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1. Introduction

The fractional calculus represents a powerful tool in applied mathematics to
study a myriad of problems from different fields of science and engineering, with many
break-through results found in mathematical physics, finance, hydrology, biophysics,
thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and
bioengineering [16, 27, 38]. There has been a significant development in ordinary and
partial fractional differential equations in recent years; see the monographs of Abbas
et al. [1, 3, 4], Kilbas et al. [22], Miller and Ross [24], the papers of Abbas et al.
[2, 5, 6, 7], Vityuk and Golushkov [40], and the references therein. In [10], Butzer
et al. investigate properties of the Hadamard fractional integral and the derivative.
In [11], they obtained the Mellin transforms of the Hadamard fractional integral and
differential operators and in [28], Pooseh et al. obtained expansion formulas of the
Hadamard operators in terms of integer order derivatives. Many other interesting
properties of those operators and others are summarized in [29] and the references
therein.

The stability of functional equations was originally raised by Ulam [39] in 1940
and Hyers [17] in 1941. Thereafter, this type of stability is called the Ulam-Hyers
stability. In 1978, Rassias [30] provided a remarkable generalization of the Ulam-Hyers
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stability of mappings by considering variables. The stability question of functional
equations is how do the solutions of the inequality differ from those of the given
functional equation? Considerable attention has been given to the study of the Ulam-
Hyers and Ulam-Hyers-Rassias stability of all kinds of functional equations; one can
see the monographs of [18, 19]. Bota-Boriceanu and Petruşel [9], Petru et al. [25,
26], and Rus [31, 32] discussed the Ulam-Hyers stability for operatorial equations
and inclusions. Castro and Ramos [12], and Jung [21] considered the Hyers-Ulam-
Rassias stability for a class of Volterra integral equations. Ulam stability for fractional
differential equations with Caputo derivative are proposed by Wang et al. [41, 42].
Some stability results for fractional integral equation are obtained by Wei et al. [43].
More details from historical point of view, and recent developments of such stabilities
are reported in [20, 31, 43].

The theory of Picard operators was introduced by Ioan A. Rus (see [33, 34, 35]
and their references) to study problems related to fixed point theory. This abstract
approach was used later on by many mathematicians as a very powerful method in the
study of integral equations and inequalities, ordinary and partial differential equations
(existence, uniqueness, differentiability of the solutions, ...), see [35] and the references
therein. The theory of Picard operators is also a very powerful tool in the study of
Ulam-Hyers stability of functional equations. We only have to define a fixed point
equation from the functional equation we want to study, then if the defined operator
is c-weakly Picard we also have immediately the Ulam-Hyers stability of the desired
equation. Of course it is not always possible to transform a functional equation or
a differential equation into a fixed point problem and actually this point shows a
weakness of this theory. The uniform approach with Picard operators to the discuss
of the stability problems of Ulam-Hyers type is due to Rus [32].

In [2, 5, 6], Abbas et al. studied some Ulam stabilities for functional fractional
partial differential and integral inclusions via Picard operators. In this paper, we
discuss the Ulam-Hyers and the Ulam-Hyers-Rassias stability for the following new
class of fractional partial integral inclusions of the form

u(x, y)− µ(x, y) ∈ (HIrσF )(x, y, u(x, y)); (x, y) ∈ J := [1, a]× [1, b], (1.1)

where a, b > 1, σ = (1, 1), F : J ×E → P(E) is a set-valued function with nonempty
values in a (real or complex) separable Banach space E, P(E) is the family of all
nonempty subsets of E, HIrσF is the definite Hadamard integral for the set-valued
function F of order r = (r1, r2) ∈ (0,∞)×(0,∞), and µ : J → E is a given continuous
function.

This paper initiates the existence of the solution and the Ulam stability via
Picard operators for such new class of fractional integral inclusions.

2. Basic concepts and auxiliary results

Let L1(J) be the space of Bochner-integrable functions u : J → E with the norm

‖u‖L1 =

∫ a

1

∫ b

1

‖u(x, y)‖Edydx,
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where ‖ · ‖E denotes a complete norm on E. By L∞(J) we denote the Banach space
of measurable functions u : J → E which are essentially bounded, equipped with the
norm

‖u‖L∞ = inf{c > 0 : ‖u(x, y)‖E ≤ c, a.e. (x, y) ∈ J}.
As usual, by C := C(J) we denote the Banach space of all continuous functions from
J into E with the norm ‖.‖∞ defined by

‖u‖∞ = sup
(x,y)∈J

‖u(x, y)‖E .

