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Abstract. In this paper we study the uniqueness problems of meromorphic func-
tions when certain non-linear differential polynomial sharing a nonzero polyno-
mial with certain degree. We obtain some results which will rectify, improve and
generalize some recent results of C. Wu and J. Li [15] in a large extent. Our results
will also improve and generalize some recent results due to Fang [5], Zhang-Zhang
[24], Zhang [22], Xu et al. [16], Qi-Yang [14], Dou-Qi-Yang [4], Zhang-Xu [26] and
Liu-Yang [13].
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1. Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g share
a IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In
addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say
that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [7]). For a non-
constant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic
of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ possibly
outside a set of finite linear measure.

A meromorphic function a(z) is called a small function with respect to f , pro-
vided that T (r, a) = S(r, f).
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We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible
exceptional set of finite linear measure.

A finite value z0 is said to be a fixed point of f(z) if f(z0) = z0.
For the sake of simplicity we also use the notations m∗ := χµm, where χµ = 0

if µ = 0, χµ = 1 if µ 6= 0.
In 1959, W.K. Hayman (see [7], Corollary of Theorem 9) proved the following

theorem.

Theorem A. Let f be a transcendental meromorphic function and n(≥ 3) is an integer.
Then fnf ′ = 1 has infinitely many solutions.

Theorem A was extended by Chen [3] in the following manner:

Theorem B. Let f be a transcendental entire function, n, k two positive integers with
n ≥ k + 1. Then (fn)(k) − 1 has infinitely many zeros.

Latter Fang [5] obtained the following two uniqueness theorem corresponding to
Theorem B.

Theorem C. Letf and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM, then ei-
ther f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1.

Theorem D. Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k+8. If (fn(z)(f(z)−1))(k) and (gn(z)(g(z)−1))(k) share
1 CM, then f(z) ≡ g(z).

In 2008, improving the above results J. F. Zhang and X. Y. Zhang [24] obtained
the following theorem:

Theorem E. Let f and g be two non-constant entire functions and let n, k be two posi-
tive integers with n > 5k+7. If [fn](k) and [gn](k) share 1 IM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)n[nc]2k = 1
or f ≡ tg for a constant t such that tn = 1.

Theorem F. Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 5k + 13. If (fn(z)(f(z) − 1))(k) and (gn(z)(g(z) − 1))(k)

share 1 IM, then f(z) ≡ g(z).

In 2008 Zhang [22] obtained similar type of result as mentioned in Theorem E
in the the following way:

Theorem G. Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share z CM, then either

(1) k = 1, f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants
satisfying 4(c1c2)n(nc)2 = −1 or

(2) f ≡ tg for a constant t such that tn = 1.
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Recently Xiao-Bin Zhang and Jun-Feng Xu [26] proved the following result for
meromorphic function.

Theorem H. [26] Let f and g be two non-constant meromorphic functions, and a(z)
(6≡ 0,∞) be a small function with respect to f . Let n, k and m be three positive
integers with n > 3k + m + 8 and let P (w) = amw

m + am−1w
m−1 + . . . + a1w + a0

or P (w) ≡ c0 where a0(6= 0), a1, . . . , am−1, am(6= 0), c0( 6= 0) are complex constants. If
[fnP (f)](k) and [gnP (g)](k) share a CM, then

(I) when P (w) = amw
m+am−1w

m−1 + . . .+a1w+a0, one of the following three cases
holds:

(I1) f(z) ≡ tg(z) for a constant t such that td = 1, where

d = GCD(n+m, . . . , n+m− i, . . . , n), am−i 6= 0

for some i = 1, 2, . . . ,m,
(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1 (amω
m
1 + am−1ω

m−1
1 + . . .+ a0)− ωn2 (amω

m
2 + am−1ω

m−1
2 + . . .+ a0),

(I3) [fnP (f)](k)[gnP (g)](k) ≡ a2;

(II) when P (w) ≡ c0, one of the following two cases holds:

(II1) f ≡ tg for some constant t such that tn = 1,

(II2) c20[fn](k)[gn](k) ≡ a2.

Generalized results in the above directions for entire function were obtained by
Qi-Yang [14] and Dou-Qi-Yang [4] in the following manner:

Theorem I. Let f and g be two transcendental entire functions, and let n, k and
m be three positive integers with n > 2k + m∗ + 4, λ, µ be two constants such that

|λ|+ |µ| 6= 0. If [fn (λfm + µ)]
(k)

and [gn (λgm + µ)]
(k)

share z CM, then one of the
following conclusions hold:

(1) If λµ 6= 0, then fd ≡ gd, where d = gcd(n,m); in particular f ≡ g, when d = 1;
(2) If λµ = 0, then f ≡ cg, where c is a constant satisfying cn+m

∗
= 1, or k = 1

and f(z) = b1e
bz2 , g(z) = b2e

−bz2 , for some constants b1, b2 and b that satisfy
4(λ+ µ)2(b1b2)n+m

∗
[(n+m∗)b]2 = −1.

Theorem J. Let P (z) = amz
m + am−1z

m−1 + . . . + a1z + a0 or P (z) = C, where
a0, a1, . . . , am−1, am(6= 0), C(6= 0) are complex constants. Suppose that f and g be
two transcendental entire functions, and let n, k and m be three positive integers with
n > 2k + m∗∗ + 4, where m∗∗ = 0, if P (z) ≡ C, otherwise m∗∗ = m. If [fnP (f)](k)

and [gnP (g)](k) share z CM then the following conclusions hold:

(i) If P (w) = amw
m + am−1w

m−1 + . . .+ a1w+ a0 is not a monomial, then f(z) ≡
tg(z) for a constant t such that td = 1, where d = gcd(n+m, . . . , n+m−i, . . . , n),
am−i 6= 0 for some i = 0, 1, 2, . . . ,m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1 (amω
m
1 + am−1ω

m−1
1 + . . .+ a0)− ωn2 (amω

m
2 + am−1ω

m−1
2 + . . .+ a0);
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(ii) If P (z) ≡ C or P (z) = amz
m then f ≡ tg for some constant t such that

tn+m
∗∗

= 1, or then f = b1e
bz2 , g = b2e

−bz2 , for three constants b1, b2 and b
that satisfy 4a2m(b1b2)n+m[(n+m)b]2 = −1 or 4C2(b1b2)n[nb]2 = −1.

In 2013, Liu and Yang [13] replaced the CM value sharing concept by IM fixed
point sharing one in the above two theorems. They proved the following results:

Theorem K. Let f and g be two transcendental entire functions, and let n, k and
m be three positive integers with n > 5k + 4m∗ + 7, λ, µ be two constants such

that |λ| + |µ| 6= 0. If [fn (λfm + µ)]
(k)

and [gn (λgm + µ)]
(k)

share z IM, then the
conclusion of Theorem I holds

Theorem L. Let P (ω) = amω
m + am−1ω

m−1 + . . . + a1ω + a0 or P (ω) = C, where
a0, a1, . . . , am−1, am(6= 0), C(6= 0) are complex constants. Suppose that f and g be
two transcendental entire functions, and let n, k and m be three positive integers with
n > 5k + 4m∗∗ + 7. If [fnP (f)](k) and [gnP (g)](k) share z IM then the conclusion of
Theorem J holds

In this paper, we always use P (ω) denoting an arbitrary polynomial of degree n
as follows:

P (ω) = anω
n + an−1ω

n−1 + . . .+ a0 = an(ω − cl1)l1(ω − cl2)l2 . . . (ω − cls)ls , (1.1)

where ai(i = 0, 1, . . . , n−1), an 6= 0 and clj (j = 1, 2, . . . , s) are distinct finite complex
numbers and l1, l2, . . . , ls, s, n and k are all positives integers satisfying

s∑
i=1

li = n.

