Stud. Univ. Babeş-Bolyai Math. 61(2016), No. 3, 321-329

Korovkin type theorem in the space $\tilde{C}_b[0,\infty)$

Zoltán Finta

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Abstract. A Korovkin type theorem is established in the space $\tilde{C}_b[0,\infty)$ of all uniformly continuous and bounded functions on $[0,\infty)$ for a sequence of positive linear operators, the approximation error being estimated with the aid of the usual modulus of continuity. As applications we obtain quantitative results for q-Baskakov operators.

Mathematics Subject Classification (2010): 41A36, 41A25.

Keywords: Korovkin theorem, modulus of continuity, *K*-functional, *q*-integers, *q*-Baskakov operators.

1. Introduction

The well-known Korovkin's theorem ensures the convergence of sequences of positive linear operators to the identity operator in the strong operator topology. For C[0,1] the Banach space of all continuous functions f on [0,1] equipped with the norm $||f|| = \sup\{|f(x)| : x \in [0,1]\}$, and for the test-functions $e_i(x) = x^i$, $x \in [0,1], i \in \{0,1,2\}$, Korovkin's theorem is the following (see [5, p. 8]): let $(L_n)_{n\geq 1}$ be a sequence of positive linear operators such that $L_n : C[0,1] \to C[0,1]$. Then $||L_n f - f|| \to 0$ as $n \to \infty$ for all $f \in C[0,1]$ if and only if $||L_n e_i - e_i|| \to 0$ as $n \to \infty$ for $i \in \{0,1,2\}$. Specifically we recover Weierstrass' approximation theorem if we choose for L_n the Bernstein operators $B_n : C[0,1] \to C[0,1]$ defined by

$$(B_n f)(x) = \sum_{k=0}^n {\binom{n}{k}} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$
(1.1)

The so-called q-Bernstein operators were introduced by Phillips [12], and they are generalization of (1.1) based on q-integers. To present these operators we recall some notions of the q-calculus (see e.g. [11]). Let q > 0. For each non-negative integer n,

Zoltán Finta

the q-integers $[n]_q$ and the q-factorials $[n]_q!$ are defined by

$$[n]_q = \begin{cases} 1+q+\ldots+q^{n-1}, & \text{if } n \ge 1\\ 0, & \text{if } n = 0 \end{cases}$$

and

$$[n]_q! = \begin{cases} [1]_q[2]_q \dots [n]_q, & \text{if } n \ge 1\\ \\ 1, & \text{if } n = 0. \end{cases}$$

For integers $0 \le k \le n$, the q-binomial coefficients are defined by

$$\left[\begin{array}{c}n\\k\end{array}\right]_q = \frac{[n]_q!}{[k]_q![n-k]_q!}.$$

Then the q-Bernstein operators $B_{n,q}: C[0,1] \to C[0,1]$ are introduced as

$$(B_{n,q}f)(x) = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q} x^{k}(1-x)(1-qx)\dots(1-q^{n-k-1}x)f\left(\frac{[k]_{q}}{[n]_{q}}\right).$$
(1.2)

For q = 1, we recover the operators (1.1). If 0 < q < 1, then $B_{n,q}$ are positive linear operators. However, they do not satisfy the conditions of Korovkin's theorem, because $(B_{n,q}e_0)(x) = 1$, $(B_{n,q}e_1)(x) = x$ and

$$(B_{n,q}e_2)(x) = x^2 + \frac{1}{[n]_q}x(1-x) \to x^2 + (1-q)x(1-x) \neq x^2,$$

as $n \to \infty$ (see [12, pp. 513-514]). The investigation of convergence of operators (1.2) for 0 < q < 1 fixed has resulted in the discovery of a Korovkin type theorem in C[0, 1]due to Wang [14]. Applying Wang's result to (1.2), there exists a limit operator $B_{\infty,q}$ on C[0, 1] such that $(B_{n,q}f)_{n\geq 1}$ converges to $B_{\infty,q}f$ uniformly on [0, 1] as $n \to \infty$. The operator $B_{\infty,q}$ was introduced by Il'inskii and Ostrovska [10], and it is called the limit q-Bernstein operator. Furthermore, in [6] and [7], we established new Korovkin type theorems for parameter depending sequences of operators defined on C[0, 1]; these results are different from Wang's result.

