now discuss the Abelian groups A for which all A-Whitehead groups are
A-Whitehead splitters. The nilradical of a ring R is denoted by N = N(R). If A is a
torsion-free Abelian group whose endomorphism ring has finite rank, then N(E) = 0
if and only if its quasi-endomorphism ring QE is semi-simple Artinian. Moreover,
E(A) is right and left Noetherian in this case [8, Section 9]. An Abelian group G is
locally A-projective if every finite subset of G is contained in an A-projective direct
summand of G which has finite A-rank [7]. If E(A) has finite rank, then HA and
TA give a category equivalence between the categories of locally A-projective groups
and locally projective right E-modules [7]. We want to remind the reader that the
A-radical of a group G is RA(G) = ∩{Ker φ | φ ∈ Hom(G,A)}. Clearly, RA(G) = 0 if
and only if G can be embedded into AI for some index-set I.

Theorem 3.1. The following are equivalent for a faithfully flat Abelian group A such
that QE is a finite-dimensional semi-simple Q-algebra:

a) id(EE) = 1.
b) A-generated subgroups of torsion-free A-Whitehead groups are A-Whitehead

groups.

For such an A, every A-Whitehead groups W satisfies RA(W ) = 0 and is A-solvable.
In particular, W is an A-Whitehead splitter.

Proof. a) ⇒ b): If V is a submodule of a Whitehead module X, then we obtain
an exact sequence 0 = Ext1E(X,E) → Ext1E(V,E) → Ext2E(X/V,E) = 0 because
id(EE) ≤ 1. Thus, V is a Whitehead module.
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Let W be a torsion-free A-Whitehead group. To see RA(W ) = 0, observe that
there is a Whitehead module M with W ∼= TA(M) by Theorem 2.5. Since A is flat,
the sequence 0 → TA(tM) → TA(M) ∼= W is exact. Hence, TA(tM) = 0, which
yields tM = 0 because A is a faithful E-module. The submodule U = ∩{Ker φ | φ ∈
HomE(M,E)} of M is a Whitehead module by the first paragraph.

We consider the exact sequence

0→ HomE(M/U,E)
π∗−→ HomE(M,E)→ HomE(U,E)

→ Ext1E(M/U,E)→ Ext1E(M,E) = 0.

Since π∗ is onto, HomE(U,E) ∼= Ext1E(M/U,E). Because U is pure in M as an
Abelian group, multiplication by a non-zero integer n induces an exact sequence

Ext1E(M/U,E)
n×−→ Ext1E(M/U,E) → Ext2E(., E) = 0, from which we obtain

that Ext1E(M/U,E) ∼= HomE(U,E) is divisible. However, this is only possible if
HomE(U,E) = 0 since HomE(U,E) is reduced.

LetD be the injective hull of U . Since QE is semi-simple Artinian,D ∼= Q⊗ZU by
[15]. Hence, D/U is torsion as an Abelian group, and we can find an index-set I, non-
zero integers {ni | i ∈ I}, and an exact sequence 0 → X → ⊕IE/niE → D/U → 0.
It induces

0 = HomE(X,E) → Ext1E(D/U,E)

→ Ext1E(⊕IE/niE,E) ∼= ΠIExt1E(E/niE,E).

Therefore, Ext1E(D/U,E) is reduced since the exact sequence HomE(E,E)
ni×−→

HomE(E,E) → Ext1E(E/niE,E) → 0 yields Ext1E(E/niE,E) ∼= E/niE. On the
other hand, we have the induced sequence 0 = HomE(U,E) → Ext1E(D/U,E) →
Ext1E(D,E)→ Ext1E(U,E) = 0 where the last Ext-group vanishes since U is a White-
head module. Since D is torsion-free and divisible, the same holds for Ext1E(D/U,E).
However, this is only possible if Ext1E(D/U,E) ∼= Ext1E(D,E) = 0.

