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A-Whitehead groups
Ulrich Albrecht

Abstract. This paper investigates various extensions of the notion of Whitehead
modules. An Abelian group G is an A-Whitehead group if there exists an exact
sequence 0 - U — @;A — G — 0 such that S4(U) = U with respect to which
A is injective. We investigate the structure of A-Whitehead groups.
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1. Introduction

A right R-module M is a Whitehead module if Ext}{(M, R) = 0. It is the goal of
this paper to investigate Whitehead modules in the context of A-projective and A-
solvable Abelian groups. The class of A-projective groups, which consists of all groups
P which are isomorphic to a direct summand of @®;A for some index-set I, was in-
troduced by Arnold, Lady and Murley ([6] and [7]). An A-projective group P has
finite A-rank if I can be chosen to be finite. A-projective groups are usually investi-
gated using the adjoint pair (H4,Ta) of functors between the category Ab of Abelian
groups and the category Mg of right E-modules defined by H4(G) = Hom(A4, G) and
Ta(M)=M ®pg A for all G € Ab and all M € Mg. Here, E = E(A) denotes the en-
domorphism ring of A. These functors induce natural maps 0¢ : TaHa(G) — G and
om M — HyTa(M) defined by 0 (a®a) = a(a) and [¢y(x)](a) = 2@a. An Abelian
group G is A-solvable if 0 is an isomorphism. If A is self-small, then all A-projective
groups are A-solvable. Here, A is self-small if the natural map Ha(®;A4) — II;E
actually maps into @ E for all index-sets I [7].

An Abelian group G is (finitely, k-) A-generated if it is an epimorphic image of
@A for some index-set I (with |I| < oo, |I| < k respectively). It is easy to see that G
is A-generated iff S4(G) = G where S4(G) = im(0¢). The group G is A-presented if
there exists an exact sequence 0 — U — F — G — 0 in which F' is A-projective and
U is A-generated. A sequence 0 - G — H — L — 0 is A-cobalanced (A-balanced) if
A is injective (projective) with respect to it. For a self-small group A, the A-solvable
groups can be described as those groups G for which we can find an A-balanced exact
sequence 0 - U — F — G — 0 in which F is A-projective and U is A-generated [4].
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The functor Ext}, can be defined either in terms of equivalence classes of exact
sequences or via projective resolutions. We thus call an A-generated group W an A-
Whitehead splitter if every exact sequence 0 - A — G — W — 0 with S4(G) = G
splits. On the other hand, a group W is an A-Whitehead group if it admits an A-
cobalanced resolution 0 - U — F — W — 0 in which F' is A-projective and U
is A-generated. Section 2 investigates how A-Whitehead groups and A-Whitehead
splitters are related. While all A-presented A-Whitehead splitters are A-Whitehead
groups, the converse surprisingly fails in general. Several examples demonstrate the
differences between the classic concepts and our more general situation. We show
that all A-Whitehead groups are A-Whitehead-splitters if F has injective dimension
at most 1 as a right and left F-module. In particular, all countably A-generated A-
Whitehead groups are A-projective if A has a right and left Noetherian, hereditary
endomorphism ring. By [10], strongly k-projective and Whitehead modules are closely
related. The last results of this paper show that this relation extends to A-Whitehead
groups.

2. A-Whitehead Groups

An Abelian group A is (faithfully) flat if it is flat (and faithful) as a left F-
module. Since every exact sequence 0 — U — G — A — 0 with S4(G) = G splits if
A is faithfully flat [2], A is an A-Whitehead splitter in this case. However, this may
not be true without the faithfulness condition as the next result shows.

Example 2.1. There exists a flat torsion-free Abelian group A of finite rank such that
A is not an A-Whitehead splitter.

