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Abstract. The eigenstructure of genuine Beta operators is described, a limiting
case of Beta-Jacobi operators. Its similarity to that of the classical Bernstein
operators is emphasized. The significance of the mappings considered here comes,
among others, from their role as a building block in genuine Bernstein-Durrmeyer
operators.
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1. Introduction and historical notes

The present note deals with the eigenstructure of certain Beta-type operators
introduced independently by Mühlbach and Lupaş in the early seventies of the last
century (see [10],[11],[9]).

Mühlbach’s definition is the more general one. For λ > 0 he defined mappings
Tλ, given for f ∈ C[0, 1], x ∈ [0, 1] by

Tλ(f ;x) =


f(0), x = 0,∫ 1

0

f(t)Kλ(t, x)dt, x ∈ (0, 1),

f(1), x = 1.

The kernel is given by

Kλ(t, x) =
1

B(xλ ,
1−x
λ )

t
x
λ−1(1− t)

1−x
λ −1,

where B(·, ∗) is the Beta function, a.k.a. Euler’s integral of the first kind. For more
on this function see, e.g., MathWorld [16] and the references given there. Mühlbach’s
work was motivated by three earlier papers of Stancu, see [12] , [13], [14].
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If 1/λ = n is a natural number, then we arrive at Lupaş’ version of the operator,
given for strictly positive integers n by

B̄n(f ;x) =


f(0), x = 0,

1

B(nx, n(1− x))

∫ 1

0

tnx−1(1− t)n(1−x)−1f(t)dt, x ∈ (0, 1),

f(1), x = 1.

The B̄n are positive linear endomorphisms of C[0, 1]; they reproduce linear func-
tions and have second moments smaller than the classical Bernstein operators Bn.
More precisely, see [9, Satz 2.28],

B̄n((e1 − x)2;x) =
x(1− x)

n+ 1
≤ x(1− x)

n
= Bn((e1 − x)2;x).

The restrictions B̄n : Πn → Πn and B̄n : Π→ Π are bijective, and B̄n : C[0, 1]→
C[0, 1] is injective. Moreover, it is known from [2] and [3] that B̄n preserves mono-
tonicity and (ordinary) convexity.

Our reason to call them genuine Beta operators is due to the facts that they are
the limiting cases of Beta operators with Jacobi weights and unique in the sense that
they are the only ones among them which reproduce linear functions. Calling them
genuine is also justified by the decomposition Bn ◦ B̄n = Un; here Un is the so-called
genuine Bernstein-Durrmeyer operator which has been attracting much attention.
Much more on Beta-Jacobi operators can be found in [6], [15], [7].

The genuine operators B̄n were also used in attempts to decompose the classical
Bernstein operators into non-trivial building blocks. Reports on these were given by
Gonska et al. [5] and by Heilmann and Rasa [8]. Aspects concerning their power series
are described in [1].

2. The eigenstructure of B̄n

The purpose of this article is to give a concise description of the eigenstructure
of the Beta operators considered here. By direct computation it is easy to find the
first eigenvalues and eigenpolynomials of B̄n:

η
(n)
0 = 1, q

(n)
0 (x) = 1,

η
(n)
1 = 1, q

(n)
1 (x) = x− 1

2
,

η
(n)
2 =

n

n+ 1
, q

(n)
2 (x) = x(x− 1),

η
(n)
3 =

n2

(n+ 1)(n+ 2)
, q

(n)
3 (x) = x(x− 1)

(
x− 1

2

)
,

η
(n)
4 =

n3

(n+ 1)(n+ 2)(n+ 3)
, q

(n)
4 (x) = x(x− 1)

(
x(x− 1) +

n+ 1

5n+ 6

)
.
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As

B̄ne0 = e0, (2.1)

B̄nek(x) =
nx(nx+ 1) . . . (nx+ k − 1)

n(n+ 1) . . . (n+ k − 1)
, k ≥ 1,

following directly from the definition of B̄n, we conclude that the eigenvalues of B̄n :
Π −→ Π are the numbers

η
(n)
k =

(n− 1)!

(n+ k − 1)!
nk, k ≥ 0. (2.2)

Let us denote by p
(n)
k the eigenpolynomials of Bn (see [4]). Here are some examples

(see [4, (9.1)]).

p
(n)
0 (x) = 1,

p
(n)
1 (x) = x− 1

2
,

p
(n)
2 (x) = x(x− 1),

p
(n)
3 (x) = x(x− 1)

(
x− 1

2

)
,

p
(n)
4 (x) = x(x− 1)

(
x(x− 1) +

n− 1

5n− 6

)
.

Thus we have

q
(n)
k = p

(n)
k , 0 ≤ k ≤ 3

and

lim
n→∞

q
(n)
k (x) = lim

n→∞
p
(n)
k (x), k = 4, (2.3)

uniformly in [0, 1]. We shall show that the eigenstructure of B̄n is similar to that of
Bn; in particular, that (2.3) holds for all k ≥ 0. Since the polynomials

lim
n→∞

p
(n)
k (x) := p∗k(x), k ≥ 0,

are completely described in [4], we get the same information about limn→∞ q
(n)
k (x).