Let (X, d) be a metric space induced from the normed space (X, ‖.‖). Denote
Pcl(X) = {Y ∈ P(X) : Y closed},
Pbd(X) = {Y ∈ P(X) : Y bounded},
Pcp(E) = {Y ∈ P(E) : Y compact} and
Pcp,cv(E) = {Y ∈ P(E) : Y compact and convex}.

Definition 2.1. A multivalued map T : X → P(X) is convex (closed) valued if T (x) is
convex (closed) for all x ∈ X, T is called upper semi-continuous (u.s.c.) on X if for
each x0 ∈ X, the set T (x0) is a nonempty closed subset of X, and if for each open
set N of X containing T (x0), there exists an open neighborhood N0 of x0 such that
T (N0) ⊆ N. T is lower semi-continuous (l.s.c.) if the set {t ∈ X : T (t) ∩ B 6= ∅}
is open for any open set B in X. T is said to be completely continuous if T (B) is
relatively compact for every B ∈ Pbd(X). T has a fixed point if there is x ∈ X such that
x ∈ T (x). The fixed point set of the multivalued operator T will be denoted by Fix(T ).
The graph of T will be denoted by Graph(T ) := {(u, v) ∈ X × P(X) : v ∈ T (u)}.

Consider Hd : P(X)× P(X)→ [0,∞) ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pbd,cl(X), Hd) is a Hausdorff

metric space.
Notice that A : X → X is a selection for T : X → P(X) if A(u) ∈ T (u); for each

u ∈ X. For each u ∈ C, define the set of selections of the multivalued F : J×C → P(C)
by

SF,u = {v :∈ L1(J) : v(x, y) ∈ F (x, y, u(x, y)); (x, y) ∈ J}.

Definition 2.2. A multivalued map G : J → Pcl(E), is said to be measurable if for every
v ∈ E the function (x, y)→ d(v,G(x, y)) = inf{d(v, z) : z ∈ G(x, y)} is measurable.

In what follows we will give some basic definitions and results on Picard operator
theory [35]. Let (X, d) be a metric space and A : X → X be an operator. We denote by
FA the set of the fixed points of A. We also denote A0 := 1X , A

1 := A, . . . , An+1 :=
An ◦A; n ∈ N the iterate operators of the operator A.

Definition 2.3. The operator A : X → X is a Picard operator (PO) if there exists
x∗ ∈ X such that:

(i) FA = {x∗};
(ii) The sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.
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Definition 2.4. The operator A : X → X is a weakly Picard operator (WPO) if the
sequence (An(x))n∈N converges for all x ∈ X, and its limit (which may depend on x)
is a fixed point of A.

Definition 2.5. If A is weakly Picard operator then we consider the operator A∞ defined
by

A∞ : X → X; A∞(x) = lim
n→∞

An(x).

Remark 2.6. It is clear that A∞(X) = FA.

Definition 2.7. Let A be a weakly Picard operator and c > 0. The operator A is
c-weakly Picard operator if

d(x,A∞(x)) ≤ c d(x,A(x)); x ∈ X.
In the multivalued case we have the following concepts (see [36]).

Definition 2.8. Let (X, d) be a metric space, and F : X → Pcl(X) be a multivalued
operator. By definition, F is a multivalued weakly Picard operator (MWPO), if for
each u ∈ X and each v ∈ F (x), there exists a sequence (un)n∈IN such that

(i) u0 = u, u1 = v;
(ii) un+1 ∈ F (un), for each n ∈ N;
(iii) the sequence (un)n∈IN is convergent and its limit is a fixed point of F.

Remark 2.9. A sequence (un)n∈N satisfying condition (i) and (ii) in the above Def-
inition is called a sequence of successive approximations of F starting from (x, y) ∈
Graph(F ).