Proof. Let p, ¢, and r be distinct primes, and select subgroups Ay, Az, and Az of Q
such that A; is divisible by all primes except p and ¢, Ao is divisible by all primes
except p and r, and As is divisible by all primes except ¢ and r. By [8, Section 2],
there exists a strongly indecomposable subgroup G of Q @ Q which is generated by
A1(1,0), A2(0,1), and A3(1,1). Moreover, A4 = G/A1(1,0) is a subgroup of Q which
is divisible by all primes except ¢q. The group A = Z ® A1 & As & A3 ® Ay is flat
as a left F-module by Ulmer’s Theorem [16]. Since A; + A3 = Ay, A is not faithful.
However, the exact sequence 0 - A - GPAD Ay P A3 BZSZ — A — 0 cannot split
since otherwise G would be completely decomposable. Because G is A-generated, A
is not an A-Whitehead splitter. O

Proposition 2.2. Let A be a self-small Abelian group. If W is an A-presented A-
Whitehead splitter, then W is an A-Whitehead group.

Proof. Consider an exact sequence 0 — U = F Lw o 0, where F' is A-projective
and U = S4(U). For ¢ € Hom(U, A), we obtain the push-out diagram

0 v, Fr 2w 0
J}/’ lﬂh le
0 A5 X w 0.
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As a push-out, X is A-generated being an epimorphic image of A@® F'. Since W is an
A-Whitehead splitter, the bottom sequence splits, say da; = 14. Now it is easy to
see that dya = . O

However the converse of the last result fails in general:

Example 2.3. There exists a self-small faithfully flat Abelian group A for which we
can find an A-Whitehead group G which is not an A-Whitehead splitter.

Proof. Let P be the set of primes, and consider the groups A = IIpZ, and U = &pZ,.
Then, A is a self-small [18, Proposition 1.6], faithfully flat Abelian group, and U is
an A-generated subgroup of A such that A/U = Q@RO). The sequence 0 - U — A —
A/U — 01is A-cobalanced since each Z,, is fully invariant in A and U. Therefore, A/U
is an A-Whitehead group and Sa(X,) = X,.

Fix a a prime p, and choose a group X, with F(X,) = Z, and X,/Z, = Q.

N
This is possible by Corner’s Theorem [12]. Then, the induced sequence 0 — Z,(f 9

X,()2NO) — Q™) - 0 does not split although AU = Q") is an A-Whitehead
group. O

Moreover, A-Whitehead splitters need not be A-presented. To see this, let p
be a prime. If A is any torsion-free Abelian group with pA = A, then Z(p>°) is an
epimorphic image of A. Moreover, Ext(Z(p*°), A) = 0 because pA = A [12]. Therefore,
Z(p™) is an A-Whitehead splitter. However, no p-group can be A-presented since all
A-generated groups are p-divisible.

If A is faithfully flat, then every exact sequence 0 - U — G — H — 0 with G
and H A-solvable is A-balanced and S4(U) = U [2]. If U is a submodule of H4(G),
let UA = (¢p(A)|¢p € U).

Lemma 2.4. If A is a faithfully flat Abelian group, then the following hold for an
A-solvable group G:
a) IfU is a submodule of Hu(G), then the evaluation map 0 : To(U) — UA defined
by 0(u ® a) = u(a) is an isomorphism.
b) If U and V are submodules of Ha(G) with UA=V A, thenU =V.

Proof. a) Clearly, 6 is onto. To see that it is one-to-one, consider the commutative
diagram
0 —— Ta(U) —— TAaHA(G)

b

0 — UA —— G
whose top-row is exact since A is flat.

b) Since UA =V A = (U + V')A, it suffices to consider the case U C V. By a),
the evaluation maps T4(U) — UA and T4 (V) — V A in the commutative diagram

0 —— Tu(U) —— Ta(V) —— T4 (V/U) —— 0

| |

0——— UA —— VA —— 0
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are isomorphisms. Thus, T4(V/U) = 0 which yields V/U = 0 since A is faithfully
flat. O

Theorem 2.5. Let A be a self-small faithfully flat Abelian group. The following are
equivalent for an A-generated Abelian group W :

a) W is an A-Whitehead group.
b) There exists a Whitehead-module M with W = Ty (M).

Proof. a) = b): Consider an A-cobalanced exact sequence 0 — U = F L5 w -
0 in which U is A-generated and F is A-projective. It induces the sequence 0 —

HaU) "™ 1, (F) 29 M 5 0 where M = Im(H4(B)) is a submodule of H A(W).