If D 6= 0, then it has a direct summand S which is simple as a QE-module since
QE is semi-simple Artinian. In particular, Ext1E(S,E) = 0. Using Corner’s Theorem
[12], we can find a reduced Abelian group B with End(B) ∼= Eop which fits into an
exact sequence 0 → Eop → B → QEop → 0 as a left Eop-module. Then, B can be
viewed as a right E-module fitting into an exact sequence 0 → E → B → QE → 0.
We can find an E-submodule E ⊆ V of B with V/E ∼= S. Since Ext1E(S,E) = 0, we
have V ∼= E ⊕ S. However, S is divisible as an Abelian group, while V is reduced,
a contradiction. Therefore, D = 0; and M ⊆ EJ for some index-set J . Since E is
Noetherian as mentioned before, EJ is locally projective [1]. In particular, φEJ is an
isomorphism by [7]. Because A is faithfully flat, φM has to be an isomorphism too by
[4]. Therefore, W ∼= TA(M) is A-solvable as a subgroup of the locally A-projective
group TA(EJ) and RA(W ) = 0. By Theorem 2.7, W is an A-Whitehead splitter, and
HA(W ) is a Whitehead module.

An A-generated subgroup C of W is A-solvable since A is flat. By Theorem 2.7,
C is an A-Whitehead group if the can show that HA(C) is a Whitehead module.
However, this holds because the class of Whitehead modules is closed with respect to
submodule if id(EE) = 1 by the first paragraph.
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b) ⇒ a): Clearly, id(EE) = 1 if and only if Ext1E(E/I,QE/E) = 0 for all
right ideals I of E. Standard homological arguments show Ext1E(E/I,QE/E) ∼=
Ext1E(I, E). To see that I is a Whitehead module, observe that IA ∼= TA(I) is an
A-solvable A-Whitehead module by b) because A is an A-Whitehead splitter since A
is faithfully flat. By Theorem 2.7, IA is an A-Whitehead splitter, and HA(IA) is a
Whitehead module. But, I ∼= HATA(I) ∼= HA(IA) since A is faithfully flat. �

Corollary 3.2. Let A be an Abelian group such that QE is a finite dimensional semi-
simple Q-algebra and id(EE) = id(EE) = 1. Every A-Whitehead group is torsion-free,
A-solvable and an A-Whitehead splitter.

Proof. If p is a prime with pA = A, then (E/J)p = 0 for every essential right ideal
J of E since E/J is bounded and p-divisible. By Theorem 3.1, it remains to show
that every A-Whitehead group W is torsion-free. Suppose that W is not torsion-
free, and select a Whitehead module M with W ∼= TA(M). Since A is faithfully
flat, tW ∼= TA(tM). Select a cyclic submodule U of M with U+ torsion. Because
id(EE) = 1, U is a Whitehead module. There is a right ideal I of E with E/I ∼=
U which is a reflexive E-module by [14]. The exact sequence 0 = HomE(U,E) →
HomE(E,E) → HomE(I, E) → Ext1E(U,E) = 0 yields HomE(I, E) ∼= E. Hence,
I ∼= HomE(HomE(I, E), E) ∼= E. Thus, U fits into an exact sequence 0→ E → E →
U → 0, from which we get E ∼= E ⊕ U , which is a contradiction unless U = 0. �

Moreover, if E is right and left Noetherian and hereditary, then A is self-small
and faithfully flat, and E is semi-prime [4].

Corollary 3.3. Let A be a self-small faithfully flat Abelian group such that E is a
right and left Noetherian, hereditary ring with r0(E) < ∞. If W is an A-Whitehead
group, then W is locally A-projective. In particular, every countably A-generated A-
Whitehead group is A-projective.

Proof. Select a finite subset X of HA(W ) and a finitely generated submodule
U of HA(W ) containing X. The Z-purification V of U in HA(W ) is countable.
Since E is hereditary, ExtE(HA(W )/V,E) is divisible as an Abelian group. On
the other hand, we have an exact sequence HomE(HA(W ), E) → HomE(V,E) →
ExtE(HA(W )/V,E)→ ExtE(HA(W ), E) = 0, because HA(W ) is a Whitehead mod-
ule. Since HomE(V,E) is a finitely generated right E-module, the same holds for
ExtE(HA(W )/V,E). Thus, ExtE(HA(W )/V,E) ∼= P ′ ⊕ T where P ′ is projective and
T+ is bounded. Because A is reduced, ExtE(HA(W )/V,E) is reduced, which is not
possible unless ExtE(HA(W )/V,E) = 0.