If F : X → Pcl(X) is a (MWPO) then we define F1 : Graph(F ) → P(Fix(F ))
by the formula F1(x, y) := {u ∈ Fix(F ) : there exists a sequence of successive ap-
proximations of F starting from (x, y) that converges to u}.
Definition 2.10. Let (X, d) be a metric space and let Ψ : [0,∞) → [0,∞) be an
increasing function which is continuous at 0 and Ψ(0) = 0. Then F : X → Pcl(X) is
said to be a multivalued Ψ−weakly Picard operator (Ψ−MWPO) if it is a multivalued
weakly Picard operator and there exists a selection A∞ : Graph(F )→ Fix(F ) of F∞

such that
d(u,A∞(u, v)) ≤ Ψ(d(u, v)); for all (u, v) ∈ Graph(F ).

If there exists c > 0 such that Ψ(t) = ct, for each t ∈ [0.∞), then F is called a
multivalued c-weakly Picard operator (c−MWPO).

Let us recall the notion of comparison function.

Definition 2.11. A function ϕ : [0,∞) → [0,∞) is said to be a comparison function
(see [35]) if it is increasing and ϕn(t)→ 0 as n→∞, for all t > 0.

As a consequence, we have ϕ(t) < t, for each t > 0, ϕ(0) = 0 and ϕ is continuous
at 0.

Definition 2.12. A function ϕ : [0,∞) → [0,∞) is said to be a strict comparison

function (see [35]) if it is strictly increasing and

∞∑
n=1

ϕn(t) <∞, for each t > 0.
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Example 2.13. The mappings ϕ1, ϕ2 : [0,∞)→ [0,∞) given by ϕ1(t) = ct; c ∈ [0, 1),
and ϕ2(t) = t

1+t ; t ∈ [0,∞), are strict comparison functions.

Definition 2.14. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ ≥ 0 such that

Hd(N(u), N(v)) ≤ γd(u, v); for each u, v ∈ X,

b) a multivalued γ−contraction if and only if it is γ-Lipschitz with γ ∈ [0, 1),
c) a multivalued ϕ−contraction if and only if there exists a strict comparison func-

tion ϕ : [0,∞)→ [0,∞) such that

Hd(N(u), N(v)) ≤ ϕ(d(u, v)); for each u, v ∈ X.

Now, we introduce notations and definitions concerning to partial Hadamard
integral of fractional order.

Definition 2.15. [15, 22] The Hadamard fractional integral of order q > 0 for a function
g ∈ L1([1, a],R), is defined as

(HIr1g)(x) =
1

Γ(q)

∫ x

1

(
log

x

s

)q−1 g(s)

s
ds,

where Γ(·) is the Euler gamma function.

Definition 2.16. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ L1(J,R), define
the Hadamard partial fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 w(s, t)

st
dtds.

Definition 2.17. Let F : J × E → P(E) be a set-valued function with nonempty
values in E. (HIrσF )(x, y, u(x, y)) is the definite Hadamard integral for the set-valued
functions F of order r = (r1, r2) ∈ (0,∞)× (0,∞) which is defined as

HIrσF (x, y, u(x, y))=

{∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds : f ∈ SF,u

}
.

Remark 2.18. Solutions of the inclusion (1.1) are solutions of the fixed point inclusion
u ∈ N(u) where N : C → P(C) is the multivalued operator defined by

(Nu)(x, y) =
{
µ(x, y) + (HIrσf)(x, y) : f ∈ SF,u

}
; (x, y) ∈ J.

Let us give the definition of Ulam-Hyers stability of the fixed point inclusion
u ∈ N(u), see for instance [2]. Let ε be a positive real number and Φ : J → [0,∞) be
a continuous function.

Definition 2.19. The fixed point inclusion u ∈ N(u) is said to be Ulam-Hyers stable
if there exists a real number cN > 0 such that for each ε > 0 and for each solution
u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤ ε; (x, y) ∈ J, there exists a solution
v ∈ C of the inclusion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ εcN ; (x, y) ∈ J.



414 S. Abbas, W. Albarakati, M. Benchohra and A. Petruşel

Definition 2.20. The fixed point inclusion u ∈ N(u) is said to be generalized Ulam-
Hyers stable if there exists an increasing function θN ∈ C([0,∞), [0,∞)), θN (0) =
0 such that for each ε > 0 and for each solution u ∈ C of the inequality
Hd(u(x, y), (Nu)(x, y)) ≤ ε; (x, y) ∈ J, there exists a solution v ∈ C of the inclu-
sion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ θN (ε); (x, y) ∈ J.

