
Stud. Univ. Babeş-Bolyai Math. 61(2016), No. 4, 421–428

Hybrid differential equations with maxima
via Picard operators theory

Diana Otrocol

Dedicated to Professor Ioan A. Rus on the occasion of his 80th anniversary

Abstract. The aim of this paper is to discuss some basic problems (existence and
uniqueness, data dependence) of the Cauchy problem for a hybrid differential
equation with maxima using weakly Picard operators technique.

Mathematics Subject Classification (2010): 47H10, 34K05.

Keywords: Differential equations with maxima, Cauchy problem, data depen-
dence, weakly Picard operators.

1. Introduction

Recently, the interest in differential equations with “maxima” has increased ex-
ponentially. Such equations model real world problems whose present state depends
significantly on its maximum value on a past time interval. For example, many prob-
lems in the control theory correspond to the maximal deviation of the regulated
quantity. Some qualitative properties of the solutions of ordinary differential equa-
tions with “maxima” can be found in [1, 2, 5], [16, 17] and the references therein.

The main goal of the presented paper is to study a hybrid differential equation
with maxima, using the theory of weakly Picard operators. The theory of Picard
operators was introduced by I. A. Rus (see [12], [14] and their references) to study
problems related to fixed point theory. This abstract approach is used by many math-
ematicians and it seemed to be a very useful and powerful method in the study of
integral equations and inequalities, ordinary and partial differential equations (exis-
tence, uniqueness, differentiability of the solutions), etc.

In this paper we consider the following hybrid differential equation with maxima

x′(t) = f(t, x(t)) + g(t, max
a≤ξ≤t

x(ξ)), (1.1)

with initial condition

x(a) = x0, (1.2)
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where t ∈ [a, b], a, b ∈ R, x0 ∈ Rm, f, g : [a, b]× Rm→ Rm.
We use the terminologies and notations from [12] and [14]. For the convenience

of the reader we recall some of them.
Let (X, d) be a metric space and A : X → X an operator. We denote by

A0 := 1X , A
1 := A, An+1 := An ◦ A, n ∈ N, the iterate operators of the operator

A. We also have:

P (X) := {Y ⊆ X | Y 6= φ},
FA := {x ∈ X | A(x) = x},

I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅}.

Definition 1.1. Let (X, d) be a metric space. An operator A : X → X is a Picard oper-
ator (PO) if there exists x∗ ∈ X such that FA = {x∗} and the sequence (An(x0))n∈N
converges to x∗, for all x0 ∈ X.

Definition 1.2. Let (X, d) be a metric space. An operator A : X → X is a weakly
Picard operator (WPO) if the sequence (An(x))n∈N converges for all x ∈ X, and its
limit (which may depend on x) is a fixed point of A.

Definition 1.3. If A is weakly Picard operator then we consider the operator A∞ defined
by A∞ : X → X, A∞(x) := lim

n→∞
An(x).

Obviously, A∞(X) = FA. Moreover, if A is a PO and we denote by x∗ its unique
fixed point, then A∞(x) = x∗, for each x ∈ X.

2. Existence and uniqueness

We prove the existence and uniqueness for the solution of the problem (1.1)-
(1.2) using the Perov’s Theorem as in [7]. For standard techniques, when it is used
the Banach contraction principle, see [13], [9] and [10].

Theorem 2.1. (Perov’s fixed point theorem) Let (X, d) with d(x, y) ∈ Rm, be a complete
generalized metric space and A : X → X an operator. We suppose that there exists a
matrix Q ∈Mm×m(R+), such that

(i) d(A(x), A(y)) ≤ Qd(x, y), for all x, y ∈ X;
(ii) Qn → 0, as n→∞.

Then

(a) FA = {x∗},
(b) An(x)→ x∗, as n→∞ and

d(An(x), x∗) ≤ (I −Q)−1Qnd(x0, A(x0)), ∀x0, x ∈ X,∀n ∈ N∗;
(c) d(x, x∗) ≤ (I −Q)−1d(x,A(x)), ∀x ∈ X.