We obtain the commutative diagram

0 — s TuHAU) 222 gy ry 22229 o) —— 0

aieu zlap le
0 —— U —, F . w —.

By the 3-Lemma, the induced map 6 is an isomorphism, and it remains to show that
M is a Whitehead-module.

For v € Homg(HA(U),E), consider T4(¢) : TaHA(U) — Ta(E). Let o :
TA(E) — A be an isomorphism. By a), there is A : F' — A with A = oT(1)0;,".
An application of H 4 gives

Ha(o 7"\ N0p)HATAHA(Q)) = Ha(o 'N0pTaHa(c))
= Hu(o 'Xa)0y = HaTa(¥).

Since HATA(w)QbHA(U) = ¢E1/), we have

¢5 Ha(o " N0p) oy, (mHala) = ¢p'Ha(o "\ Np)HaATaHa(o)dp , )
= ¢ HaTa()bu ) = ¥,

and M is a Whitehead-module.

b) = a): Consider an exact sequence 0 — U 5 F 2 M — 0 in which F is a
free right E-module. Since A is faithfully flat, ¢y is an isomorphism by [4]. It remains

to show that the induced sequence 0 — Ty (U) Talg) p Ta@) Tsa(M) — 0 is A-

cobalanced. For this, consider a map 1 € Hom(T4(U), A). Because Extp (M, E) = 0,
there exists A : F' — E with H4(¢)¢uy = Aa. Then,
0aTa(N)Ta(e) = OaATaHA(Y)Ta(Pv)
= Yp,)Talov) =7

since 07, (1)Ta(ov)(u®a) =07, v)(¢v(u) ®a) =u®aforallu € U anda € A. O
Example 2.6. There exists a self-small faithfully flat Abelian group A and a A-

Whitehead group W such that W = Ty (M) for some right F-module M with
Extp(M, E) # 0.
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Proof. Let A and U be as in Example 2.3, and consider the A-Whitehead-group
W = A/U. In view of the proof of Theorem 2.5, it suffices to construct an exact
sequence 0 — V — P — W — 0 such that P is A-projective and V is A-generated
which is not A-cobalanced.

Since A/U is a Z,-module, there are index-sets I and J and an exact sequence
0 — @©1Zy — © 2y — AJU — 0. Because of Extz (Q,Z,) # 0, this sequence cannot
be A-cobalanced. It is easy to see that it cannot be A-balanced either. O

If G and H are A-solvable, and A is a self-small faithfully flat Abelian group, then
the equivalence classes of exact sequences 0 - H — X — G — 0 with Sx(X) = X
form a subgroup of Ext(G, H) denoted by A — Bext(G, H) [3].

Theorem 2.7. Let A be a self-small faithfully flat Abelian group. The following are
equivalent for an A-generated group W :

a) W is an A-solvable A-Whitehead splitter.

b) W is an A-solvable A-Whitehead group.

c) W is A-solvable and Ha(W) is a Whitehead module.

d) There exists an exact sequence 0 — U — & F — W — 0 with S4(U) = U which

is A-balanced and A-cobalanced.
e) W is an A-solvable group with A — Bext(W, A) = 0.

Proof. Since a) = b) holds by Proposition 2.2, we consider an A-solvable A-Whitehead
group W. As in the proof of Theorem 2.5, there exists a submodule M of H4 (W) with
Extp(M, E) = 0 such that the evaluation map 6 : Ta(M) — W is an isomorphism.
Consider the commutative diagram

0 —— Ta(M) —— TaHu(A) —— Ta(Hs(W)/M) —— 0

zle Zl@w

W W
which yields Ta(Ha(W)/M) = 0. Since A is faithfully flat, H4(W) = M is a
Whitehead-module.