Definition 2.21. The fixed point inclusion u ∈ N(u) is said to be Ulam-Hyers-Rassias
stable with respect to Φ if there exists a real number cN,Φ > 0 such that for each
ε > 0 and for each solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤
εΦ(x, y); (x, y) ∈ J, there exists a solution v ∈ C of the inclusion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ εcN,ΦΦ(x, y); (x, y) ∈ J.

Definition 2.22. The fixed point inclusion u ∈ N(u) is said to be generalized Ulam-
Hyers-Rassias stable with respect to Φ if there exists a real number cN,Φ > 0 such that
for each solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤ Φ(x, y); (x, y) ∈ J,
there exists a solution v ∈ C of the inclusion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ cN,ΦΦ(x, y); (x, y) ∈ J.

Remark 2.23. It is clear that

(i) Definition 2.19 ⇒ Definition 2.20,
(ii) Definition 2.21 ⇒ Definition 2.22,
(iii) Definition 2.21 for Φ(x, y) = 1 ⇒ Definition 2.19.

The following result, a generalization of Covitz-Nadler fixed point principle (see
[14]), is known in the literature as Wȩgrzyk’s fixed point theorem.

Lemma 2.24. [44] Let (X, d) be a complete metric space. If A : X → Pcl(X) is a
ϕ−contraction, then Fix(A) is nonempty and for any u0 ∈ X, there exists a sequence
of successive approximations of A starting from u0 which converges to a fixed point
of A.

Also, the following result is known in the literature as Wȩgrzyk’s theorem.

Lemma 2.25. [44] Let (X, d) be a Banach space. If an operator A : X → Pcl(X) is a
ϕ−contraction, then A is a (MWPO).

Now we present an important characterization Lemma from the point of view of
Ulam-Hyers stability.

Lemma 2.26. [26] Let (X, d) be a metric space. If A : X → Pcp(X) is a (Ψ−MWPO),
then the fixed point inclusion u ∈ A(u) is generalized Ulam-Hyers stable. In particular,
if A is (c−MWPO), then the fixed point inclusion u ∈ A(u) is Ulam-Hyers stable.

Another Ulam-Hyers stability result, more efficient for applications, was proved
in [23].

Theorem 2.27. [23] Let (X, d) be a complete metric space and A : X → Pcp(X) be a
multivalued ϕ−contraction. Then:
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(i) Existence of the fixed point: A is a (MWPO);
(ii) Ulam-Hyers stability for the fixed point inclusion: If additionally ϕ(ct) ≤ cϕ(t)

for every t ∈ [0,∞) (where c > 1), then A is a (Ψ−MWPO), with Ψ(t) :=

t+

∞∑
n=1

ϕn(t), for each t ∈ [0,∞);

(iii) Data dependence of the fixed point set: Let S : X → Pcl(X) be a multivalued
ϕ−contraction and η > 0 be such that Hd(S(x), A(x)) ≤ η, for each x ∈ X.
Suppose that ϕ(ct) ≤ cϕ(t) for every t ∈ [0,∞) (where c > 1). Then,

Hd(Fix(S), F ix(F )) ≤ Ψ(η).

3. Existence and Ulam-Hyers stability results

In this section, we present conditions for the existence and the Ulam stability of
the Hadamard integral inclusion (1.1).

Theorem 3.1. Assume that the multifunction F : J × E → Pcp(E) satisfies the fol-
lowing hypotheses:

(H1) (x, y) 7−→ F (x, y, u) is jointly measurable for each u ∈ E;
(H2) u 7−→ F (x, y, u) is lower semicontinuous for almost all (x, y) ∈ J ;
(H3) There exists p ∈ L∞(J, [0,∞)) and a strict comparison function ϕ : [0,∞) →

[0,∞) such that for each (x, y) ∈ J and each u, v ∈ E, we have

Hd(F (x, y, u(x, y), F (x, y, u)‖ ≤ p(x, y)ϕ(‖u− u‖E), (3.1)

and
(log a)r1(log b)r2‖p‖L∞

Γ(1 + r1)Γ(1 + r2)
≤ 1; (3.2)

(H4) There exists an integrable function q : [1, b]→ [0,∞) such that for each x ∈ [1, a]
and u ∈ E, we have F (x, y, u) ⊂ q(y)B(0, 1), a.e. y ∈ [1, b], where B(0, 1) =
{u ∈ E : ‖u‖E < 1}.