On the other hand, in [8] and [9], Korovkin type theorems are studied in weighted spaces, showing that the direct analogue of Korovkin's theorem is not valid in spaces of functions defined on the semi-axis $[0,\infty)$ or on the whole real line, but under additional conditions can be obtained analogous theorem to Korovkin's theorem. Let φ be a strictly increasing continuous function on $[0,\infty)$ such that $\lim_{x\to\infty} \varphi(x) = +\infty$ and $\rho(x) = (1 + \varphi^2(x))^{-1}$, $x \ge 0$. Further, let $B_\rho[0,\infty)$ be the set of all functions f satisfying the condition $\rho(x)|f(x)| \le M_f$ for $x \ge 0$, where M_f is a positive constant depending only on f. We denote by $C_\rho[0,\infty)$ the space $C[0,\infty) \cap B_\rho[0,\infty)$ with the norm $||f||_\rho = \sup\{\rho(x)|f(x)| : x \ge 0\}$, and $C_\rho^*[0,\infty) = \{f \in C_\rho[0,\infty) : \lim_{x\to\infty} \rho(x)|f(x)| < \infty\}$. Gadjiev was the first in noticing the relevance of the spaces $C_\rho^*[0,\infty)$ in proving Korovkin type theorems. We have the following result [8]: let $(A_n)_{n\ge 1}$ be a sequence of positive linear operators acting from $C_\rho[0,\infty)$ to $B_\rho[0,\infty)$ satisfying the conditions $\lim_{n\to\infty} ||A_n\varphi^i - \varphi^i||_\rho = 0$ for $i \in \{0,1,2\}$. Then $\lim_{n\to\infty} ||A_nf - f||_\rho = 0$ for any $f \in C_\rho^*[0,\infty)$.

322

Korovkin type theorem in the space
$$C_b[0,\infty)$$
 323

In what follows, let $C_b[0,\infty)$ be the space of all continuous and bounded functions f on $[0,\infty)$, equipped with the norm $||f|| = \sup\{|f(x)| : x \ge 0\}$. Further, we set $\tilde{C}_b[0,\infty) = \{f \in C_b[0,\infty) : f$ is uniformly continuous on $[0,\infty)\}$. We consider the function $\rho \in C_b[0,\infty)$ such that $\rho(x) > 0$ for all $x \ge 0$, and the space $C_\rho[0,\infty) = \{f \in C[0,\infty) : \rho f$ is bounded on $[0,\infty)\}$ equipped with the norm $||f||_{\rho} = \sup\{\rho(x)|f(x)| : x \ge 0\}$. Obviously $C_{\rho}[0,\infty)$ is a Banach space, and for $\rho(x) = 1, x \ge 0$, we have $C_{\rho}[0,\infty) = C_b[0,\infty)$. The goal of the paper is to establish a Korovkin type theorem for a sequence of positive linear operators $(L_n)_{n\ge 1}$, where $L_n : \tilde{C}_b[0,\infty) \to C_{\rho}[0,\infty)$ and $(L_n)_{n\ge 1}$ converges to its limit operator $L_{\infty} : \tilde{C}_b[0,\infty) \to C_{\rho}[0,\infty)$, which is not necessarily the identity operator. The approximation error $||L_nf - L_{\infty}f||_{\rho}$ will be estimated with the aid of the usual modulus of continuity of $f \in \tilde{C}_b[0,\infty)$ defined by

$$\omega(f;\delta) = \sup\{|f(x) - f(y)| : x, y \in [0,\infty), |x - y| \le \delta\}, \quad \delta > 0.$$
(1.3)

As applications we obtain quantitative estimates for some q-Baskakov operators.

2. Main result

For $W = \{g \in C_b[0,\infty) : g' \in C_b[0,\infty)\}, f \in C_b[0,\infty)$ and $\delta > 0$, the Kfunctional defined by $K(f;\delta) = \inf\{\|f - g\| + \delta\|g'\| : g \in W\}$ and the modulus of continuity (1.3) are equivalent (see [5, p. 177, Theorem 2.4]), i.e. there exists C > 0such that

$$C^{-1}\omega(f;\delta) \le K(f;\delta) \le C\omega(f;\delta).$$
(2.1)

Throughout this paper C denotes positive constant independent of n and x, but not necessarily the same in different cases.