Since RA(W ) = 0 by Theorem 3.1, HA(W ) ⊆ EI for some index-set I. Because
E is left Noetherian, EI is a locally projective module. Thus, its countable submodule
V has to be projective. Since V contains a finitely generated essential submodule, it
is finitely generated by Sandomierski’s Lemma [9]. But then, there is n < ω such that
ExtE(HA(W )/V, V ) = 0 since ExtE(HA(W )/V,E) = 0. Consequently, V is a finitely
generated projective direct summand of HA(W ), and HA(W ) is locally projective. By
[7], W ∼= TAHA(W ) is locally A-projective.

IfG is an epimorphic image of⊕ωA, thenHA(G) is an image of⊕ωE sinceG is A-
solvable. However, a countably generated locally projective module is projective. �
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4. κ-A-Projective Groups

Let κ be an uncountable cardinal, and assume that A is a torsion-free Abelian
with |A| < κ whose endomorphism ring is right and left Noetherian and hereditary.
An A-generated group G is κ-A-projective if every κ-A-generated subgroup of G is
A-projective. Since every finitely A-generated subgroup of G is A-projective in this
case, κ-A-projective groups are A-solvable. An A-projective subgroup U of an ℵ0-A-
projective group G is κ-A-closed if (U + V )/U is A-projective for all κ-A-generated
subgroups V of G. If |U | < κ, then this is equivalent to the condition that W/U
is A-projective for all κ-A-generated subgroups W of G with U ⊆ W . Finally, G is
strongly κ-A-projective if it is κ-A-projective and every κ-A-generated subgroup of G
is contained in a κ-A-generated, κ-A-closed subgroup of G. Our first result reduces
the investigation of strongly κ-A-projective groups to that of strongly κ-projective
modules.

Proposition 4.1. Let κ be a regular uncountable cardinal. If A is a torsion-free Abelian
group with |A| < κ whose endomorphism ring is right and left Noetherian and hered-
itary, then the following are equivalent for a κ-A-projective group G with |G| ≥ κ:

a) G is strongly κ-A-projective.
b) HA(G) is a strongly κ-projective right E-module.

Proof. Consider an exact sequence 0 → U → ⊕IA
β→ G → 0 with |I| ≥ κ. Since

A is faithfully flat, the sequence is A-balanced and SA(U) = U . Thus, HA(G) is an
epimorphic image of ⊕IE. Moreover, G ∼= TAHA(G) yields |HA(G)| = |G| ≥ κ.

a) ⇒ b): Suppose that U is a submodule of HA(G) with |U | < κ. By Lemma
2.4, the evaluation map θ : TA(U)→ UA is an isomorphism since G is A-solvable and
A is faithfully flat. Then, |UA| < κ, and there is a κ-A-generated κ-closed subgroup
V of G with UA ⊆ V . Observe that V is A-projective. Therefore, HA(UA) ⊆ HA(V )
is projective since E is right hereditary. However, U ∼= HATA(U) ∼= HA(UA) since
U ⊆ HA(G) and φHA(G) is an isomorphism by [4]. Thus, HA(G) is κ-projective.

We now show that HA(V ) is κ-closed in HA(G). Let W be a submodule of
HA(G) with |W | < κ which contains HA(V ). Since |WA| < κ and V ⊆ WA, we
obtain that WA/V is A-projective. Hence, V is a direct summand of WA by [2] since
E is right and left Noetherian and hereditary. Applying the functor HA yields that
HA(V ) is a direct summand of HA(WA). By Lemma 2.4, HA(WA) = W , and we are
done.