¢) = d): Since W is A-solvable where exists an A-balanced sequence 0 — U —

F — W — 0 with Sy(U) = U and F A-projective. By the Adjoint-Functor-Theorem,
there exists an isomorphism Ag : Hom(G, A) — Hompg(H4(G), E) for all A-solvable
groups G. We therefore obtain the commutative diagram

Homp(HA(F),E) —— Homp(HA(U),E) —— Bxtp(Ha(W),E) =0
Tor Tae
Hom(F, A) - Hom(U, A)
whose top-row is exact since the original sequence is A-balanced.

d) = a): Since there exists an A-balanced sequence 0 — U — F' — W — 0 with
Sa(U) =U and F A-projective, we know that W is A-solvable. Using the maps Ag
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as before, we obtain the commutative diagram
Homp(Ha(F),E) —— Homp(HA(U),E) —— Bxtih(Ha(W),E) —— 0

ZT)\F ZT)\U
Hom(F, A) e Hom(U, A) e 0
from which it follows that H4 (W) is a Whitehead module. Since A is faithfully flat,
an exact sequence 0 - A - G — W — 0 with S4(G) = G is A-balanced. There-
fore, it induces the exact sequence 0 — H4(A) — Ha(G) — Hs(W) — 0 which
splits because H 4 (W) is a Whitehead module. We therefore obtain the commutative
diagram
0 —— TAHA(A) E— TAHA(G) E— TAHA(W) — 0

Lo Joe [ow

0 —— A —_— G —_— W — 0
whose top-row splits. Since g is an isomorphism by the 3-Lemma, the bottom row
splits too.
Since A— Bext(G, H) = Extl,(Ha(G), Ha(H) whenever G and H are A-solvable
[3], ¢) and e) are equivalent. O

3. Groups with Endomorphism Rings of Injective Dimension 1

We now discuss the Abelian groups A for which all A-Whitehead groups are
A-Whitehead splitters. The nilradical of a ring R is denoted by N = N(R). If Ais a
torsion-free Abelian group whose endomorphism ring has finite rank, then N(E) =0
if and only if its quasi-endomorphism ring QF is semi-simple Artinian. Moreover,
E(A) is right and left Noetherian in this case [8, Section 9]. An Abelian group G is
locally A-projective if every finite subset of G is contained in an A-projective direct
summand of G which has finite A-rank [7]. If E(A) has finite rank, then H4 and
T4 give a category equivalence between the categories of locally A-projective groups
and locally projective right E-modules [7]. We want to remind the reader that the
A-radical of a group G is Ra(G) = N{Ker ¢ | ¢ € Hom(G, A)}. Clearly, Ro(G) = 0 if
and only if G can be embedded into A’ for some index-set I.

Theorem 3.1. The following are equivalent for a faithfully flat Abelian group A such
that QF is a finite-dimensional semi-simple Q-algebra:

b) A-generated subgroups of torsion-free A-Whitehead groups are A-Whitehead
groups.

For such an A, every A-Whitehead groups W satisfies Ra(W) = 0 and is A-solvable.
In particular, W is an A-Whitehead splitter.

Proof. a) = b): If V is a submodule of a Whitehead module X, then we obtain
an exact sequence 0 = Extp(X,E) — Exth(V,E) — Ext%(X/V,E) = 0 because
id(Eg) < 1. Thus, V is a Whitehead module.
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Let W be a torsion-free A-Whitehead group. To see R4 (W) = 0, observe that
there is a Whitehead module M with W = T4(M) by Theorem 2.5. Since A is flat,
the sequence 0 — Ty (tM) — Ta(M) = W is exact. Hence, T4 (tM) = 0, which
yields tM = 0 because A is a faithful E-module. The submodule U = N{Ker ¢ | ¢ €
Hompg (M, E)} of M is a Whitehead module by the first paragraph.

We consider the exact sequence

0 — Homp(M/U,E) > Hompg(M, E) — Homg (U, E)
—  Extp(M/U,E) — Exty(M, E) = 0.

Since 7* is onto, Hompg(U, E) = Exty(M/U, E). Because U is pure in M as an
Abelian group, multiplication by a non-zero integer n induces an exact sequence
Extp(M/UE) *5% Exty(M/U,E) — Ext3(.,E) = 0, from which we obtain
that Exty(M/U, E) = Homg(U, E) is divisible. However, this is only possible if
Hompg (U, E) = 0 since Homg (U, E) is reduced.