The next theorem is our Korovkin type theorem.

Theorem 2.1. Let $(L_n)_{n\geq 1}$, $L_n : \tilde{C}_b[0,\infty) \to C_\rho[0,\infty)$ be a sequence of positive linear operators, and let $(\alpha_n)_{n\geq 1}$ be a positive sequence with $\alpha_n \to 0$ as $n \to \infty$. If the sequence $(\beta_n)_{n\geq 1}$ satisfies the conditions

- (i) $\beta_n + \beta_{n+1} + \ldots + \beta_{n+p-1} \le C\alpha_n$ for all $n, p \ge 1$,
- (ii) $||L_ng L_{n+1}g||_{\rho} \leq C\beta_n ||g'||$ for all $g \in W$ and $n \geq 1$,

then there exists a positive linear operator $L_{\infty} : \tilde{C}_b[0,\infty) \to C_{\rho}[0,\infty)$ such that $||L_n f - L_{\infty}f||_{\rho} \to 0$ as $n \to \infty$, where $f \in \tilde{C}_b[0,\infty)$ is arbitrary. Moreover

$$||L_n f - L_\infty f||_\rho \le c\,\omega(f;\alpha_n) \tag{2.2}$$

for all $f \in C_b[0,\infty)$ and $n \ge 1$; c is a constant depending only on $||L_1e_0||_{\rho}$.

Proof. By (i) and (ii), we have

$$\begin{aligned} \|L_{n}g - L_{n+p}g\|_{\rho} &\leq \|L_{n}g - L_{n+1}g\|_{\rho} + \|L_{n+1}g - L_{n+2}g\|_{\rho} + \dots \\ &+ \|L_{n+p-1}g - L_{n+p}g\|_{\rho} \\ &\leq C(\beta_{n} + \beta_{n+1} + \dots + \beta_{n+p-1})\|g'\| \\ &\leq C\alpha_{n}\|g'\| \end{aligned}$$
(2.3)

for all $g \in W$ and $n, p \ge 1$. Because $e_0 \in W$, we find, in view of (2.3), that $L_n e_0 = L_{n+p}e_0$ for $n, p \ge 1$. Hence

$$L_n e_0 = L_1 e_0 (2.4)$$

for all $n \ge 1$. Further, $e_0 \in \tilde{C}_b[0,\infty)$ implies that $L_1 e_0 \in C_{\rho}[0,\infty)$, i.e.

$$\|L_1 e_0\|_{\rho} < \infty. \tag{2.5}$$

Taking into account that L_n are positive linear operators and (2.4) is satisfied, we obtain

$$\begin{aligned} \rho(x)|(L_n f)(x)| &\equiv \rho(x)|L_n(f,x)| \le \rho(x)L_n(|f|,x) \le \rho(x)L_n(||f||e_0,x) \\ &= \rho(x)||f||L_n(e_0,x) = \rho(x)||f||(L_n e_0)(x) \\ &= \rho(x)||f||(L_1 e_0)(x), \end{aligned}$$

where $f \in \tilde{C}_b[0,\infty)$ and $x \in [0,\infty)$. Hence, by (2.5),

$$L_n f \|_{\rho} \le \|L_1 e_0\|_{\rho} \|f\| \tag{2.6}$$

for every $f \in \tilde{C}_b[0,\infty)$. Using (2.3) and (2.6), we find for arbitrary $g \in W$ that

$$\begin{aligned} \|L_n f - L_{n+p} f\|_{\rho} &\leq \|L_n f - L_n g\|_{\rho} + \|L_n g - L_{n+p} g\|_{\rho} \\ &+ \|L_{n+p} g - L_{n+p} f\|_{\rho} \\ &\leq 2\|L_1 e_0\|_{\rho} \|f - g\| + C\alpha_n \|g'\| \\ &\leq \max\{2\|L_1 e_0\|_{\rho}, C\}\{\|f - g\| + \alpha_n \|g'\|\}. \end{aligned}$$