We consider on Rm the following vectorial norm

|x| :=

 |x1|
...
|xm|

 .
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We have the following result:

Theorem 2.2. We assume that:

(i) f, g ∈ C([a, b]× Rm,Rm);

(ii) there exist Lf and Lg nonnegative matrices such that

∣∣f(t, u1)− f(t, u2)
∣∣ ≤ Lf ∣∣u1 − u2∣∣ ,∣∣g(t, v1)− g(t, v2)
∣∣ ≤ Lg ∣∣v1 − v2∣∣ ,

∀ t ∈ [a, b] and u1 = (u11, . . . , u
1
m), u2 = (u21, . . . , u

2
m),

v1 = (v11 , . . . , v
1
m), v2 = (v21 , . . . , v

2
m) ∈ Rm;

(iii) the matrix

Q := (b− a)(Lf + Lg) (2.1)

is convergent to 0, i.e. Qn → 0, as n→∞.
Then, the problem (1.1)-(1.2) has a unique solution x∗ ∈ C([a, b],Rm).

Proof. We consider the generalized Banach space X = (C([a, b],Rm), ‖·‖) where ‖·‖
is the norm,

‖x‖ :=


max
a≤t≤b

|x1(t)|
...

max
a≤t≤b

|xm(t)|

 . (2.2)

The problem (1.1)-(1.2), x ∈ C1([a, b],Rm) is equivalent with the following fixed point
equation

x(t) = x0 +

∫ t

a

f(s, x(s))ds+

∫ t

a

g(s, max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b]. (2.3)

We consider the operator A : X → X, where

A(x)(t) = x0 +

∫ t

a

f(s, x(s))ds+

∫ t

a

g(s, max
a≤ξ≤s

x(ξ))ds. (2.4)

It is easy to see that if x∗ ∈ FA then x∗ is a solution of (1.1)-(1.2).
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Condition (ii) implies that

|A(x)(t)−A(y)(t)|

≤
∫ t

a

|f(s, x(s))− f(s, y(s))| ds+

∫ t

a

∣∣∣∣g(s, max
a≤ξ≤s

x(ξ))− g(s, max
a≤ξ≤s

y(ξ))

∣∣∣∣ ds
≤ (b− a)Lf


max
a≤s≤b

|x1(s)− y1(s)|
...

max
a≤s≤b

|xm(s)− ym(s)|



+ (b− a)Lg


max
a≤s≤b

∣∣∣∣ max
a≤ξ≤s

x1(s)− max
a≤ξ≤s

y1(s)

∣∣∣∣
...

max
a≤s≤b

∣∣∣∣ max
a≤ξ≤s

xm(s)− max
a≤ξ≤s

ym(s)

∣∣∣∣

 .

But

max
a≤s≤b

∣∣∣∣ max
a≤ξ≤s

xi(s)− max
a≤ξ≤s

yi(s)

∣∣∣∣ ≤ max
a≤s≤b

|xi(s)− yi(s)| .

So,

‖A(x)−A(y)‖ ≤ Q ‖x− y‖ .

Using (iii), we get that the operator A : X → X is a Q-contraction, so

FA = (x∗1, . . . , x
∗
m) = x∗

is the unique solution of (1.1)-(1.2). �

The equation (1.1) is equivalent with

x(t) = x(a) +

∫ t

a

f(s, x(s))ds+

∫ t

a

g(s, max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b], (2.5)

x ∈ C([a, b],Rm).

In what follows we consider the operator B : X → X defined by B(x)(t) :=the
right hand side of (2.5). For x0 ∈ Rm, we consider

Xx0
:= {x ∈ C([a, b],Rm)| x(a) = x0}.

It is clear that

X = ∪
x0∈Rm

Xx0

is a partition of X. We have

Lemma 2.3. We suppose that the condition (C1) is satisfied. Then

(a) A(X) ⊂ Xx0
and A(Xx0

) ⊂ Xx0
;

(b) A|Xx0
= B|Xx0

.
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Remark 2.4. From Theorem 2.2 we have that the operator A is PO. Because A|Xx0
=

B|Xx0
, X := C([a, b],Rm) = ∪

x0∈Rm
Xx0

, Xx0
∈ I(B) it follows that the operator B is

WPO and

FB ∩Xx0
= {x∗}, ∀x0 ∈ Rm,

where x∗ is the unique solution of the problem (1.1)-(1.2).