Let D be the injective hull of U. Since QFE is semi-simple Artinian, D & Q®zU by
[15]. Hence, D/U is torsion as an Abelian group, and we can find an index-set I, non-
zero integers {n; | i € I'}, and an exact sequence 0 - X — ®;FE/n;E — D/U — 0.
It induces

0 =Homg(X,E) — Exty(D/U,E)
—  Extp(®;E/nE, E) 2 Exty(E/n.E, E).

n; X

Therefore, Exty(D/U, E) is reduced since the exact sequence Homp(E,E) ™5
Homp(E,E) — Extp(E/n;E,E) — 0 yields Extp(E/n;E,E) = E/n;E. On the
other hand, we have the induced sequence 0 = Hompg(U, E) — Exty(D/U, E) —
Extp (D, E) — Exty(U, E) = 0 where the last Ext-group vanishes since U is a White-
head module. Since D is torsion-free and divisible, the same holds for Ext}(D/U, E).
However, this is only possible if Exty(D/U, E) = Exty(D, E) = 0.

If D # 0, then it has a direct summand S which is simple as a QF-module since
QF is semi-simple Artinian. In particular, EXt};(S, E) = 0. Using Corner’s Theorem
[12], we can find a reduced Abelian group B with End(B) = E° which fits into an
exact sequence 0 — EP? - B — QFE°? — 0 as a left F°P-module. Then, B can be
viewed as a right E-module fitting into an exact sequence 0 - E — B — QF — 0.
We can find an E-submodule E C V of B with V/E 2 S. Since Ext}(S, E) = 0, we
have V 2 E @ S. However, S is divisible as an Abelian group, while V is reduced,
a contradiction. Therefore, D = 0; and M C EY for some index-set J. Since E is
Noetherian as mentioned before, E7 is locally projective [1]. In particular, ¢z is an
isomorphism by [7]. Because A is faithfully flat, ¢5; has to be an isomorphism too by
[4]. Therefore, W = T4(M) is A-solvable as a subgroup of the locally A-projective
group Ta(E”7) and R4(W) = 0. By Theorem 2.7, W is an A-Whitehead splitter, and
HA(W) is a Whitehead module.

An A-generated subgroup C of W is A-solvable since A is flat. By Theorem 2.7,
C is an A-Whitehead group if the can show that H4(C) is a Whitehead module.
However, this holds because the class of Whitehead modules is closed with respect to
submodule if id(Fg) = 1 by the first paragraph.
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b) = a): Clearly, id(Eg) = 1 if and only if Exti(E/I,QE/E) = 0 for all
right ideals I of E. Standard homological arguments show Exty(E/I,QE/E) =
Ext} (I, E). To see that I is a Whitehead module, observe that TA = T(I) is an
A-solvable A-Whitehead module by b) because A is an A-Whitehead splitter since A
is faithfully flat. By Theorem 2.7, TA is an A-Whitehead splitter, and Hx(IA) is a
Whitehead module. But, I =2 HsTs(I) = Ha(IA) since A is faithfully flat. O

Corollary 3.2. Let A be an Abelian group such that QF is a finite dimensional semi-
simple Q-algebra and id(gE) = id(Eg) = 1. Every A-Whitehead group is torsion-free,
A-solvable and an A-Whitehead splitter.

Proof. If p is a prime with pA = A, then (E/J), = 0 for every essential right ideal
J of E since E/J is bounded and p-divisible. By Theorem 3.1, it remains to show
that every A-Whitehead group W is torsion-free. Suppose that W is not torsion-
free, and select a Whitehead module M with W = T4(M). Since A is faithfully
flat, tW = T4(tM). Select a cyclic submodule U of M with U* torsion. Because
id(Eg) = 1, U is a Whitehead module. There is a right ideal I of F with E/I =
U which is a reflexive E-module by [14]. The exact sequence 0 = Hompg (U, E) —
Homp(E,E) — Hompg(I,E) — Extg(U,E) = 0 yields Homg (I, F) = E. Hence,
I =2 Homg(Hompg(I, E), E) = E. Thus, U fits into an exact sequence 0 —» E — FE —
U — 0, from which we get £ = E @ U, which is a contradiction unless U = 0. 0

Moreover, if F is right and left Noetherian and hereditary, then A is self-small
and faithfully flat, and E is semi-prime [4].