Taking the infimum on the right hand side over all $g \in W$, we get

 $||L_n f - L_{n+p} f||_{\rho} \le \max\{2||L_1 e_0||_{\rho}, C\}K(f; \alpha_n).$

Hence, by (2.1),

$$||L_n f - L_{n+p} f||_{\rho} \le c \,\omega(f; \alpha_n), \tag{2.7}$$

where c depends on $||L_1e_0||_{\rho}$. Further, for $f \in \tilde{C}_b[0,\infty)$ and $\alpha_n \to 0$ as $n \to \infty$, we have $\omega(f;\alpha_n) \to 0$ as $n \to \infty$. Thus, by (2.7), we obtain that $(L_nf)_{n\geq 1}$ is a Cauchy sequence in the Banach space $C_{\rho}[0,\infty)$. Therefore there exists an operator L_{∞} on $\tilde{C}_b[0,\infty)$ such that $||L_nf - L_{\infty}f||_{\rho} \to 0$ for every $f \in \tilde{C}_b[0,\infty)$. This also implies that L_{∞} is a positive linear operator on $\tilde{C}_b[0,\infty)$, because $L_n: \tilde{C}_b[0,\infty) \to C_{\rho}[0,\infty)$ are positive linear operators, $n \geq 1$. Now let $p \to \infty$ in (2.7), then we obtain the estimation (2.2), which completes the proof of the theorem. \Box

3. Applications

In what follows we shall use the following notation:

$$(z;q)_n = (1-z)(1-qz)\dots(1-q^{n-1}z),$$

where z is a real number, 0 < q < 1 and n = 1, 2, ... Then

$$\left(\frac{q^2x}{1+x};q\right)_n = \left(1 - \frac{q^2x}{1+x}\right)\left(1 - \frac{q^3x}{1+x}\right)\dots\left(1 - \frac{q^{n+1}x}{1+x}\right)$$

and

$$(-qx;q)_{n+k} = (1+qx)(1+q^2x)\dots(1+q^{n+k}x)$$

for $x \ge 0$ and k = 0, 1, 2, ...

In [2], Aral and Gupta introduced the operators $B_{n,q}^*$: $C_b[0,\infty) \to C[0,\infty)$, where $n = 1, 2, \ldots$ and 0 < q < 1, given by

$$(B_{n,q}^*f)(x) = \left(\frac{q^2x}{1+x};q\right)_n \sum_{k=0}^{\infty} f\left(\frac{[k]_q}{q^{k+1}[n]_q}\right) \left[\begin{array}{c}n+k-1\\k\end{array}\right]_q \left(\frac{q^2x}{1+x}\right)^k.$$
 (3.1)

In [13], C. Radu defined the operators $V^*_{n,q}:C_b[0,\infty)\to C[0,\infty),$

$$(V_{n,q}^*f)(x) = \sum_{k=0}^{\infty} \left[\begin{array}{c} n+k-1\\k \end{array} \right]_q q^{k(k-1)/2} \frac{(qx)^k}{(-qx;q)_{n+k}} f\left(\frac{[k]_q}{[n]_q q^{k-1}}\right),$$
(3.2)

where n = 1, 2, ... and 0 < q < 1 (see also [3, (2.1)]). When q = 1, the operators $B_{n,q}^*$ and $V_{n,q}^*$ become the classical Baskakov operator [4].

For (3.1) we compute the difference $(B^*_{n,q}g)(x)-(B^*_{n+1,q}g)(x),$ where $g\in W$ and $x\geq 0.$ We have