3. Data dependence: comparison results

Now we consider the operators A and B on the ordered Banach space
(C([a, b],Rm), ‖·‖ ,≤) where the order relation on Rm is given by: x ≤ y ⇔ xi ≤ yi,
i = 1,m.

In order to establish the Čaplygin type inequalities we need the following abstract
result.

Lemma 3.1. (see [14]) Let (X, d,≤) be an ordered metric space and A : X → X an
operator. Suppose that A is increasing and WPO. Then the operator A∞ is increasing.

We have the following result

Theorem 3.2. Suppose that:
(a) the conditions of Theorem 2.2 are satisfied;
(b) f(t, ·) : Rm → Rm, g(t, ·) : Rm → Rm are increasing, ∀t ∈ [a, b].
Let x∗ be a solution of equation (1.1) and y∗ a solution of the inequality

y′(t) ≤ f(t, y(t)) + g(t, max
a≤ξ≤t

y(ξ)), t ∈ [a, b].

Then y∗(a) ≤ x∗(a) implies that y ≤ x.

Proof. From Remark 2.4 we have that B is WPO. On the other hand, from the
condition (b) and Lemma 3.1 we get that the operator B∞ is increasing. If x0 ∈ Rm,
then we denote by x̃0 the following function

x̃0 : [a, b]→ Rm, x̃0(t) = x0, ∀t ∈ [a, b].

Hence y∗ ≤ B(y∗) ≤ B2(y∗) ≤ . . . ≤ B∞(y∗) = B∞(ỹ∗(a)) ≤ B∞(x̃∗(a)) = x∗. �

In order to study the monotony of the solution of the problem (1.1)-(1.2) with
respect to x0, f, g we need the following result from WPOs theory.

Lemma 3.3. (Abstract comparison lemma, [15]) Let (X, d,≤) be an ordered metric
space and A,B,C : X → X be such that:

(i) the operator A,B,C are WPOs;
(ii) A ≤ B ≤ C;
(iii) the operator B is increasing.
Then x ≤ y ≤ z imply that A∞(x) ≤ B∞(y) ≤ C∞(z).

From this abstract result we obtain the following result:
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Theorem 3.4. Let f j , gj ∈ C([a, b]×Rm,Rm), j = 1, 3, and suppose that the conditions
from Theorem 2.2 hold. Furthermore suppose that:

(i) f1 ≤ f2 ≤ f3, g1 ≤ g2 ≤ g3;

(ii) f2(t, ·) : Rm → Rm, g2(t, ·) : Rm → Rm are increasing.

Let x∗j be a solution of the equation

xj′(t) = f j(t, x(t)) + gj(t, max
a≤ξ≤t

x(ξ)), t ∈ [a, b] and j = 1, 3.

Then x∗1(a) ≤ x∗2(a) ≤ x∗3(a), implies x∗1 ≤ x∗2 ≤ x∗3, i.e. the unique solution of
the problem (1.1)-(1.2) is increasing with respect to x0, f and g.

Proof. From Remark 2.4, the operators Bj , j = 1, 3, are WPOs. From the condition
(ii) the operator B2 is monotone increasing. From the condition (i) it follows that
B1 ≤ B2 ≤ B3. Let x̃j(a) ∈ (C[a, b],Rm) be defined by x̃j(a) = xj(a), ∀t ∈ [a, b]. We
notice that

x̃1(a)(t) ≤ x̃2(a)(t) ≤ x̃3(a)(t), ∀t ∈ [a, b].

From Lemma 3.3 we have that B∞1 (x̃∗1(a)) ≤ B∞2 (x̃∗2(a)) ≤ B∞3 (x̃∗3(a)).
But x∗j = B∞j (x̃∗j(a)), so x∗1 ≤ x∗2 ≤ x∗3. �

4. Data dependence: continuity

In this section we prove the continuous dependence of the solution for equation
(1.1) and suppose the conditions of Theorem 2.2 are satisfied.