Also we let

l = max{l1, l2, . . . , ls}
and from (1.1) we have

P (w) = (w − cl)lP∗(w),

where P∗(w) is a polynomial in degree n− l = r(say).
We also use P1(ω1) as an arbitrary non-zero polynomial defined by

P1(ω1) = an

s∏
i=1
li 6=l

(ω1 + cl − cli) = bmω
m
1 + bm−1ω

m−1
1 + . . .+ b0, (1.2)

where ω1 = ω − cl and m = n− l.
Obviously

P (ω) = ωl1P1(ω1).

If we observe the above theorems carefully we see that all the investigations were
done on the basis of sharing of the expression of the particular form hnP (h) (h = f
or g). So it will be quiet natural to investigate all the results for the most standard
form P (h) instead of hnP (h) (h = f or g).

Recently, C. Wu and J. Li [15] obtained the following results in this direction:
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Theorem M. Let f and g be two non-constant meromorphic functions, and let n,
k and l be three positive integers satisfying 4lk + 12l > 4kn + 11n + 9k + 14. If
[P (f)](k) and [P (g)](k) share 1 IM, then either f = b1e

bz + c, g = b2e
−bz + c, or f

and g satisfy the algebraic equation R(f, g) ≡ 0, where b1, b2, b are three constants
satisfying (−1)k(b1b2)n(nb)2k = 1 and R(ω1, ω2) = P (ω1)− P (ω2).

Theorem N. Let f and g be two non-constant meromorphic functions, and let n, k
and l be three positive integers satisfying kl+ 6l > nk + 5n+ 3k + 8. If [P (f)](k) and
[P (g)](k) share 1 CM, then conclusion of Theorem M holds.

Theorem O. Let f and g be two non-constant entire functions, and let n, k and l be
three positive integers satisfying 5l > 4n + 5k + 7. If [P (f)](k) and [P (g)](k) share 1
IM, then conclusion of Theorem M holds.

Theorem P. Let f and g be two non-constant entire functions, and let n, k and l be
three positive integers satisfying 2l > n + 2k + 4. If [P (f)](k) and [P (g)](k) share 1
CM, then conclusion of Theorem M holds.

Remark 1.1. The results [15] are new and seem fine. However in the proof of Theorem
11 [15], one can easily point out a number of gaps.

We first consider p. 299 under the case 1.1.2 fifth line from top.
The calculations are true only when pj

0
> k, : A question arises: When pj

0
≤ k ?

Actually the author did not consider this case.
In the same page the author used the inequality

N(r,∞; f) ≤
s∑
j=1

N(r, cj ; g) +N(r, 0; g
′
),

which is not true for any arbitrary k and the situation when

[L(f)](k)[L(g)](k) ≡ 1.

Remark 1.2. The authors declare that Lemma 11 in [15] can be obtained from [17].
But in [17] there is no such lemma. One can easily verify that the lemma 11 in [15] is
actually Lemma 2.12 of [25]. Also one can easily observe that to prove Lemma 2.12 in
[25], Lemma 2.8 plays a vital role [see p.8 last line in [25]]. But the following example
shows that Lemma 2.8 of [25] is invalid.

Example 1.1. Let F = zez, G = 1
zez , then F and G share 1 and −1 and satisfy

N(r, 0;F ) +N(r,∞;F ) = S(r, F )

and

N(r, 0;G) +N(r,∞;G) = S(r,G).

It is clear that F and G share neither 0 nor ∞.

So the very existence of Lemma 11 in [15] and proof of Theorem 11, where
Lemma 11 plays a vital role is questionable. In this paper we tackle the problem by
obtaining the correct proof of Lemma 11 as well as Theorem 11. We also observe that
in Theorems M and N as n = l+r, the relation 4lk+12l > 4kn+11n+9k+14 (kl+6l >
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nk+ 5n+ 3k+ 8) ultimately produce l > (4k+ 11)r+ 9k+ 14 (l > (k+ 5)r+ 3k+ 8)
which are very much stronger result in-comparison to the lower bound of l obtained
by the previous authors. In that sense in this paper we shall decrease the lower bound
of l to a large extent. Not only that our results will largely improve and generalize
all the previous results mentioned earlier. To proceed further we require the following
definition. In 2001 an idea of gradation of sharing of values was introduced in {[8],
[9]} which measures how close a shared value is to being share CM or to being shared
IM. This notion is known as weighted sharing and is defined as follows.

Definition 1.1. [8, 9] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an a-
point of f with multiplicity m (≤ k) if and only if it is an a-point of g with multiplicity
m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only if it is an
a-point of g with multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

The main results of the paper are as follows.

Theorem 1.1. Let f and g be two transcendental meromorphic functions and p(z) be
a nonzero polynomial with deg(p) ≤ l−1, where n, k, r and l be four positive integers
with n = l + r such that l > 3k + r + 8. Suppose [P (f)](k) and [P (g)](k) share (p, 2),
where P (ω) be defined as in (1.1). Now

(I) when s ≥ 2 then one of the following three cases holds:
(I1) f ≡ tg for a constant t such that td = 1,where d = GCD(n, . . . , n−i, . . . , 1),

an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1};
(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = (anω
n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2);

(I3) [P (f)](k)[P (g)](k) ≡ p2;
(II) when s = 1 then one of the following two cases holds:

(II1) f ≡ tg for some constant t such that tn = 1,
(II2) if p(z) is not a constant, then f = c1e

cQ(z) + cl, g = c2e
−cQ(z) + cl, where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that b2i (c1c2)l+i[(l+ i)c]2 = −1, if p(z) is a
nonzero constant b, then f = c3e

cz + cl, g = c4e
−cz + cl, where c3, c4 and

c are constants such that (−1)kb2i (c3c4)l+i[(l + i)c]2k = b2.
In particular when li > k(i = 1, 2, . . . , s) and

Θ(0; f) + Θ(∞; f) >
n(3− s)− 2ks+ 4k

n+ 2k
,
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then (I3) does not hold.

Theorem 1.2. Let f and g be two transcendental meromorphic functions and p(z) be
a nonzero polynomial with deg(p) ≤ l−1, where n, k, r and l be four positive integers
with n = l + r such that l > 9k + 4r + 14. Suppose [P (f)](k) and [P (g)](k) share p(z)
IM, where P (ω) be defined as in (1.1). Then the conclusion of Theorem 1.1 holds.

Remark 1.3. Theorems 1.1 and 1.2 both hold for two non-constant meromorphic
functions f and g when p(z) is a non-zero constant.

Remark 1.4. When l = n, cl = 0 from Theorem 1.1 we can easily get an improved
version of Theorem H.