$$\begin{split} &(B_{n,q}^{*}g)(x) - (B_{n+1,q}^{*}g)(x) \\ &= \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=0}^{\infty}g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right) \left[\begin{array}{c}n+k-1\\k\end{array}\right]_{q}\left(\frac{q^{2}x}{1+x}\right)^{k} \\ &- \left(\frac{q^{2}x}{1+x};q\right)_{n+1}\sum_{k=0}^{\infty}g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right) \left[\begin{array}{c}n+k\\k\end{array}\right]_{q}\left(\frac{q^{2}x}{1+x}\right)^{k} \\ &= \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=0}^{\infty}\left\{g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right) \left[\begin{array}{c}n+k-1\\k\end{array}\right]_{q} \\ &- \frac{1+x(1-q^{n+2})}{1+x}g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right) \left[\begin{array}{c}n+k\\k\end{array}\right]_{q}\right\} \left(\frac{q^{2}x}{1+x}\right)^{k} \\ &= \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=1}^{\infty}\left\{g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right) \left[\begin{array}{c}n+k-1\\k\end{array}\right]_{q} \\ &- g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right) \left[\begin{array}{c}n+k\\k\end{array}\right]_{q}\right\} \left(\frac{q^{2}x}{1+x}\right)^{k} \\ &= \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=1}^{\infty}\left\{g\left(\frac{[k]_{q}}{q^{k+1}[n]_{q}}\right) \left[\begin{array}{c}n+k-1\\k\end{array}\right]_{q} \\ &- g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right) \left[\begin{array}{c}n+k\\k\end{array}\right]_{q}\right\} \left(\frac{q^{2}x}{1+x}\right)^{k} \\ &= \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=0}^{\infty}\left\{g\left(\frac{[k+1]_{q}}{q^{k+2}[n]_{q}}\right) \left[\begin{array}{c}n+k\\k+1\end{array}\right]_{q} - g\left(\frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right) \\ &\times \left[\begin{array}{c}n+k+1\\k+1\end{array}\right]_{q} + g\left(\frac{[k]_{q}}{q^{k+1}[n+1]_{q}}\right) \left[\begin{array}{c}n+k\\k\end{array}\right]_{q}q^{n}\right\} \left(\frac{q^{2}x}{1+x}\right)^{k+1} \end{split}$$

325

Zoltán Finta

$$= \left(\frac{q^2x}{1+x};q\right)_n \sum_{k=0}^{\infty} \left\{ \left[\begin{array}{c}n+k\\k+1\end{array}\right]_q \left(g\left(\frac{[k+1]_q}{q^{k+2}[n]_q}\right) - g\left(\frac{[k+1]_q}{q^{k+2}[n+1]_q}\right)\right) \right. \\ \left. + q^n \left[\begin{array}{c}n+k\\k\end{array}\right]_q \left(g\left(\frac{[k]_q}{q^{k+1}[n+1]_q}\right) - g\left(\frac{[k+1]_q}{q^{k+2}[n+1]_q}\right)\right) \right\} \left(\frac{q^2x}{1+x}\right)^{k+1} \\ = \left(\frac{q^2x}{1+x};q\right)_n \sum_{k=0}^{\infty} \left\{ \left[\begin{array}{c}n+k\\k+1\end{array}\right]_q \int_{[k+1]_q/q^{k+2}[n+1]_q}^{[k+1]_q/q^{k+2}[n+1]_q} g'(u) \, du \right. \\ \left. + q^n \left[\begin{array}{c}n+k\\k\end{array}\right]_q \int_{[k+1]_q/q^{k+2}[n+1]_q}^{[k]_q/q^{k+1}[n+1]_q} g'(u) \, du \right\} \left(\frac{q^2x}{1+x}\right)^{k+1},$$

where we have used

$$\left[\begin{array}{c}n+k\\k+1\end{array}\right]_q + q^n \left[\begin{array}{c}n+k\\k\end{array}\right]_q = \left[\begin{array}{c}n+k+1\\k+1\end{array}\right]_q.$$

Hence

$$\begin{aligned} |(B_{n,q}^{*}g)(x) - (B_{n+1,q}^{*}g)(x)| \\ &\leq \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=0}^{\infty} \left\{ \left[\begin{array}{c}n+k\\k+1\end{array}\right]_{q} \left|\frac{[k+1]_{q}}{q^{k+2}[n]_{q}} - \frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right| \right\} \\ &+ q^{n} \left[\begin{array}{c}n+k\\k\end{array}\right]_{q} \left|\frac{[k]_{q}}{q^{k+1}[n+1]_{q}} - \frac{[k+1]_{q}}{q^{k+2}[n+1]_{q}}\right| \right\} \left(\frac{q^{2}x}{1+x}\right)^{k+1} \|g'\| \\ &= 2\|g'\| \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=0}^{\infty} \left[\begin{array}{c}n+k\\k\end{array}\right]_{q} \frac{q^{n}}{[n+1]_{q}} \frac{1}{q^{k+2}} \left(\frac{q^{2}x}{1+x}\right)^{k+1} \\ &= \frac{2q^{n-1}}{[n+1]_{q}}\|g'\| \left(\frac{q^{2}x}{1+x};q\right)_{n}\sum_{k=0}^{\infty} \left[\begin{array}{c}n+k\\k\end{array}\right]_{q} \left(\frac{qx}{1+x}\right)^{k+1}. \end{aligned}$$
(3.3)