Theorem 4.1. Let xj0, f
j , gj , j = 1, 2 satisfy the conditions from Theorem 2.2. Fur-

thermore we suppose there exist η1, η2, η3 ∈ Rm+ , such that

(i)
∣∣∣xj0 − xj0∣∣∣ ≤ η1;

(ii)
∣∣f1(t, u)− f2(t, u)

∣∣ ≤ η2, ∣∣g1(t, v)− g2(t, v)
∣∣ ≤ η3, ∀t ∈ C[a, b], u, v ∈ Rm.

Then∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥ ≤ (I −Q)−1(η1 + (b− a)(η2 + η3)),

where x∗(t;xj0, f
j , gj) are the solutions of the problem (1.1)-(1.2) with respect to

xj0, f
j , gj , j = 1, 2.

Proof. Consider the operator Axj
0,f

j ,gj , j = 1, 2. From Theorem 2.2 it follows that∥∥∥Ax1
0,f

1,g1(x)−Ax1
0,f

1,g1(y)
∥∥∥ ≤ Q ‖x− y‖ ,∀x, y ∈ X.

Additionally ∥∥∥Ax1
0,f

1,g1(x)−Ax2
0,f

2,g2(x)
∥∥∥ ≤ η1 + (b− a)(η2 + η3).
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Then ∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥

=
∥∥∥Ax1

0,f
1,g1(x∗(t;x10, f

1, g1))−Ax2
0,f

2,g2(x∗(t;x20, f
2, g2))

∥∥∥
≤
∥∥∥Ax1

0,f
1,g1(x∗(t;x10, f

1, g1))−Ax1
0,f

1,g1(x∗(t;x20, f
2, g2))

∥∥∥
+
∥∥∥Ax1

0,f
1,g1(x∗(t;x20, f

2, g2))−Ax2
0,f

2,g2(x∗(t;x20, f
2, g2))

∥∥∥
≤ Q

∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥+ η1 + (b− a)(η2 + η3).

Since Qn → 0 as n→∞, implies that (I −Q)−1 ∈Mmm(R+) and we finally obtain∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥ ≤ (I −Q)−1(η1 + (b− a)(η2 + η3)). �

5. Remarks

In this section we emphasize some special cases of (1.1).

Let τ > 0 be a given number and we define the operator G : C([−τ,∞),Rm)→
Rm such that for any function x ∈ C([−τ,∞),Rm) and any point t ∈ R+ there exists
a point ξ ∈ [t− τ, t] such that G(x)(t) = a(t)x(ξ) where a ∈ C(R+,R).

Consider the nonlinear delay functional differential equation

x′(t) = f(t, x(t)) + g(t, G(x)(t)) (5.1)

for t ≥ t0 with initial condition

x(t+ t0) = ϕ(t), t ∈ [−τ, 0],

where x ∈ Rm, f : R+ × Rm → Rm, t0 ∈ R+, ϕ : [−τ, 0]→ Rm.
Particular cases of (1.1):

(i) For G(x)(t) = x(t−τ), t ∈ R+, then (5.1) reduces to a delay differential equation
(see [6], [12], [14], [15]);

(ii) For G(x)(t) = max
s∈[t−τ,t]

x(s), t ∈ R+, then (5.1) reduces to a differential equation

with maxima (see [16], [17], [9], [10], [1]);

(iii) For G(x)(t) =
∫ t
t−τ x(s)ds, t ∈ R+, τ > 0, then (5.1) reduces to a differential

equation with distributed delay (see [11], [4]);
(iv) For g(t, G(x)(t)) = h(x)(t), where h : C([a, b],R) → C([a, b],R) is an abstract

Volterra operator, then (5.1) reduces to a differential equation with abstract
Volterra operator (see [8]);

(v) If x′(t) − f(t, x(t)) := d
dt

[
x(t)

f(t,x(t))

]
, G(x)(t) = x(t), t ≥ t0, then (5.1) reduces

to a quadratic differential equation (see [3]).
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