Corollary 1.1. Let f and g be two transcendental entire functions and p(z) be a nonzero
polynomial with deg(p) ≤ l − 1, where n, k, r and l be four positive integers with
n = l+ r such that l > 2k+ r+ 4. Suppose [P (f)](k) and [P (g)](k) share (p, 2), where
P (ω) be defined as in (1.1). Then one of the following three cases holds:

(1) f ≡ tg for a constant t such that td = 1,where d = GCD(n, . . . , n − i, . . . , 1),
an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1};

(2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = (anω
n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2);

(3) if p(z) is not a constant, then f = c1e
cQ(z) + cl, g = c2e

−cQ(z) + cl, where
Q(z) =

∫ z
0
p(z)dz, c1, c2 and c are constants such that b2i (c1c2)l+i[(l+i)c]2 = −1,

if p(z) is a nonzero constant b, then f = c3e
cz + cl, g = c4e

−cz + cl, where c3,
c4 and c are constants such that (−1)kb2i (c3c4)l+i[(l + i)c]2k = b2.

Corollary 1.2. Let f and g be two transcendental entire functions and p(z) be a nonzero
polynomial with deg(p) ≤ l − 1, where n, k, r and l be four positive integers with
n = l + r such that l > 5k + 4r + 7. Let P (ω) be defined as in (1.1). If [P (f)](k) and
[P (g)](k) share p(z) IM then the conclusion of Corollary 1.1 holds.

Remark 1.5. Corollaries 1.1 and 1.2 both hold for two non-constant entire functions
f and g when p(z) is a non-zero constant.

Remark 1.6. When l = n, cl = 0, from Corollary 1.1 and Corollary 1.2 we can easily
get the improved version of Theorems C, G and Theorem E respectively.

Remark 1.7. When l = n1, n = n1+1 and cl = 0, from Corollary 1.1 and Corollary 1.2
we can easily obtain the improved version of Theorem D and Theorem F respectively.

Remark 1.8. When l = n1, n = n1 + m∗ and cl = 0, from Corollary 1.1, Lemmas
2.16 and 2.17 we can easily obtained the improvement of Theorem I where as from
Corollary 1.2 we get the improved version of Theorem K.

Remark 1.9. When l = n1, n = n1+m∗∗ and cl = 0, from Corollary 1.1 and Corollary
1.2 we can easily get an improved version of Theorem J and Theorem L respectively.

We now explain some definitions and notations which are used in the paper.

Definition 1.2. [11] Let p be a positive integer and a ∈ C ∪ {∞}.
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(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.3. {11, cf.[19]} For a ∈ C ∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . + N(r, a; f |≥ p). Clearly

N1(r, a; f) = N(r, a; f).

Definition 1.4. Let a, b ∈ C ∪{∞}. Let p be a positive integer. We denote by N(r, a; f |
≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting function of those a-points
of f with multiplicities ≥ p, which are the b-points (not the b-points) of g.

Definition 1.5. {cf.[1], 2} Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,
a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function of

those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function of those

1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the counting function of those
1-points of f and g where p = q ≥ 2, each point in these counting functions is counted

only once. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.6. {cf.[1], 2} Let k be a positive integer. Let f and g be two non-constant
meromorphic functions such that f and g share the value 1 IM. Let z0 be a 1-point of
f with multiplicity p, a 1-point of g with multiplicity q. We denote by Nf>k (r, 1; g)
the reduced counting function of those 1-points of f and g such that p > q = k.
Ng>k (r, 1; f) is defined analogously.

Definition 1.7. [8, 9] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.
Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We
denote by H the function as follows:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
. (2.1)

Lemma 2.1. [17] Let f be a non-constant meromorphic function and let an(z)( 6≡ 0),
an−1(z),. . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i =
0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. [23] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f),
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Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 2.3. [10] If N(r, 0; f (k)f 6= 0) denotes the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity then

N(r, 0; f (k)f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f < k) + kN(r, 0; f ≥ k) + S(r, f).

Lemma 2.4. Let f be a non-constant meromorphic function. Let n, k and l be three
positive integers such that l > k + 2 and P (ω) be defined as in (1.1), a(z)(6≡ 0,∞) be
a small function with respect to f . Then [P (f)](k) − a(z) has infinitely many zeros.

Proof. Let us take F = P (f).
In view of Lemmas 2.1, 2.2 and by the second theorem for small functions (see [18])
we get

nT (r, f)

= T (r, F ) +O(1)

≤ T (r, F (k))−N(r, 0;F (k)) +Nk+1(r, 0;F ) + S(r, f)

≤ N(r, 0;F (k)) +N(r,∞;F (k)) +N(r, a(z);F (k))−N(r, 0;F (k)) +Nk+1(r, 0;F )

+(ε+ o(1)) T (r, f)

≤ N(r,∞; f) + (k + 1) N(r, cl; f) +N(r, 0;P (f)|f 6= cl) +N(r, a(z);F (k))

+(ε+ o(1)) T (r, f)

≤ (n− l + k + 2) T (r, f) +N(r, a(z);F (k)) + (ε+ o(1)) T (r, f),

for all ε > 0. Take ε < 1. Since l > k+2 from above one can easily say that F (k)−a(z)
has infinitely many zeros. �

Lemma 2.5. ([20], Lemma 6) If H ≡ 0, then F , G share 1 CM. If further F , G share
∞ IM then F , G share ∞ CM.

Lemma 2.6. [12] Let f1 and f2 be two non-constant meromorphic functions satisfying
N(r, 0; fi) + N(r,∞; fi) = S(r; f1, f2) for i = 1, 2. If fs1f

t
2 − 1 is not identically zero

for arbitrary integers s and t(|s|+ |t| > 0), then for any positive ε, we have

N0(r, 1; f1, f2) ≤ εT (r) + S(r; f1, f2),

where N0(r, 1; f1, f2) denotes the reduced counting function related to the common 1-
points of f1 and f2 and T (r) = T (r, f1) + T (r, f2), S(r; f1, f2) = o(T (r)) as r −→∞
possibly outside a set of finite linear measure.

Lemma 2.7. Let f and g be two non-constant meromorphic functions. Let n, k and
l be three positive integers such that 2l > n + 3k. If [P (f)](k) ≡ [P (g)](k), then
P (f) ≡ P (g), where P (ω) be defined as in (1.1).

Proof. We have [P (f)](k) ≡ [P (g)](k).
Integrating we get

[P (f)](k−1) ≡ [P (g)](k−1) + ck−1.
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If possible suppose ck−1 6= 0.
Now in view of Lemma 2.2 for p = 1 and using the second fundamental theorem we
get

n T (r, f)

= T (r, P (f)) +O(1)

≤ T (r, [P (f)](k−1))−N(r, 0; [P (f)](k−1)) +Nk(r, 0;P (f)) + S(r, f)

≤ N(r, 0; [P (f)](k−1)) +N(r,∞; f) +N(r, ck−1; [P (f)](k−1))−N(r, 0; [P (f)](k−1))

+Nk(r, 0;P (f)) + S(r, f)

≤ N(r,∞; f) +N(r, 0; [P (g)](k−1)) +Nk(r, 0;P (f)) + S(r, f)

≤ N(r,∞; f) + (k − 1)N(r,∞; g) +Nk(r, 0;P (g)) +Nk(r, 0;P (f)) + S(r, f)

≤ N(r,∞; f) + (k − 1)N(r,∞; g) + kN(r, cl; g) +N(r, 0;P (g)|g 6= cl) + kN(r, cl; f)

+N(r, 0;P (f)|f 6= cl) + S(r, f)

≤ (n− l + k + 1) T (r, f) + (n− l + 2k − 1) T (r, g) + S(r, f) + S(r, g)

≤ (2n− 2l + 3k) T (r) + S(r).

Similarly we get

n T (r, g) ≤ (2n− 2l + 3k) T (r) + S(r).