Corollary 3.3. Let A be a self-small faithfully flat Abelian group such that E is a
right and left Noetherian, hereditary ring with ro(E) < oo. If W is an A-Whitehead
group, then W is locally A-projective. In particular, every countably A-generated A-
Whitehead group is A-projective.

Proof. Select a finite subset X of Ha(W) and a finitely generated submodule
U of Hy(W) containing X. The Z-purification V' of U in Hs(W) is countable.
Since E is hereditary, Extgp(H4(W)/V,E) is divisible as an Abelian group. On
the other hand, we have an exact sequence Homg(H4(W),E) — Homg(V,E) —
Extp(Ha(W)/V,E) — Extg(Ha(W), E) = 0, because H4(W) is a Whitehead mod-
ule. Since Hompg(V, F) is a finitely generated right E-module, the same holds for
Extg(Ha(W)/V,E). Thus, Extg(Ha(W)/V,E) =2 P’ & T where P’ is projective and
T is bounded. Because A is reduced, Extg(Ha(W)/V, E) is reduced, which is not
possible unless Ext g (H4(W)/V, E) = 0.

Since R4(W) = 0 by Theorem 3.1, Ha(W) C E' for some index-set I. Because
E is left Noetherian, E' is a locally projective module. Thus, its countable submodule
V has to be projective. Since V' contains a finitely generated essential submodule, it
is finitely generated by Sandomierski’s Lemma [9]. But then, there is n < w such that
Extp(Ha(W)/V,V) = 0 since Extg(Ha(W)/V, E) = 0. Consequently, V is a finitely
generated projective direct summand of H 4 (W), and H 4 (W) is locally projective. By
[7], W 2 T4 H(W) is locally A-projective.

If G is an epimorphic image of @,, A, then H 4 (G) is an image of @, F since G is A-
solvable. However, a countably generated locally projective module is projective. [
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4. k-A-Projective Groups

Let k be an uncountable cardinal, and assume that A is a torsion-free Abelian
with |A| < k whose endomorphism ring is right and left Noetherian and hereditary.
An A-generated group G is k-A-projective if every k-A-generated subgroup of G is
A-projective. Since every finitely A-generated subgroup of G is A-projective in this
case, k-A-projective groups are A-solvable. An A-projective subgroup U of an Ng-A-
projective group G is k-A-closed if (U + V) /U is A-projective for all xk-A-generated
subgroups V' of G. If |U| < &k, then this is equivalent to the condition that W/U
is A-projective for all k-A-generated subgroups W of G with U C W. Finally, G is
strongly k-A-projective if it is k- A-projective and every k- A-generated subgroup of G
is contained in a k-A-generated, x-A-closed subgroup of G. Our first result reduces
the investigation of strongly k-A-projective groups to that of strongly k-projective
modules.

Proposition 4.1. Let k be a regular uncountable cardinal. If A is a torsion-free Abelian
group with |A| < k whose endomorphism ring is right and left Noetherian and hered-
itary, then the following are equivalent for a k-A-projective group G with |G| > k:

a) G is strongly k-A-projective.
b) Ha(G) is a strongly k-projective right E-module.

Proof. Consider an exact sequence 0 — U — @A % G 0 with |I| > k. Since
A is faithfully flat, the sequence is A-balanced and S4(U) = U. Thus, H4(G) is an
epimorphic image of @;E. Moreover, G = T4 H4(G) yields |H4(G)| = |G| > k.

a) = b): Suppose that U is a submodule of H4(G) with |U| < k. By Lemma
2.4, the evaluation map 6 : T4 (U) — U A is an isomorphism since G is A-solvable and
A is faithfully flat. Then, |[UA| < k, and there is a k-A-generated k-closed subgroup
V of G with UA C V. Observe that V is A-projective. Therefore, Hy(UA) C Ha(V)
is projective since F is right hereditary. However, U & H, T4 (U) = H4(UA) since
U C Hx(G) and ¢g, () is an isomorphism by [4]. Thus, H4(G) is k-projective.