Because (see [1, p. 420])

$$\sum_{k=0}^{\infty} \left[\begin{array}{c} n+k-1\\ k \end{array} \right]_{q} z^{k} = (1-z)^{-1}(1-qz)^{-1}\dots(1-q^{n-1}z)^{-1}, \quad |z|<1,$$

we have, by (3.3),

$$\begin{aligned} |(B_{n,q}^{*}g)(x) - (B_{n+1,q}^{*}g)(x)| \\ &\leq \frac{2q^{n-1}}{[n+1]_{q}} \|g'\| \left(1 - \frac{q^{2}x}{1+x}\right) \left(1 - \frac{q^{3}x}{1+x}\right) \dots \left(1 - \frac{q^{n+1}x}{1+x}\right) \\ &\times \frac{qx}{1+x} \left(1 - \frac{qx}{1+x}\right)^{-1} \left(1 - \frac{q^{2}x}{1+x}\right)^{-1} \dots \left(1 - \frac{q^{n+1}x}{1+x}\right)^{-1} \\ &= \frac{2q^{n-1}}{[n+1]_{q}} \|g'\| \frac{qx}{1+x} \frac{1+x}{1+x(1-q)} \\ &\leq \frac{2q^{n-1}}{[n+1]_{q}} \|g'\| \frac{q}{1-q} = \frac{2q^{n}}{1-q^{n+1}} \|g'\|. \end{aligned}$$
(3.4)

We set $\beta_n = q^n / (1 - q^{n+1}), n = 1, 2, ...$ Then

$$\beta_{n} + \beta_{n+1} + \ldots + \beta_{n+p-1} = \frac{q^{n}}{1 - q^{n+1}} + \frac{q^{n+1}}{1 - q^{n+2}} + \ldots + \frac{q^{n+p-1}}{1 - q^{n+p}}$$

$$\leq \frac{q^{n}}{1 - q^{n+1}} (1 + q + \ldots + q^{p-1})$$

$$\leq \frac{q^{n}}{(1 - q)(1 - q^{n+1})}$$
(3.5)

for all n, p = 1, 2, ... Due to (3.4) and (3.5), we can apply Theorem 2.1 (case $\rho(x) = 1$, $x \ge 0$) with $\alpha_n = q^n/(1-q)(1-q^{n+1})$, n = 1, 2, ... Thus we obtain the following

Theorem 3.1. For the operators $B_{n,q}^*$ defined by (3.1) and $q \in (0,1)$ given, there exists a positive linear operator $B_{\infty,q}^*$: $\tilde{C}_b[0,\infty) \to C_b[0,\infty)$ such that

$$||B_{n,q}^*f - B_{\infty,q}^*f|| \le C\,\omega(f;q^n/(1-q)(1-q^{n+1}))$$

for all $f \in \tilde{C}_b[0,\infty)$ and $n = 1, 2, \ldots$

Here C is independent of $||B_{1,q}^*e_0||$, because $B_{n,q}^*e_0 = e_0$ (see [2, Lemma 2]) implies that $||B_{n,q}^*f|| \leq ||f||$, $f \in \tilde{C}_b[0,\infty)$. This justifies that $B_{n,q}^*f \in C_b[0,\infty)$ for $f \in \tilde{C}_b[0,\infty)$.