Combining these we get

(2l − n− 3k) T (r) ≤ S(r),

which is a contradiction since 2l > n+ 3k.
Therefore ck−1 = 0 and so [P (f)](k−1) ≡ [P (g)](k−1).
Proceeding in this way we obtain

[P (f)]
′
≡ [P (g)]

′
.

Integrating we get

P (f) ≡ P (g) + c0.

If possible suppose c0 6= 0. Now using the second fundamental theorem we get

nT (r, f)

= T (r, P (f)) +O(1)

≤ N(r, 0;P (f)) +N(r,∞;P (f)) +N(r, c0;P (f))

≤ N(r, 0;P (f)) +N(r,∞; f) +N(r, 0;P (g))

≤ (n− l + 2) T (r, f) + (n− l + 1) T (r, g) + S(r, f)

≤ (2n− 2l + 3) T (r) + S(r).

Similarly we get

n T (r, g) ≤ (2n− 2l + 3) T (r) + S(r).
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Combining these we get

(2l − n− 3) T (r) ≤ S(r),

which is a contradiction since 2l > n+ 3.
Therefore c0 = 0 and so

P (f) ≡ P (g).

This proves the Lemma. �

Lemma 2.8. Let f , g be two non-constant meromorphic functions. Let n, k and l be
three positive integers such that l > k+ 2 and P (ω) be defined as in (1.1). If [P (f)](k)

and [P (g)](k) share α IM, where α(6≡ 0,∞) is a small function of f and g, then
T (r, f) = O(T (r, g)) and T (r, g) = O(T (r, f)).

Proof. Let F = P (f). By the second fundamental theorem for small functions {see
[18]}, we have

T (r, F (k)) ≤ N(r,∞;F (k)) +N(r, 0;F (k)) +N(r, α;F (k)) + (ε+ o(1))T (r, F ),

for all ε > 0.
Now in the view of Lemmas 2.1 and 2.2 for p = 1 and using above we get

n T (r, f)

≤ T (r, F (k))−N(r, 0;F (k)) +Nk+1(r, 0;P (f)) + (ε+ o(1))T (r, f)

≤ N(r, 0;F (k)) +N(r,∞; f) +N(r, α;F (k))−N(r, 0;F (k)) +Nk+1(r, 0;P (f))

+ (ε+ o(1))T (r, f)

≤ N(r,∞; f) +N(r, α; [P (f)](k)) + (k + 1)N(r, cl; f) +N(r, 0;P (f)|f 6= cl)

+ (ε+ o(1))T (r, f)

≤ (n− l + k + 2) T (r, f) +N(r, α; [P (g)](k)) + (ε+ o(1))T (r, f)

≤ (n− l + k + 2) T (r, f) + (k + 1)n T (r, g) + (ε+ o(1))T (r, f),

i.e.,

(l − k − 2) T (r, f) ≤ (k + 1)n T (r, g) + (ε+ o(1))T (r, f).

Since l > k + 2, take ε < 1 and we have T (r, f) = O(T (r, g)). Similarly we have
T (r, g) = O(T (r, f)). This completes the proof of Lemma. �

Lemma 2.9. Let f , g be two non-constant meromorphic functions and let

F = [P (f)](k)/α(z), G = [P (g)](k)/α(z),

where P (ω) be defined as in (1.1), α(z) be a small function with respect to f , g and
n, k and l be positive integers such that 2l > n + 3k + 3. Suppose H ≡ 0. Then one
of the following holds:

(i) [P (f)](k)[P (g)](k) ≡ α2;
(ii) f ≡ tg for a constant t such that td = 1, where d = GCD(n, . . . , n − i, . . . , 1),

an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1};



514 Abhijit Banerjee and Sujoy Majumder

(iii) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = (anω
n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2).

Proof. Since H ≡ 0, by Lemma 2.5 we get F and G share 1 CM.
On integration we get

1

F − 1
≡ bG+ a− b

G− 1
, (2.2)

where a, b are constants and a 6= 0. We now consider the following cases.
Case 1. Let b 6= 0 and a 6= b.
If b = −1, then from (2.2) we have

F ≡ −a
G− a− 1

.

Therefore

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f).

So in view of Lemma 2.2 and the second fundamental theorem we get

n T (r, g)

= T (r, P (f)) +O(1)

≤ T (r,G) +Nk+1(r, 0;P (g))−N(r, 0;G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G) +Nk+1(r, 0;P (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) + (k + 1)N(r, cl; g) +N(r, 0;P (g)|g 6= cl) +N(r,∞; f) + S(r, g)

≤ T (r, f) + (n− l + k + 2) T (r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f) ≤ T (r, g) for r ∈ I.
So for r ∈ I we have

(l − k − 3) T (r, g) ≤ S(r, g),

which is a contradiction since l > k + 3.
If b 6= −1, from (2.2) we obtain that

F − (1 +
1

b
) ≡ −a

b2[G+ a−b
b ]

.

So

N(r,
(b− a)

b
;G) = N(r,∞;F ) = N(r,∞; f).

Using Lemma 2.2 and the same argument as used in the case when b = −1 we can
get a contradiction.
Case 2. Let b 6= 0 and a = b.
If b = −1, then from (2.2) we have

FG ≡ α2,

i.e.,

[P (f)](k)[P (g)](k) ≡ α2,



Nonlinear differential polynomial 515

where [P (f)]k and [P (g)]k share α CM.
If b 6= −1, from (2.2) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore

N(r,
1

1 + b
;G) = N(r, 0;F ).

So in view of Lemma 2.2 and the second fundamental theorem we get

n T (r, g)

≤ T (r,G) +Nk+1(r, 0;P (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1 + b
;G) +Nk+1(r, 0;P (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) +Nk+1(r, 0;P (g)) +N(r, 0;F ) + S(r, g)

≤ N(r,∞; g) +Nk+1(r, 0;P (g)) +Nk+1(r, 0;P (f)) + kN(r,∞; f) + S(r, f) + S(r, g)

≤ (n− l + k + 2) T (r, g) + (n− l + 2k + 1) T (r, f) + S(r, f) + S(r, g).

So for r ∈ I we have

(2l − n− 3k − 3) T (r, g) ≤ S(r, g),

which is a contradiction since 2l > n+ 3k + 3.
Case 3. Let b = 0. From (2.2) we obtain

F ≡ G+ a− 1

a
. (2.3)

If a 6= 1 then from (2.3) we obtain

N(r, 1− a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (2.3)
we obtain

F ≡ G,
i.e.,

[P (f)](k) ≡ [P (g)](k).

Then by Lemma 2.7 we have

P (f) ≡ P (g). (2.4)

Let h = f
g . If h is a constant, by putting f = hg in (2.4) we get

ang
n−1(hn − 1) + an−1g

n−2(hn−1 − 1) + . . .+ a1(h− 1) ≡ 0,

which implies that hd = 1, where d = GCD(n, . . . , n − i, . . . , 1), an−i 6= 0 for some
i ∈ {1, 2, . . . , n − 1}. Thus f ≡ tg for a constant t such that td = 1, where d =
GCD(n, . . . , n− i, . . . , 1), an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1}.
If h is not constant then f and g satisfy the algebraic equation R(f, g) ≡ 0, where
R(ω1, ω2) = (anω

n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2). �
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Lemma 2.10. [6] Let f(z) be a non-constant entire function and let k ≥ 2 be a positive
integer. If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are constant.