b) ⇒ a): For a κ-A-generated subgroup U of G, choose an exact sequence

⊕IA
π→ U → 0. Since G is A-solvable, the same holds for U , and the last se-

quence is A-balanced. Therefore, HA(U) is a κ-generated submodule of HA(G). We
can find a κ-closed submodule W of HA(G) containing HA(U) with |W | < κ. Then,
U = HA(U)A ⊆ WA has cardinality less than κ, and it remains to show that WA
is κ-A-closed. For this, let V be a κ-A-generated subgroup of G containing WA.
Since W = HA(WA) by Lemma 2.4, HA(V )/HA(WA) is projective. Consider the
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commutative diagram

TAHA(WA) −−−−→ TAHA(V ) −−−−→ TA(HA(V )/HA(WA)) −−−−→ 0

o
xθWA o

xθV x
WA −−−−→ V −−−−→ V/WA −−−−→ 0.

Since WA and V are A-solvable, V/WA is A-projective . �

We now can prove the main result of this section.

Theorem 4.2. Let κ be a regular, uncountable cardinal which is not weakly compact,
and suppose that A is a torsion-free Abelian group with |A| < κ such that E is right
and left Noetherian and hereditary.

a) If we assume V = L, then there exists a strongly κ-A-projective group G with
Hom(G,A) = 0.

b) Let κ = ℵ1, and assume MA + ℵ1 < 2ℵ0 . Every strongly ℵ1-A-projective group
G with |G| < 2ℵ0 is an A-Whitehead splitter.

Proof. a) By [13], there exists strongly κ-free left Eop-module M of cardinality κ
with EndZ(M) = Eop. Therefore, EndEop(M) = C(E), the center of E. Viewing M
as an E-module yields a strongly κ-free right E-module M with EndE(M) = C(E).
We consider G = TA(M). If φ1, . . . , φn ∈ HATA(M), then there is a κ-generated
submodule U of M such that φ1(A) + . . . + φn(A) ⊆ TA(U) since |A| < κ. However,
since U is contained in a free submodule P of M , we obtain that φ1(A) + . . .+φn(A)
is A-projective. Thus, G is A-solvable, and φHATA(M) is an isomorphism. By [4], φM
is an isomorphism since A is faithfully flat. Consequently, M ∼= HA(G) is strongly
κ-projective. By Proposition 4.1, G is strongly κ-A-projective. Moreover, every subset
of G of cardinality less than κ is contained in an A-free subgroup of G.

Since E is Noetherian, it does not have any infinite family of orthogonal idem-
potent, and the same holds for C(E). By the Adjoint-Functor-Theorem, we have
EndZ(TA(M)) ∼= EndE(M) = C(E) since TA(M) is A-solvable. Therefore, EndZ(G)
is commutative, and G = G1 ⊕ . . . ⊕ Gm where each Gj is indecomposable and
Hom(Gi, Gj) = 0 for i 6= j. Since Gi is A-generated and indecomposable, Gi is either
A-projective of finite A-rank, or Hom(Gi, A) = 0 since E(A) is right and left Noe-
therian and hereditary. Consequently, G = B ⊕ C where C is A-projective of finite
A-rank, and Hom(B,A) = Hom(B,C) = Hom(C,B) = 0.

Since |A| < κ, G contains a subgroup U isomorphic to ⊕ωA. We can find a
subgroup V of G which is A-free and contains C and U , say V ∼= ⊕IA for some infinite
index-set I. Since A is discrete in the finite topology, it is self-small. Therefore, we can
find a finite subset J of I such that α(A) ⊆ ⊕JA. Since C is a direct summand of G,
we have V = C⊕(B∩V ) and B∩V ∼= (⊕JA)/C⊕(⊕I\JA). But then, Hom(C,B) 6= 0,
which results in a contradiction unless C = 0. This shows, Hom(G,A) = 0.

b) If G is a strongly ℵ1-projective group with ℵ1 ≤ |G| < 2ℵ0 , then G is A-
solvable. By Proposition 4.1, HA(G) is a strongly ℵ1-projective right E-module. Ar-
guing as in the case A = Z (e.g. see [10, Chapter 12] or [11]), we obtain that HA(G)
is a Whitehead-module. By Theorem 2.7, G is an A-Whitehead splitter. �
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