Then the following conclusions hold:

(a) The integral inclusion (1.1) has least one solution and N is a (MWPO).
(b) If additionally ϕ(ct) ≤ cϕ(t) for every t ∈ [0,∞) (where c > 1), then the integral

inclusion (1.1) is generalized Ulam-Hyers stable, and N is a (Ψ−MWPO), with

the function Ψ defined by Ψ(t) := t +

∞∑
n=1

ϕn(t), for each t ∈ [0,∞). Moreover,

in this case the continuous data dependence of the solution set of the integral
inclusion (3.1) holds.

Remark 3.2. For each u ∈ C, the set SF,u is nonempty since by (H1), F has a
measurable selection (see [13], Theorem III.6).

Proof. We shall show that N defined in Remark 2.18 satisfies the assumptions of
Theorem 2.27. The proof will be given in two steps.
Step 1. N(u) ∈ Pcp(C) for each u ∈ C.
From the continuity of µ and Theorem 2 in Rybiński [37] we have that for each u ∈ C
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there exists f ∈ SF,u, for all (x, y) ∈ J, such that f(x, y) is integrable with respect to
y and continuous with respect to x. Then the function v(x, y) = µ(x, y) +H Irσf(x, y)
has the property v ∈ N(u). Moreover, from (H1) and (H4), via Theorem 8.6.3. in
Aubin and Frankowska [8], we get that N(u) is a compact set, for each u ∈ C.
Step 2. Hd(N(u), N(u)) ≤ ϕ(‖u− u‖∞) for each u, u ∈ C.
Let u, u ∈ C and h ∈ N(u). Then, there exists f(x, y) ∈ F (x, y, u(x, y)) such that for
each (x, y) ∈ J, we have

h(x, y) = µ(x, y) +H Irσf(x, y).

From (H3) it follows that

Hd(F (x, y, u(x, y)), F (x, y, u(x, y))) ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E).

Hence, there exists w(x, y) ∈ F (x, y, u(x, y) such that

‖f(x, y)− w(x, y)‖E ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E); (x, y) ∈ J.
Consider U : J → P(E) given by

U(x, y) = {w ∈ E : ‖f(x, y)− w(x, y)‖E ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E)}.
Since the multivalued operator u(x, y) = U(x, y) ∩ F (x, y, u(x, y)) is measurable (see
Proposition III.4 in [13]), there exists a function f(x, y) which is a measurable selection
for u. So, f(x, y) ∈ F (x, y, u(x, y)), and for each (x, y) ∈ J,

‖f(x, y)− f(x, y)‖E ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E).

Let us define for each (x, y) ∈ J,

h(x, y) = µ(x, y) +H Irσf(x, y).

Then for each (x, y) ∈ J, we have

‖h(x, y)− h(x, y)‖E ≤ HIrσ‖f(x, y)− f(x, y)‖E
≤ HIrσ(p(x, y)ϕ(‖u(x, y)− u(x, y)‖E))

≤ ‖p‖L∞ϕ(‖u− u‖∞)

(∫ x

1

∫ y

1

∣∣log x
s

∣∣r1−1 ∣∣log y
t

∣∣r2−1

stΓ(r1)Γ(r2)
dtds

)

≤ (log a)r1(log b)r2‖p‖L∞
Γ(1 + r1)Γ(1 + r2)

ϕ(‖u− u‖∞).

Thus, by (3.2), we get

‖h− h‖∞ ≤ ϕ(‖u− u‖∞).

By an analogous relation, obtained by interchanging the roles of u and u, it follows
that

Hd(N(u), N(u)) ≤ ϕ(‖u− u‖∞).

Hence, N is a ϕ−contraction.

(a) By Lemma 2.24, N has a fixed point witch is a solution of the inclusion
(1.1) on J, and by [Theorem 2.27,(i)], N is a (MWPO).
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(b) We will prove that the fixed point inclusion problem (1.1) is generalized
Ulam-Hyers stable. Indeed, let ε > 0 and v ∈ C for which there exists u ∈ C such that

u(x, y) ∈ µ(x, y) + (HIrσF )(x, y, v(x, y)); if (x, y) ∈ J,

and

‖u− v‖∞ ≤ ε.
Then Hd(v,N(v)) ≤ ε. Moreover, by the above proof we have that N is a multivalued
ϕ−contraction and using [Theorem 2.27,(i)-(ii)], we obtain that N is a is a (Ψ −
MWPO). Then, by Lemma 2.26 we obtain that the fixed point problem u ∈ N(u) is
generalized Ulam-Hyers stable. Thus, the integral inclusion (1.1) is generalized Ulam-
Hyers stable.
Concerning the conclusion of the theorem, we apply [Theorem 2.27,(iii)].