Lemma 2.11. [[7], Theorem 3.10] Suppose that f is a non-constant meromorphic func-
tion, k ≥ 2 is an integer. If

N(r,∞, f) +N(r, 0; f) +N(r, 0; f (k)) = S(r,
f
′

f
),

then f = eaz+b, where a 6= 0, b are constants.

Lemma 2.12. [[21], Theorem 1.24] Let f be a non-constant meromorphic function and
let k be a positive integer. Suppose that f (k) 6≡ 0, then

N(r, 0; f (k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.13. Let f , g be two transcendental meromorphic functions and p(z) be a
non-zero polynomial with deg(p) ≤ n − 1, where n and k be two positive integers
such that n > max{2k, k + 2}. Suppose [fn](k)[gn](k) ≡ p2, where [fn](k) − p(z) and
[gn](k) − p(z) share 0 CM. Now

(i) if p(z) is not a constant, then f = c1e
cQ(z), g = c2e

−cQ(z), where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that (nc)2(c1c2)n = −1,
(ii) if p(z) is a nonzero constant b, then f = c3e

dz, g = c4e
−dz, where c3, c4 and

d are constants such that (−1)k(c3c4)n(nd)2k = b2.

Proof. Suppose

[fn](k)[gn](k) ≡ p2. (2.5)

We consider the following cases:
Case 1. Let deg(p(z)) = l(≥ 1).
Let z0(p(z0) 6= 0) be a zero of f with multiplicity q. Note that z0 is a zero of [fn](k)

with multiplicity nq − k. Obviously z0 will be a pole of g with multiplicity q1, say.
Note that z0 is a pole of [gn](k) with multiplicity nq1 + k and so nq − k = nq1 + k.
Now

nq − k = nq1 + k

implies that

n(q − q1) = 2k. (2.6)

Since n > 2k, we get a contradiction from (2.6).
This shows that z0 is a zero of p(z) and so we have N(r, 0; f) = O(logr). Similarly we
can prove that N(r, 0; g) = O(logr).
Thus in general we can take N(r, 0; f) +N(r, 0; g) = O(logr).
We know that

N(r,∞; [fn](k)) = nN(r,∞; f) + kN(r,∞; f).
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Also by Lemma 2.12 we have

N(r, 0; [gn](k)) ≤ nN(r, 0; g) + kN(r,∞; g) + S(r, g)

≤ kN(r,∞; g) +O(logr) + S(r, g).

From (2.5) we get

N(r,∞; [fn](k)) = N(r, 0; [gn](k)),

i.e.,
nN(r,∞; f) + kN(r,∞; f) ≤ kN(r,∞; g) +O(logr) + S(r, g). (2.7)

Similarly we get

nN(r,∞; g) + kN(r,∞; g) ≤ kN(r,∞; f) +O(logr) + S(r, f). (2.8)

Since f and g are transcendental, it follows that

S(r, f) +O(logr) = S(r, f), S(r, g) +O(logr) = S(r, g).

Now combining (2.7) and (2.8) we get

N(r,∞; f) +N(r,∞; g) = S(r, f) + S(r, g).

By Lemma 2.8 we have S(r, f) = S(r, g) and so we obtain

N(r,∞; f) = S(r, f), N(r,∞; g) = S(r, g). (2.9)

Let

F1 =
[fn](k)

p
and G1 =

[gn](k)

p
. (2.10)

Note that T (r, F1) ≤ n(k + 1)T (r, f) + S(r, f) and so T (r, F1) = O(T (r, f)). Also by
Lemma 2.2, one can obtain T (r, f) = O(T (r, F1)). Hence S(r, F1) = S(r, f). Similarly
we get S(r,G1) = S(r, g). Hence we get S(r, F1) = S(r,G1). From (2.5) we get

F1G1 ≡ 1. (2.11)

If F1 ≡ cG1, where c is a nonzero constant, then F1 is a constant and so f is a
polynomial, which contradicts our assumption. Hence F1 6≡ cG1 and so in the view of
(2.11) we see that F1 and G1 share −1 IM.
Now by Lemma 2.12 we have

N(r, 0;F1) ≤ nN(r, 0; f) + kN(r,∞; f) + S(r, f) ≤ S(r, F1).

Similarly we have

N(r, 0;G1) ≤ nN(r, 0; g) + kN(r,∞; g) + S(r, g) ≤ S(r,G1).

Also we see that

N(r,∞;F1) = S(r, F1), N(r,∞;G1) = S(r,G1).

It is clearly that T (r, F1) = T (r,G1) +O(1). Let

f1 =
F1

G1
.

and

f2 =
F1 − 1

G1 − 1
.
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Clearly f1 is non-constant. If f2 is a nonzero constant then F1 and G1 share ∞ CM
and so from (2.11) we conclude that F1 and G1 have no poles.

Next we suppose that f2 is non-constant. We see that

F1 =
f1(1− f2)

f1 − f2
, G1 =

1− f2
f1 − f2

.

Clearly

T (r, F1) ≤ 2[T (r, f1) + T (r, f2)] +O(1)

and

T (r, f1) + T (r, f2) ≤ 4T (r, F1) +O(1).

These give S(r, F1) = S(r; f1, f2). Also we note that

N(r, 0; fi) +N(r,∞; fi) = S(r; f1, f2)

for i = 1, 2.
Next we suppose N(r,−1;F1) 6= S(r, F1), otherwise by the second fundamental

theorem F1 will be a constant.
Also we see that

N(r,−1;F1) ≤ N0(r, 1; f1, f2).

Thus we have

T (r, f1) + T (r, f2) ≤ 4 N0(r, 1; f1, f2) + S(r, F1).

Then by Lemma 2.6 there exist two mutually prime integers s and t(|s|+ |t| > 0) such
that

fs1f
t
2 ≡ 1,

i.e., [F1

G1

]s[F1 − 1

G1 − 1

]t
≡ 1. (2.12)

If either s or t is zero then we arrive at a contradiction and so st 6= 0.
We now consider following cases:
Case (i). Suppose s > 0 and t = −t1, where t1 > 0. Then we have[F1

G1

]s
≡
[F1 − 1

G1 − 1

]t1
. (2.13)

Let z1 be a pole of F1 of multiplicity p. Then from (2.11) we see that z1 must be a
zero of G1 of multiplicity p. Now from (2.13) we get 2s = t1, which is impossible.
Hence F1 has no pole. Similarly we can prove that G1 also has no poles.
Case (ii). Suppose either s > 0 and t > 0 or s < 0 and t < 0. Then from (2.13) one
can easily prove that F1 and G1 have no poles.

Consequently from (2.11) we see that F1 and G1 have no zeros. So we deduce
from (2.10) that both f and g have no pole.

Since F1 and G1 have no zeros and poles, we have

F1 ≡ eγ1G1,
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i.e.,

[fn](k) ≡ eγ1 [gn](k),

where γ1 is a non-constant entire function. Then from (2.5) we get

[fn](k) ≡ ce 1
2γ1p(z), [gn](k) ≡ ce− 1

2γ1p(z),

where c is a nonzero constant. This shows that [fn](k) and [gn](k) share 0 CM.
Also we deduce from (2.10) that both f and g are transcendental entire functions.
Since N(r, 0; f) = O(logr) and N(r, 0; g) = O(logr), so we can take

f(z) = h1(z)eα(z), g(z) = h2(z)eβ(z), (2.14)

where h1 and h2 are nonzero polynomials and α, β are two non-constant entire func-
tions.
We deduce from (2.5) and (2.14) that either both α and β are transcendental entire
functions or both α and β are polynomials.
We consider the following cases:
Subcase 1.1: Let k ≥ 2.
First we suppose both α and β are transcendental entire functions.