Now we shall study the sequence $(V_{n,q}^*)_{n\geq 1}$ defined by (3.2). In the same way as above, we obtain the following representation for $(V_{n,q}^*g)(x) - (V_{n+1,q}^*g)(x)$, where $g \in W$ and $x \geq 0$:

$$\begin{split} (V_{n,q}^*g)(x) &- (V_{n+1,q}^*g)(x) \\ &= \sum_{k=0}^{\infty} q^{k(k+1)/2} \frac{(qx)^{k+1}}{(-qx;q)_{n+k+1}} \left[\begin{array}{c} n+k \\ k \end{array} \right]_q \left\{ q^n g \left(\frac{[k]_q}{[n+1]_q q^{k-1}} \right) \\ &- \frac{[n+k+1]_q}{[k+1]_q} g \left(\frac{[k+1]_q}{[n+1]_q q^k} \right) + \frac{[n]_q}{[k+1]_q} g \left(\frac{[k+1]_q}{[n]_q q^k} \right) \right\} \end{split}$$

(see also [3, Theorem 6]). Hence, by $[n+k+1]_q = [n]_q + q^n[k+1]_q$, we get

$$\begin{split} (V_{n,q}^*g)(x) &- (V_{n+1,q}^*g)(x) \\ &= \sum_{k=0}^{\infty} q^{k(k+1)/2} \frac{(qx)^{k+1}}{(-qx;q)_{n+k+1}} \left[\begin{array}{c} n+k \\ k \end{array} \right]_q \left\{ q^n \left(g\left(\frac{[k]_q}{[n+1]_q q^{k-1}} \right) \right. \\ &- g\left(\frac{[k+1]_q}{[n+1]_q q^k} \right) \right) + \frac{[n]_q}{[k+1]_q} \left(g\left(\frac{[k+1]_q}{[n]_q q^k} \right) - g\left(\frac{[k+1]_q}{[n+1]_q q^k} \right) \right) \right\} \\ &= \sum_{k=0}^{\infty} q^{k(k+1)/2} \frac{(qx)^{k+1}}{(-qx;q)_{n+k+1}} \left[\begin{array}{c} n+k \\ k \end{array} \right]_q \left\{ q^n \int_{[k+1]_q/[n+1]_q q^k}^{[k]_q/[n+1]_q q^k} g'(u) \, du \\ &+ \frac{[n]_q}{[k+1]_q} \int_{[k+1]_q/[n+1]_q q^k}^{[k+1]_q/[n+1]_q q^k} g'(u) \, du \right\}. \end{split}$$

327

Then

$$\begin{aligned} |(V_{n,q}^{*}g)(x) - (V_{n+1,q}^{*}g)(x)| \\ &\leq \sum_{k=0}^{\infty} q^{k(k+1)/2} \frac{(qx)^{k+1}}{(-qx;q)_{n+k+1}} \left[\begin{array}{c} n+k \\ k \end{array} \right]_{q} \left\{ q^{n} \left| \frac{[k]_{q}}{[n+1]_{q}q^{k-1}} - \frac{[k+1]_{q}}{[n+1]_{q}q^{k}} \right| \right. \\ &+ \frac{[n]_{q}}{[k+1]_{q}} \left| \frac{[k+1]_{q}}{[n]_{q}q^{k}} - \frac{[k+1]_{q}}{[n+1]_{q}q^{k}} \right| \right\} \|g'\| \\ &= \frac{2q^{n}}{[n+1]_{q}} \|g'\| \sum_{k=0}^{\infty} q^{k(k-1)/2} \frac{(qx)^{k+1}}{(-qx;q)_{n+k+1}} \left[\begin{array}{c} n+k \\ k \end{array} \right]_{q}. \end{aligned}$$
(3.6)

Because of [13, Remark 4], we have

$$(V_{n+1,q}^*e_0)(x) = \sum_{k=0}^{\infty} \left[\begin{array}{c} n+k\\ k \end{array} \right]_q q^{k(k-1)/2} \frac{(qx)^k}{(-qx;q)_{n+k+1}} = 1.$$

Therefore, by (3.6), we obtain

$$|(V_{n,q}^*g)(x) - (V_{n+1,q}^*g)(x)| \le \frac{2q^{n+1}x}{[n+1]_q} ||g'|$$

or

$$\frac{1}{1+qx}|(V_{n,q}^*g)(x) - (V_{n+1,q}^*g)(x)| \le \frac{2q^n}{[n+1]_q} \|g'\|.$$