We now show that Ha(V) is k-closed in Hx(G). Let W be a submodule of
HA(G) with |W| < & which contains Hs (V). Since |WA| < k and V C WA, we
obtain that WA/V is A-projective. Hence, V is a direct summand of W A by [2] since
E is right and left Noetherian and hereditary. Applying the functor H, yields that
H (V) is a direct summand of H4(W A). By Lemma 2.4, Hy(WA) = W, and we are
done.

b) = a): For a k-A-generated subgroup U of G, choose an exact sequence
®rA 5 U — 0. Since G is A-solvable, the same holds for U, and the last se-
quence is A-balanced. Therefore, H4(U) is a k-generated submodule of H(G). We
can find a k-closed submodule W of H4(G) containing H4(U) with |W| < k. Then,
U = Hu(U)A C WA has cardinality less than %, and it remains to show that WA
is k-A-closed. For this, let V' be a k-A-generated subgroup of G containing W A.
Since W = H,(WA) by Lemma 2.4, Hy(V)/H4(W A) is projective. Consider the
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commutative diagram
TAHA(WA) S TAHA(V) e TA(HA(V)/HA(WA)) — 0

ZTGWA ZT@V T
WA e \% e V/WA — 0.
Since WA and V are A-solvable, V/W A is A-projective . O

We now can prove the main result of this section.

Theorem 4.2. Let x be a regular, uncountable cardinal which is not weakly compact,
and suppose that A is a torsion-free Abelian group with |A| < k such that E is right
and left Noetherian and hereditary.

a) If we assume V = L, then there exists a strongly k-A-projective group G with
Hom(G, A) = 0.

b) Let k = Ny, and assume MA + Xy < 280, Every strongly Ni-A-projective group
G with |G| < 2% is an A-Whitehead splitter.

Proof. a) By [13], there exists strongly s-free left E°P-module M of cardinality =
with Endgz(M) = E°P. Therefore, Endgor(M) = C(FE), the center of E. Viewing M
as an E-module yields a strongly k-free right E-module M with Endg(M) = C(E).
We consider G = Ta(M). If ¢1,...,¢, € HaTa(M), then there is a k-generated
submodule U of M such that ¢1(A) + ...+ ¢n(A) C Ty(U) since |A| < k. However,
since U is contained in a free submodule P of M, we obtain that ¢1(A4) +...+ ¢, (A)
is A-projective. Thus, G is A-solvable, and ¢z, 1, () is an isomorphism. By [4], ¢ns
is an isomorphism since A is faithfully flat. Consequently, M = H4(G) is strongly
k-projective. By Proposition 4.1, G is strongly x-A-projective. Moreover, every subset
of G of cardinality less than k is contained in an A-free subgroup of G.

Since E is Noetherian, it does not have any infinite family of orthogonal idem-
potent, and the same holds for C(FE). By the Adjoint-Functor-Theorem, we have
Endz(Ta(M)) =2 Endg(M) = C(F) since Ta(M) is A-solvable. Therefore, Endz(G)
is commutative, and G = G1 ® ... ® G, where each G; is indecomposable and
Hom(G;, G;) = 0 for i # j. Since G; is A-generated and indecomposable, G; is either
A-projective of finite A-rank, or Hom(G;, A) = 0 since E(A) is right and left Noe-
therian and hereditary. Consequently, G = B & C where C is A-projective of finite
A-rank, and Hom(B, A) = Hom(B, C') = Hom(C, B) = 0.

Since |A| < k, G contains a subgroup U isomorphic to @®,A. We can find a
subgroup V of G which is A-free and contains C' and U, say V = @ A for some infinite
index-set I. Since A is discrete in the finite topology, it is self-small. Therefore, we can
find a finite subset J of I such that a(A4) C @ A. Since C is a direct summand of G,
we have V = C@(BNV) and BNV = (©,4)/Co(©p sA). But then, Hom(C, B) # 0,
which results in a contradiction unless C' = 0. This shows, Hom(G, 4) = 0.

b) If G is a strongly Rj-projective group with X; < |G| < 2%, then G is A-
solvable. By Proposition 4.1, H4(G) is a strongly R;-projective right E-module. Ar-
guing as in the case A = Z (e.g. see [10, Chapter 12] or [11]), we obtain that H4(G)
is a Whitehead-module. By Theorem 2.7, G is an A-Whitehead splitter. O
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