Let α1 = α
′
+

h
′
1

h1
and β1 = β

′
+

h
′
2

h2
. Clearly both α1 and β1 are transcendental entire

functions.
Note that

S(r, nα1) = S(r,
[fn]

′

fn
), S(r, nβ1) = S(r,

[gn]
′

gn
).

Moreover we see that

N(r, 0; [fn](k)) ≤ N(r, 0; p2) = O(logr).

N(r, 0; [gn](k)) ≤ N(r, 0; p2) = O(logr).

From these and using (2.14) we have

N(r,∞; fn) +N(r, 0; fn) +N(r, 0; [fn](k)) = S(r, nα1) = S(r,
[fn]

′

fn
) (2.15)

and

N(r,∞; gn) +N(r, 0; gn) +N(r, 0; [gn](k)) = S(r, nβ1) = S(r,
[gn]

′

gn
). (2.16)

Then from (2.15), (2.16) and Lemma 2.9 we must have

f = eaz+b, g = ecz+d, (2.17)

where a 6= 0, b, c 6= 0 and d are constants. But these types of f and g do not agree
with the relation (2.5).
Next we suppose α and β are both polynomials.
From (2.5) we get α+ β ≡ C i.e., α

′ ≡ −β′ . Therefore deg(α) = deg(β).
We deduce from (2.14) that

[fn](k) ≡ Ahn−k1 [hk1(α
′
)k + Pk−1(α

′
, h
′

1)]enα ≡ p(z)enα, (2.18)
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and

[gn](k) = Bhn−k2 [hk2(β
′
)k +Qk−1(β

′
, h
′

2)]enβ ≡ p(z)enβ , (2.19)

where A, B are nonzero constants, Pk−1(α
′
, h
′

1) and Qk−1(β
′
, h
′

2) are differential poly-

nomials in α
′
, h
′

1 and β
′
, h
′

2 respectively.
Since deg(p) ≤ n − 1, from (2.17) and (2.19) we conclude that both h1 and h2 are
nonzero constant.
So we can rewrite f and g as follows:

f = eγ2 , g = eδ2 , (2.20)

where γ2 + δ2 ≡ C and deg(γ2) = deg(δ2).
If deg(γ2) = deg(δ2) = 1, then we again get a contradiction from (2.5).
Next we suppose deg(γ2) = deg(δ2) ≥ 2.
We deduce from (2.20) that

[fn](k) = A1[(γ
′

2)k + Pk−1(γ
′

2)]enγ2 , [gn](k) = B1[(δ
′

2)k +Qk−1(δ
′

2)]enδ2 ,

where A1, B1 are nonzero constants, Pk−1(γ
′

2) and Qk−1(δ
′

2) are differential polyno-

mials in γ
′

2 and δ
′

2 of degree atmost k − 1 respectively.
Since [fn](k) and [gn](k) share 0 CM, it follows that

[(γ
′

2)k + Pk−1(γ
′

2)] ≡ D[(δ
′

2)k +Qk−1(δ
′

2)],

where D is a nonzero constant, which is impossible as k ≥ 2.

Actually [(γ
′

2)k + Pk−1(γ
′

2)] and [(δ
′

2)k + Qk−1(δ
′

2)] contain the terms (γ
′

2)k +

K(γ
′

2)k−2γ
′′

2 and (δ
′

2)k + K(δ
′

2)k−2δ
′′

2 respectively, where K is a suitably positive in-
teger. But these two terms are not identical.
Subcase 1.2: Let k = 1.
Now from (2.5) we get

fn−1f
′
gn−1g

′
≡ p21, (2.21)

where p21 = 1
n2 p

2.
First we suppose both α and β are transcendental entire functions.
Let h = fg. Clearly h is a transcendental entire function. Then from (2.21) we get(

g
′

g
− 1

2

h
′

h

)2

≡ 1

4

(
h
′

h

)2

− h−np21. (2.22)

Let

α2 =
g
′

g
− 1

2

h
′

h
.

From (2.22) we get

α2
2 ≡

1

4

(
h
′

h

)2

− h−np21. (2.23)
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First we suppose α2 ≡ 0. Then we get h−np21 ≡ 1
4

(
h
′

h

)2
and so T (r, h) = S(r, h),

which is impossible. Next we suppose that α2 6≡ 0. Differentiating (2.23) we get

2α2α
′

2 ≡
1

2

h
′

h

(
h
′

h

)′
+ n h

′
h−n−1p21 − 2h−np1p

′

1.

Applying (2.23) we obtain

h−n

(
−nh

′

h
p21 + 2p1p

′

1 − 2
α
′

2

α2
p21

)
≡ 1

2

h
′

h

(h′
h

)′
− h

′

h

α
′

2

α2

 . (2.24)

First we suppose

−nh
′

h
p21 + 2p1p

′

1 − 2
α
′

2

α2
p21 ≡ 0.

Then there exist a non-zero constant c such that α2
2 ≡ ch−np21 and so from (2.23) we

get

(c+ 1)h−np21 ≡
1

4

(
h
′

h

)2

.

If c = −1, then h will be a constant. If c 6= −1, then we have T (r, h) = S(r, h),
which is impossible. Next we suppose that

−nh
′

h
p21 + 2p1p

′

1 − 2
α
′

2

α2
p21 6≡ 0.

Then by (2.24) we have

n T (r, h) (2.25)

= n m(r, h)

≤ m

r, hn 1

2

h
′

h

(h′
h

)′
− h

′

h

α
′

2

α2

+m

r, 1

1
2
h′

h

((
h′

h

)′
− h′

h
α
′
2

α2

)
+O(1)

≤ T

r, 1

2

h
′

h

(h′
h

)′
− h

′

h

α
′

2

α2

+m

(
r, n

h
′

h
p21 − 2p1p

′

1 + 2
α
′

2

α2
p21

)
≤ N(r, 0;α2) +N(r,∞;α2) + S(r, h) + S(r, α2)

≤ T (r, α2) + S(r, h). (2.26)

From (2.23) we get

T (r, α2) ≤ 1

2
n T (r, h) + S(r, h).

Now from (2.25) we get

1

2
n T (r, h) ≤ S(r, h),
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which is impossible .
Thus α and β are both polynomials. Also from (2.5) we can conclude that α(z)+β(z) ≡
C for a constant C and so α

′
(z) + β

′
(z) ≡ 0. We deduce from (2.5) that

[fn]
′
≡ n[hn1α

′
+ hn−11 h

′

1]enα ≡ p(z)enα, (2.27)

and

[gn]
′

= n[hn2β
′
+ hn−12 h

′

2]enβ ≡ p(z)enβ . (2.28)

Since deg(p) ≤ n − 1, from (2.27) and (2.28) we conclude that both h1 and h2 are
nonzero constant.
So we can rewrite f and g as follows:

f = eγ3 , g = eδ3 . (2.29)

Now from (2.5) we get

n2γ
′

3δ
′

3e
n(γ3+δ3) ≡ p2. (2.30)

Also from (2.30) we can conclude that γ3(z) + δ3(z) ≡ C for a constant C and so

γ
′

3(z) + δ
′

3(z) ≡ 0. Thus from (2.30) we get n2enCγ
′

3δ
′

3 ≡ p2(z). By computation we
get

γ
′

3 = cp(z), δ
′

3 = −cp(z). (2.31)