Let k ≥ 2 and n ≥ 1. We want to determine q
(n)
k ∈ Πk such that

B̄nq(n)k = η
(n)
k q

(n)
k . (2.4)

We put

q
(n)
k (x) =

k∑
j=0

a(n, k, j)xj , with a(n, k, k) = 1. (2.5)

Hence

B̄n(q
(n)
k ;x) =

k∑
j=0

a(n, k, j)B̄n(ej ;x).
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With (2.1) we derive

B̄n(q
(n)
k ;x) =

k∑
j=0

a(n, k, j)
nx(nx+ 1) . . . (nx+ j − 1)

n(n+ 1) . . . (n+ j − 1)
(2.6)

=
nk

n(n+ 1) . . . (n+ k − 1)

k∑
j=0

a(n, k, j)xj .

From the definition of the Stirling numbers of first kind s(j, i), we obtain immediately

nx(nx+ 1) . . . (nx+ j − 1) =

j∑
i=0

s(j, i)(−1)j−inixi,

so that (2.6) becomes, after some manipulation,

k∑
i=0


k∑
j=i

s(j, i)(−1)j−ini

n(n+ 1) . . . (n+ j − 1)
a(n, k, j)

xi =

k∑
i=0

a(n, k, i)nk

n(n+ 1) . . . (n+ k − 1)
xi.

This leads to
k∑
j=i

s(j, i)(−1)j−i

n(n+ 1) . . . (n+ j − 1)
a(n, k, j) =

nk−i

n(n+ 1) . . . (n+ k − 1)
a(n, k, i), (2.7)

for all i = 0, 1, . . . , k. Since s(i, i) = 1, we can solve (2.7) for a(n, k, i) getting

a(n, k, i) (2.8)

=

∑k
j=i+1(−1)j−i−1s(j, i)(n+ j)(n+ j + 1) . . . (n+ k − 1)a(n, k, j)

(n+ i)(n+ i+ 1) . . . (n+ k − 1)− nk−i
,

for all i ∈ {k − 1, k − 2, . . . , 0}. Recalling that n and k are given, and a(n, k, k) = 1,
(2.8) represents a recurrence relation for computing a(n, k, i), i = k − 1, k − 2, . . . , 0.

In particular, using s(k, k − 1) = −k(k−1)2 , s(k, k − 2) = k(k−1)(k−2)(3k−1)
24 , we get

a(n, k, k − 1) = −k
2
, (2.9)

a(n, k, k − 2) =
k(k − 1)(k − 2)

24
· 6n+ 3k − 5

(2k − 3)n+ (k − 1)(k − 2)
. (2.10)

Let us prove by induction that

a∗(k, j) := lim
n→∞

a(n, k, j) =

k−j∏
l=1

(k + 1− l)(k − l)
l(l − 2k + 1)

. (2.11)

For j = k (2.11) is verified because a(n, k, k) = 1. Due to (2.9), (2.11) is verified also
for j = k − 1. Suppose now that (2.11) is true for j = i + 1, and let’s prove it for
j = i. From (2.8) we infer

a(n, k, i) =
{

(i+ (i+ 1) + · · ·+ (k − 1))nk−i−1 + terms of lower degree
}−1

×s(i+ 1, i)
(
nk−i−1 + terms of lower degree

)
a(n, k, i+ 1),



Eigenstructure of the genuine Beta operators of Lupaş and Mühlbach 387

so that, by the induction hypothesis,

a∗(k, i) =
s(i+ 1, i)

i+ (i+ 1) + · · ·+ (k − 1)
a∗(k, i+ 1)

= − i(i+ 1)

(k − i)(k + i− 1)

k−i−1∏
l=1

(k + 1− l)(k − l)
l(l − 2k + 1)

=

k−i∏
l=1

(k + 1− l)(k − l)
l(l − 2k + 1)

,

and this completes the proof of (2.11).
It follows that

lim
n→∞

q
(n)
k (x) =

k∑
j=0

a∗(k, j)xj ,

and the coefficients a∗(k, j) are equal to the coefficients c∗(j, k) from [4, Theorem 4.1].
This leads to

lim
n→∞

q
(n)
k (x) = lim

n→∞
p
(n)
k (x) =: p∗k(x), k ≥ 0, (2.12)

where (see [4, Theorem 4.5]) p∗0(x) = 1, p∗1(x) = x− 1
2 , and

p∗k(x) =
k!(k − 2)!

(2k − 2)!
x(x− 1)P

(1,1)
k−2 (2x− 1), k ≥ 2. (2.13)

(P
(1,1)
m are the Jacobi polynomials, orthogonal with respect to the weight (1−t)(1+t)

on the interval [−1, 1].)
Summarizing, we have proved the following

Theorem 2.1. (i) The eigenvalues of B̄n : Π→ Π are the numbers given by (2.2).
(ii) The corresponding monic eigenpolynomials are described by (2.5), where the co-

efficients a(n, k, j) satisfy the recurrence relation (2.8).
(iii) The eigenpolynomials satisfy the asymptotic relation (2.12).

So the eigenstructure of the genuine Beta operators is similar to that of the
classical Bernstein operators.
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