4. An example

Let E = l1 =

{
w = (w1, w2, . . . , wn, . . .) :

∞∑
n=1

|wn| <∞

}
, be the Banach space

with norm

‖w‖E =

∞∑
n=1

|wn|,

and consider the following partial functional fractional order integral inclusion of the
form

u(x, y) ∈ µ(x, y) + (HIrσF )(x, y, u(x, y)); a.e. (x, y) ∈ [1, e]× [1, e], (4.1)

where r = (r1, r2), r1, r2 ∈ (0,∞),

u = (u1, u2, . . . , un, . . .), µ(x, y) = (x+ e−y, 0, . . . , 0, . . .),

and

F (x, y, u(x, y))

= {v ∈ C([1, e]× [1, e],R) : ‖f1(x, y, u(x, y))‖E ≤ ‖v‖E ≤ ‖f2(x, y, u(x, y))‖E};
(x, y) ∈ [1, e]× [1, e], where f1, f2 : [1, e]× [1, e]× E → E,

fk = (fk,1, fk,2, . . . , fk,n, . . .); k ∈ {1, 2}, n ∈ IN,

f1,n(x, y, un(x, y)) =
xy2un

(1 + ‖un‖E)e10+x+y
; n ∈ IN,

and

f2,n(x, y, un(x, y)) =
xy2un
e10+x+y

; n ∈ IN.

We assume that F is closed and convex valued. We can see that the solutions of the
inclusion(4.1) are solutions of the fixed point inclusion u ∈ A(u) where A : C([1, e]×
[1, e],R)→ P(C([1, e]× [1, e],R)) is the multifunction operator defined by

(Au)(x, y) =
{
µ(x, y) + (HIrσf)(x, y); f ∈ SF,u

}
; (x, y) ∈ [1, e]× [1, e].



418 S. Abbas, W. Albarakati, M. Benchohra and A. Petruşel

For each (x, y) ∈ [1, e]× [1, e] and all z1, z2 ∈ E, we have

‖f2(x, y, z2)− f1(x, y, z1)‖E ≤ xy2e−10−x−y‖z2 − z1‖E .
Thus, the hypotheses (H1)− (H3) are satisfied with p(x, y) = xy2e−10−x−y. We shall
show that condition (3.2) holds with a = b = e. Indeed, ‖p‖L∞ = e−9, Γ(1 + ri) >
1
2 ; i = 1, 2. A simple computation shows that

ζ :=
(log a)r1(log b)r2‖p‖L∞

Γ(1 + r1)Γ(1 + r2)
< 4e−9 < 1.

The condition (H4) is satisfied with q(y) = y2e−10−y

‖F‖P ; y ∈ [1, e], where

‖F‖P = sup{‖f‖C : f ∈ SF,u}; for allu ∈ C.
Consequently, by Theorem 3.1 we concluded that:

(a) The integral inclusion (4.1) has least one solution and A is a (MWPO).
(b) The function ϕ : [0,∞) → [0,∞) defined by ϕ(t) = ζt satisfies ϕ(ζt) ≤ ζϕ(t)

for every t ∈ [0,∞). Then the integral inclusion (4.1) is generalized Ulam-Hyers
stable, and A is a (Ψ−MWPO), with the function Ψ defined by Ψ(t) := t+ (1−
ζt)−1, for each t ∈ [0, ζ−1). Moreover, the continuous data dependence of the
solution set of the integral inclusion (3.1) holds.
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ables, Birkhäuser, 1998.

[19] Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical
Analysis, Hadronic Press, Palm Harbor, 2001.

[20] Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analy-
sis, Springer, New York, 2011.

[21] Jung, S.M., A fixed point approach to the stability of a Volterra integral equation, Fixed
Point Theory Appl., 2007(2007), Article ID 57064, 9 pages.

[22] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V.,
Amsterdam, 2006.
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