Hence

γ3 = cQ(z) + b1, δ3 = −cQ(z) + b2, (2.32)

where Q(z) =
∫ z
0
p(z)dz and b1, b2 are constants. Finally we take f and g as

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that (nc)2(c1c2)n = −1.
Case 2. Let p(z) be a nonzero constant b. Since n > 2k, one can easily prove that f
and g have no zeros. Now proceeding in the same way as done in the proof of the Case
1 we get f = eα and g = eβ , where α and β are two non-constant entire functions.
We now consider the following two subcases:
Subcase 2.1: Let k ≥ 2.
We see that

N(r, 0; [fn](k)) = 0

and

fn(z)[fn(z)](k) 6= 0. (2.33)

Similarly we have

gn(z)[gn(z)](k) 6= 0. (2.34)

Then from (2.33), (2.34) and Lemma 2.10 we must have

f = eaz+b, g = ecz+d, (2.35)

where a 6= 0, b, c 6= 0 and d are constants.
Subcase 2.1: Let k = 1.
Considering Subcase 1.2 one can easily get

f = eaz+b, g = ecz+d, (2.36)
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where a 6= 0, b, c 6= 0 and d are constants.
Finally we can take f and g as

f = c3e
dz, g = c4e

−dz,

where c3, c4 and d are nonzero constants such that (−1)k(c3c4)n(nd)2k = b2.
This completes the proof of Lemma. �

Lemma 2.14. Let f , g be two transcendental meromorphic functions, p(z) be a non-
zero polynomial with deg(p) ≤ n− 1, where n and k be two positive integers such that
n > max{2k, k + 2}.
Let [(f − a)n](k), [(g − a)n](k) share p CM and [(f − a)n](k)[(g − a)n](k) ≡ p2. Now

(i) if p(z) is not a constant, then f = c1e
cQ(z) + a, g = c2e

−cQ(z) + a, where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that (nc)2(c1c2)n = −1,
(ii) if p(z) is a nonzero constant b, then f = c3e

dz + a, g = c4e
−dz + a, where

c3, c4 and d are constants such that (−1)k(c3c4)n(nd)2k = b2.

Proof. The Lemma follows from Lemma 2.13. �

Lemma 2.15. Let f , g be two transcendental entire functions and P (ω) be defined as
in (1.1), p(z) be a nonzero polynomial such that deg(p) ≤ l − 1, where n, k and l
be three positive integers such that 2l > n + 3k + 3. Suppose [P (f)](k)[P (g)](k) ≡ p2.
Then

(i) if p(z) is not a constant, then f = c1e
cQ(z) + cl, g = c2e

−cQ(z) + cl, where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that (nc)2(c1c2)n = −1,
(ii) if p(z) is a nonzero constant b, then f = c3e

dz + cl, g = c4e
−dz + cl, where

c3, c4 and d are constants such that (−1)k(c3c4)n(nd)2k = b2.

Proof. Suppose

[P (f)](k)[P (g)](k) ≡ p2. (2.37)

Since l > k, we can take

f(z)− cl = h(z)eα(z), (2.38)

where h is a nonzero polynomial and α is a non-constant entire function.
Let f1 = f − cl, g1 = g − cl.
Clearly P (f) = f l1P1(f1) and P (g) = gl1P1(g1),
i.e.,

P (f) = f l1[bmf
m
1 + bm−1f

m−1
1 + . . .+ b0]

and

P (g) = gl1[bmg
m
1 + bm−1g

m−1
1 + . . .+ b0].

We now consider the following two cases:
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Case 1. Let s ≥ 2, where s denotes the number of distinct zeros of P (ω) = 0.
In this case m ≥ 1 and so atleast two of bi, where i ∈ {0, 1, . . . ,m} are nonzero.
Since f1 = heα, then by induction we get

(bif
l+i
1 )(k) = ti(α

′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k))e(l+i)α, (2.39)

where ti(α
′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k)) (i = 0, 1, 2, . . . ,m) are differential polynomi-

als in
α
′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k).

Obviously

ti(α
′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k)) 6≡ 0

and [P (f)](k) 6≡ 0.
From (2.37) and (2.39) we obtain

N(r, 0; tme
mα(z) + tm−1e

(m−1)α(z) + . . .+ t0) ≤ N(r, 0; p2) = S(r, f). (2.40)

Since α is an entire function, we obtain T (r, α(j)) = S(r, f) for j = 1, 2, . . . , k. Hence
T (r, ti) = S(r, f) for i = 0, 1, 2, . . . ,m. So from (2.40) and using second fundamental
theorem for small functions{see [18]}, we obtain

m T (r, f)

= T (r, tme
mα + . . .+ t1e

α) + S(r, f)

≤ N(r, 0; tme
mα + . . .+ t1e

α) +N(r, 0; tme
mα + . . .+ t1e

α + t0)

+N(r,∞; tme
mα + . . .+ t1e

α) + (ε+ o(1)) T (r, f)

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + (ε+ o(1)) T (, f)

≤ (m− 1)T (r, f) + (ε+ o(1)) T (r, f),

for all ε > 0. Take ε < 1 and we obtain a contradiction.
Subcase 2.2: Let s = 1.
In this case l = n. From (2.37) we get

[(f1)n](k)[(g1)n](k) ≡ p2. (2.41)

Finally Lemma follows from Lemma 2.14.
This completes the proof of the Lemma. �

Lemma 2.16. [14] Let f and g be two non-constant entire functions and λ, µ be two
constants such that λµ 6= 0. Let n, m and k be three positive integers such that n >

2k+m. If [fn (λfm + µ)]
(k) ≡ [gn (λgm + µ)]

(k)
, then fd(z) ≡ gd(z), d = GCD(n,m).

Lemma 2.17. [16] Let f and g be two non-constant meromorphic functions, k, n >
2k + 1 be two positive integers. If [fn](k) ≡ [gn](k), then f ≡ tg for a constant t such
that tn = 1.

Lemma 2.18. Let f and g be two non-constant meromorphic functions and a(z)(6≡
0,∞) be a small functions of f and g. Let n, k and s ≥ 2 be three positive integers
such that n > 2ks + k and P (ω) be defined as in (1.1). If li > k(i = 1, 2, . . . , s) and

Θ(0; f) + Θ(∞; f) > n(3−s)−2ks+4k
n+2k then

[P (f)](k)[P (g)](k) 6≡ a2,
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Proof. First suppose that

[P (f)](k)[P (g)](k) ≡ a2,

i.e.,

[(f − c1)l1(f − c2)l2 . . . (f − cs)ls ](k)[(g − c1)l1(g − c2)l2 . . . (g − cs)ls ](k) ≡ a2. (2.42)

Now by Lemma 2.8, we have

S(r, f) = S(r, g).

Now by the second fundamental theorem for f and g we get respectively

s T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +

s∑
i=1

N(r, ci; f)−N0(r, 0; f
′
) + S(r, f) (2.43)

and

s T (r, g) ≤ N(r, 0; g) +N(r,∞; g) +

s∑
i=1

N(r, ci; g)−N0(r, 0; g
′
) + S(r, g), (2.44)

where N0(r, 0; f
′
) denotes the reduced counting function of those zeros of f

′
which

are not the zeros of f and f − ci, i = 1, 2, . . . , s and N0(r, 0; g
′
) can be similarly

defined.
Let z1(a(z1) 6= 0,∞) be a zero of f − ci with multiplicity qi, i = 1, 2, . . . , s.

