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1. Introduction

The notion of multivalued functions appeared in the first half of the twentieth
century. A multivalued function also known as multi-function, multimap, set-valued
function. This is a ”function” that assume two or more values for each point from
the domain. These functions are not functions in the classical way because for each
point assign a set of points, so there is not a one-to-one correspondence. The term of
”multivalued function” is not correct, but became very popular. Multivalued functions
often arise as inverse of functions which are non-injective. For example the inverse of
the trigonometric, exponential, power or hyperbolic functions are multivalued func-
tions. Also the indefinite integral can be considered as a multivalued function. These
functions appears in many areas, for example in physics in the theory of defects of
crystals, for vortices in superfluids and superconductors but also in optimal control
theory or game theory in mathematics.

2. Interpolation problem

Let [a, b] ⊆ R and f : [a, b]→ P(R) be a multivalued function, where P(R) is the
power set of R, and f(x) is nonempty for every x ∈ [a, b]. We say that a multivalued
function is single-valued if, f(x) contain only one element for every x ∈ [a, b]. Thus
a common function can be considered as single-valued multifunction. Furthermore,
we suppose that for each x ∈ [a, b], card(f(x)) < ∞. We suppose that the points
xi ∈ [a, b], i = 1, 2, . . . , l are given and also the set of function values on this points
are known yij ∈ R, i = 1, 2, . . . , l, j = 1, 2, . . . , k. We will interpolate the sets of
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points Mj = {(xi, yij), i = 1, 2, . . . , l}, j = 1, 2, . . . , k using an interpolation operator
Pj : C[a, b] −→ R, j = 1, 2, . . . , k and the remainder operator Rj .

Definition 2.1. If x ∈ [a, b], x 6= xi, i = 1, 2, . . . , k, the value of the multivalued function
in x is approximated by the following set {P1(x), . . . , Pk(x)}. The approximation error
on the point x is given by R1(x) + . . .+Rk(x).

Definition 2.2. We have the following interpolation formula:

f(x) = (P1 ∪ P2 . . . ∪ Pk)(x) + (R1 +R2 + . . .+Rk)(x) (2.1)

where P1 ∪ . . . ∪ Pk is the interpolation operator and R1 + . . .+Rk is the remainder
operator.

Remark 2.3. The P1 ∪ . . . ∪ Pk is an interpolation operator because the following
interpolation condition are satisfied: Pi(xj) = yji.

Theorem 2.4. The interpolation operator P1 ∪ . . . ∪ Pk exists and is unique.

Proof. It is obvious, because at each set Mj , j = 1, 2, . . . , k the interpolation operators
Pj , j = 1, 2, . . . , k exists and are unique. �

Furthermore let’s consider the case when we have the following type of data
{(xi, ynjj), i = 1, 2, . . . , l, j = 1, 2, . . . , k, ni ∈ N, ni <∞}.
Let be m = min{nj , j = 1, 2, . . . , k}, then we will consider the following set of data
{(xm, ymi, i = 1, 2, . . . , k)}, in this way we reduce the problem to the previous case.

3. Lagrange-type multivalued interpolation

If we considering the case when at each set Mj , the points (xi, yij) are in-
terpolated using Lagrange type interpolation, then the interpolation operator is
Ll1 ∪ . . . ∪ Llk , where Lli , i = 1, 2, . . . , k are l − 1 degree Lagrange polynomials,
and the remainder is equal to Rl1 +Rl2 + . . .+Rlk where Rli are the corresponding
remainder operators.

Theorem 3.1. The value of the multivalued Lagrange type interpolation function on
the point x ∈ [a, b], x 6= xi, i = 1, 2, . . . , l is given by

Ll1 ∪ . . . ∪ Llk(x) =

k⋃
i=1

l−1∑
j=1

lij(x)yij (3.1)

where lij are the basic Lagrange polynomials with degree l − 1.

Proof. From Theorem 2.4 we have that the value of the multivalued function on the
point x is approximated by the following values {P1(x), . . . , Pk(x)}, where Pi are the
corresponding interpolation operators for the data (xi, yij), j = 1, 2, . . . , l. Because
now we use Lagrange-type interpolation to approximate these data, we have

Pi(x) = Ll−1(x) =

l∑
i=1

lij(x)yij ,

where lij are the corresponding basic Lagrange polynomials. �
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We suppose that yij = fj(xi) where fj ∈ C[a, b], j = 1, 2, . . . , k.

Theorem 3.2. If fj ∈ Cl−1[a, b], j = 1, 2, . . . , k, and ∃f (l)j j = 1, 2, . . . , k on [a, b] then
the remainder of the multivalued interpolation formula is

(R1 +R2 + . . .+Rk)(x) =

k∑
j=1

u(x)

l!
f
(l)
j (ξj) (3.2)

were ξj ∈ (a, b) and u(x) = (x− x1)(x− x2) . . . (x− xl).