With the notation $\rho(x) = 1/(1+qx), x \ge 0$, we have

$$\|V_{n,q}^*g - V_{n+1,q}^*g\|_{\rho} \le \frac{2q^n}{[n+1]_q} \|g'\|.$$
(3.7)

Now we set $\beta_n = q^n/[n+1]_q$, $n = 1, 2, \dots$ Then

$$\beta_{n} + \beta_{n+1} + \ldots + \beta_{n+p-1} \leq \frac{q^{n}}{[n+1]_{q}} (1+q+\ldots+q^{p-1})$$
$$\leq \frac{q^{n}}{1-q^{n+1}}$$
(3.8)

for all n, p = 1, 2, ... Due to (3.7) and (3.8), we can apply Theorem 2.1 with $\alpha_n = q^n/(1-q^{n+1}), n = 1, 2, ...$ In conclusion we obtain the following

Theorem 3.2. For the operators $V_{n,q}^*$ defined by (3.2), $q \in (0,1)$ given and $\rho(x) = 1/(1+qx)$, $x \ge 0$, there exists a positive linear operator $V_{\infty,q}^* : \tilde{C}_b[0,\infty) \to C_\rho[0,\infty)$ such that

$$\|V_{n,q}^*f - V_{\infty,q}^*f\|_{\rho} \le C\,\omega(f;q^n/(1-q^{n+1}))$$

for all $f \in \tilde{C}_b[0,\infty)$ and $n = 1, 2, \ldots$

The constant C is independent of $||V_{1,q}^*e_0||_{\rho}$, because

$$\begin{split} |V_{n,q}^*f\|_{\rho} &= \sup\{\rho(x)|(V_{n,q}^*f)(x)|: x \ge 0\} \le \sup\{|(V_{n,q}^*f)(x)|: x \ge 0\} \\ &\le \|f\|\sup\{(V_{n,q}^*e_0)(x): x \ge 0\} = \|f\|\sup\{e_0(x): x \ge 0\} = \|f\|, \end{split}$$

where $f \in \tilde{C}_b[0,\infty)$ (see [13, Remark 4]).

References

- Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge Univ. Press, Cambridge, 1999.
- [2] Aral, A., Gupta, V., On q-Baskakov type operators, Demonstratio Math., 42(2009), no. 1, 107-120.
- [3] Aral, A., Gupta, V., Generalized q-Baskakov operators, Math. Slovaca, 61(2011), no. 4, 619-634.
- [4] Baskakov, V.A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR, 113(1957), 249-251 (in Russian).
- [5] DeVore, R.A., Lorentz, G.G., Constructive Approximation, Springer, Berlin, 1993.
- [6] Finta, Z., Note on a Korovkin-type theorem, J. Math. Anal. Appl., 415(2014), 750-759.
- [7] Finta, Z., Korovkin type theorem for sequences of operators depending on a parameter, Demonstratio Math., 48(2015), no. 3, 381-403.
- [8] Gadjiev, A.D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P.P. Korovkin's theorem, Dokl. Akad. Nauk SSSR, 218(1974), 1001-1004 (in Russian); English translation: Soviet Math. Dokl., 15(1974), no. 5, 1433-1436.
- [9] Gadjiev, A.D., Theorems of the type of P.P. Korovkin's theorems, Mat. Zametki, 20(1976), no. 5, 781-786 (in Russian); English translation: Soviet Math. Dokl., 20(1976), no. 5-6, 995-998.
- [10] Il'inskii, A., Ostrovska, S., Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116(2002), 100-112.
- [11] Kac, V., Cheung, P., Quantum Calculus, Springer, New York, 2002.
- [12] Phillips, G.M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4(1997), 511-518.
- [13] Radu, C., On statistical approximation of a general class of positive linear operators extended in q-calculus, Appl. Math. Comput., 215(2009), 2317-2325.
- [14] Wang, H., Korovkin-type theorem and application, J. Approx. Theory, 132(2005), 258-264.

Zoltán Finta Babeş-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kogălniceanu Street 400084 Cluj-Napoca, Romania e-mail: fzoltan@math.ubbcluj.ro