Obviously z1 must be a pole of g with multiplicity r. Then from (2.42) we get liqi−k =
nr + k. This gives qi ≥ n+2k

li
for i = 1, 2, . . . , s and so we get

N(r, ci; f) ≤ li
n+ 2k

N(r, ci; f) ≤ li
n+ 2k

T (r, f).

Clearly
s∑
i=1

N(r, ci; f) ≤ n

n+ 2k
T (r, f). (2.45)

Similarly we have
s∑
i=1

N(r, ci; g) ≤ n

n+ 2k
T (r, g). (2.46)

Then by (2.43) and (2.45) we get

s T (r, f) (2.47)

≤
(

2 +
n

n+ 2k
−Θ(0; f)−Θ(∞; f) + ε

)
T (r, f) + S(r, f).

Then from (2.47) we get(
s− 2− n

n+ 2k
+ Θ(0; f) + Θ(∞; f)− ε

)
T (r, f) ≤ S(r, f).

Since Θ(0; f) + Θ(∞; f) > n(3−s)−2ks+4k
n+2k , we arrive at a contradiction.

This completes the proof. �
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Lemma 2.19. [2] Let f and g be two non-constant meromorphic functions sharing 1
IM. Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.20. [2] Let f , g share 1 IM. Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

Lemma 2.21. [2] Let f , g share 1 IM. Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N0(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N0(r, 0; g
′
) + S(r, g).

3. Proofs of the Theorems

Proof of Theorem 1.1. Let F = [P (f)](k)

p(z) and G = [P (g)](k)

p(z) . Note that since f and g

are transcendental meromorphic functions, p(z) is a small function with respect to
both [P (f)](k) and [P (g)](k). Also F and G share (1, 2) except the zeros of p(z).
Case 1. Let H 6≡ 0.

From (2.1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are

different,(iii) those poles of F and G, (iv) zeros of F
′
(G
′
) which are not the zeros of

F (F − 1)(G(G− 1)).
Since H has only simple poles we get

N(r,∞;H) (3.1)

≤ N(r,∞;F ) +N(r,∞;G) +N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2)

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are not

the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero of G− 1
and a zero of H. So

N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (3.2)

Now using (3.1) and (3.2) we get

N(r, 1;F ) (3.3)

≤ N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N(r, 1;F | ≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g).

Now in view of Lemma 2.3 we get

N0(r, 0;G
′
) +N(r, 1;F |≥ 2) +N∗(r, 1;F,G) (3.4)

≤ N(r, 0;G
′
| G 6= 0) ≤ N(r, 0;G) +N(r,∞;G) + S(r, g),
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Hence using (3.3), (3.4), Lemmas 2.1 and 2.2 we get from the second fundamental
theorem that

nT (r, f)

≤ T (r, F ) +Nk+2(r, 0;P (f))−N2(r, 0;F ) + S(r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0;P (f))−N2(r, 0;F )−N0(r, 0;F
′
)

≤ 2N(r,∞, F ) +N(r,∞;G) +N(r, 0;F ) +Nk+2(r, 0;P (f)) +N(r, 0;F | ≥ 2)

+N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +N(r, 1;F | ≥ 2) +N0(r, 0;G
′
)−N2(r, 0;F )

+ S(r, f) + S(r, g)

≤ 2 N(r,∞;P (f)) + 2 N(r,∞;P (g)) +Nk+2(r, 0;P (f)) +N2(r, 0;G)

+ S(r, f) + S(r, g)

≤ 2 N(r,∞;P (f)) + (2 + k) N(r,∞;P (g)) +Nk+2(r, 0;P (f)) +Nk+2(r, 0;P (g))

+ S(r, f) + S(r, g)

≤ 2 N(r,∞; f) + (2 + k) N(r,∞; g) +Nk+2(r, 0; (f − cl)lP∗(f)) (3.5)

+Nk+2(r, 0; (g − cl)lP∗(g)) + S(r, f) + S(r, g)

≤ 2N(r,∞; f) + (k + 2)N(r,∞; g) + (k + 2){T (r, f) + T (r, g)}+r{T (r, f) + T (r, g)}
≤ (3k + 2r + 8)T (r) + S(r) (3.6)

In a similar way we can obtain

nT (r, g) ≤ (3k + 2r + 8)T (r) + S(r). (3.7)

From (3.5) and (3.7) we get

(l − 3k − r − 8) T (r) ≤ S(r),

which is a contradiction since l > 3k + r + 8.

Case 2. Let H ≡ 0. Then the Theorem follows from Lemmas 2.9, 2.14 and 2.18. �

Proof of Theorem 1.2. In this case F and G share 1 IM.

Case 1. Let H 6≡ 0. Here we see that

N
1)
E (r, 1;F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G). (3.8)

Now using Lemmas 2.3, 2.19, 2.20, 2.21, (3.1) and (3.8) we get

N(r, 1;F ) ≤ N1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2

E (r, 1;F ) (3.9)
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≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F )

+ 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NF>1(r, 1;G)

+NG>1(r, 1;F ) +NL(r, 1;F ) +N(r, 1;G)−N(r, 1;G) +N0(r, 0;F
′
) +N0(r, 0;G

′
)

+ S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G) +N(r, 1;G)

−N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0;F

′
) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G
′
|G 6= 0) +N0(r, 0;F

′
) + S(r)

≤ 3N(r,∞; f) + 3N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G) +N(r, 0;G)

+N0(r, 0;F
′
) + S(r).

Hence using (3.9), Lemmas 2.1 and 2.2 we get from second fundamental theorem that

nT (r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0;P (f))−N2(r, 0;F )−N0(r, 0;F
′
)

≤ 4N(r,∞, P (f)) + 3N(r,∞;P (g)) +N2(r, 0;F ) + 2 N(r, 0;F ) +Nk+2(r, 0;P (f))

+N2(r, 0;G) +N(r, 0;G)−N2(r, 0;F ) + S(r, f) + S(r, g)

≤ 4N(r,∞;P (f)) + 3N(r,∞;P (g)) +Nk+2(r, 0;P (f)) + 2 N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G) + S(r, f) + S(r, g)

≤ 4N(r,∞;P (f)) + 3N(r,∞;P (g)) +Nk+2(r, 0;P (f)) + 2 kN(r,∞;P (f))

+ 2 Nk+1(r, 0;P (f)) + k N(r,∞; g) +Nk+2(r, 0;P (g)) + kN(r,∞; g)

+Nk+1(r, 0;P (g)) + S(r, f) + S(r, g)

≤ (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + (3k + 3r + 4)T (r, f)

+ (2k + 2r + 3)T (r, g) + S(r, f) + S(r, g)

≤ (9k + 5r + 14T (r) + S(r). (3.10)

In a similar way we can obtain

n T (r, g) ≤ (9k + 5r + 14)T (r) + S(r). (3.11)

Combining (3.10) and (3.11) we see that

(l − 9k − 4r − 14) T (r) ≤ S(r). (3.12)

When l > 9k + 4r + 14, (3.12) leads to a contradiction.
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Case 2. Let H ≡ 0. Then the Theorem follows from Lemmas 2.9, 2.14 and 2.18.
This completes the proof of the Theorem. �

Proof of Corollary 1.1 and 1.2. From Theorem 1.1 and 1.2 one can easily prove the
corollaries. So we omit the details. �
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