Proof. If we consider the Lagrange interpolation formula for each set Mj

fj(x) = Lj(x) +Rj(x), j = 1, 2, . . . , k

where if fj ∈ Cl−1[a, b] and ∃f (l)j on [a, b] then there ∃ξj ∈ (a, b), j = 1, 2, . . . , k such
that

Rj(x) =
u(x)

(l!)
f
(l)
j (ξj), j = 1, 2, . . . , k

�

Example 3.3. If consider the multivalued function, obtained as the inverse of the func-
tion g(x) = sin(x), on the interval [a, b] = [−1, 1], using the method described below
with Lagrange type interpolation operators on each set of points Mj , we obtain the
graph from figure 1, where the dotted line is the graph of the multivalued function and
the continuous line is the graph of the multivalued function obtained by interpolation.

Figure 1. Interpolation of multivalued function with Lagrange operators

4. Shepard-type multivalued interpolation

We suppose that the points xi ∈ [a, b], i = 1, 2, . . . , l are given and also the set
of function values on this points are known yij ∈ R, i = 1, . . . , l, j = 1, . . . , k. We will
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interpolate the sets of points Mj = {(xi, yij), i = 1, . . . , l}, j = 1, . . . , k using Shepard
interpolation studied also in [2], [1], [4] and [6].

Theorem 4.1. The Shepard-type multivalued interpolation operator is

k⋃
i=1

Si(x) =

k⋃
i=1

l∑
j=1

Aj(x)yij , (4.1)

where Si are the univariate Shepard operators and

Aj(x) =

∏
i=1,i6=j

l|x− xi|µ

l∑
t=1

∏
i=1,i6=t

l|x− xi|µ

and µ ∈ R+.

Remark 4.2. The basis functions Aj can be also written in the following barycentric
form

Aj(x) =
|x− xj |−µ
l∑
i=1

|x− xk|−µ
, j = 1, 2, . . . , l,

and they satisfy

l∑
j=1

Aj(x) = 1, Aj(xp) = δjp, j, p = 1, 2, . . . , l.

Figure 2. Interpolation of multivalued function with Shepard operators
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From the remark it follows that the Shepard operators has the following prop-
erties: first of all they have the interpolation conditions Si(xj) = yij , j = 1, 2, . . . , l,
i = 1, 2, . . . , k, and they have the degree of exactness dex(Si) = 0, i = 1, 2, . . . , k.
The graph of the function from the previous example in the case when we use Shepard
operators with different parameters, is given in Figure 2.

The major disadvantage of the Shepard operator is the low degree of exactness,
but this can be overcome combining the Shepard operator with another interpolation
operators, for example Lagrange, Hermite, Birkhoff or other interpolation operators.

5. Spline-type multivalued interpolation

We will consider again the points xi ∈ [a, b], i = 1, 2, . . . , l and also the set of
function values on this points yij ∈ R, i = 1, 2, . . . , l, j = 1, 2, . . . , k which are known,
let Mj = {(xi, yij), i = 1, 2, . . . , l}, j = 1, 2, . . . , k be the set of interpolation points.
In this section we will interpolate the multivalued function given by the set of points
from Mj with spline interpolation function.
We suppose that the values yij = fj(xi), where fj ∈ Hm,2[a, b] is the set of functions

with fj ∈ Cm−1[a, b], f (m−1) absolute continuous on [a, b] and f (m) ∈ L2[a, b].

Theorem 5.1. The multivalued interpolation operator in the case of spline interpolation
is

l⋃
i=1

Si(x) =

l⋃
i=1

k∑
j=1

sij(x)yij (5.1)

where sij are the fundamental spline interpolation functions.

Remark 5.2. The fundamental spline functions satisfies the following minimum prop-

erties ‖S(m)
i ‖2 −→ min, in the set of all functions which satisfies the interpolation

conditions.

To determine the fundamental spline functions we can use the structural cha-
racterization theorem of spline functions given also in [3] and we have

sij(x) =

m−1∑
t=0

aijt x
t +

l∑
p=1

bijp (x− xp)2m−1+ , i = 1, 2, . . . , l, j = 1, 2, . . . , k

with aijt , and bijp obtained as the solution of the following systems:

s
(r)
ij (α) = 0, r = m, . . . , 2m− 1, and α > xl

sij(xν) = δjν , ν = 1, 2, , . . . , l

for j = 1, 2, . . . , k, i = 1, 2, . . . , l.

Theorem 5.3. If fj ∈ Hm,2[a, b], j = 1, 2, . . . , k then the remainder term of the spline-
type multivalued interpolation formula is

k∑
j=1

Rj(x) =

k∑
j=1

∫ b

a

ϕj(x, t)f
(m)
j (t)dt (5.2)
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where

ϕj(x, t) =
(x− t)m−1+

(m− 1)!
−

l∑
i=1

sij(x)(xi − t)m−1+ , j = 1, 2, . . . , k.

This follows from the representation of the error using the Peano theorem.
The graph of the function from the previous example using third degree natural

spline interpolation operators is given in Figure 3.

Figure 3. Interpolation of multivalued function with spline operators

References

[1] Coman, Gh., Shepard operators of Birkhoff-type, Calcolo, 35(1998), 197–203.
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