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Abstract. A Korovkin type theorem is established in the space Cp [0,00) of all
uniformly continuous and bounded functions on [0, c0) for a sequence of positive
linear operators, the approximation error being estimated with the aid of the
usual modulus of continuity. As applications we obtain quantitative results for
g-Baskakov operators.
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1. Introduction

The well-known Korovkin’s theorem ensures the convergence of sequences of
positive linear operators to the identity operator in the strong operator topology.
For C[0,1] the Banach space of all continuous functions f on [0, 1] equipped with
the norm || f|| = sup{|f(z)| : * € [0,1]}, and for the test-functions e;(x) = z,
z € [0,1], ¢ € {0,1, 2}, Korovkin’s theorem is the following (see [5, p. 8]): let (Ly)n>1
be a sequence of positive linear operators such that L, : C[0,1] — C[0,1]. Then
|Lnf — fll = 0 as n — oo for all f € C[0,1] if and only if ||Lne; — ei]] — 0 as
n — oo for i € {0,1,2}. Specifically we recover Weierstrass’ approximation theorem
if we choose for L,, the Bernstein operators B,, : C[0, 1] — C0, 1] defined by

B0 =Y (F)eta-ar (L), (1)

k=0

The so-called g-Bernstein operators were introduced by Phillips [12], and they are
generalization of (1.1) based on g-integers. To present these operators we recall some
notions of the g-calculus (see e.g. [11]). Let ¢ > 0. For each non-negative integer n,
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the g-integers [n], and the g-factorials [n],! are defined by
14+qg+...+¢" 1, if n>1

0, if n=0
and
[Ugl2lg .- [n]g, if n>1
[n]q! =
1, if n=0.
For integers 0 < k < n, the g-binomial coefficients are defined by

Then the ¢g-Bernstein operators B,, 4 : C[0,1] — C[0, 1] are introduced as

Bal@) =Y | 1] a-00-a) . 0-etar (B o
k=0 q [n)q
For ¢ = 1, we recover the operators (1.1). If 0 < ¢ < 1, then B,, ;, are positive linear
operators. However, they do not satisfy the conditions of Korovkin’s theorem, because
(Bn.g€0)(x) =1, (Bnqe1)(z) =  and

(Buge2)(@) = a% + ﬁxa —2) > 2+ (1 - (1 — 2) £ a7,
q

as n — oo (see [12, pp. 513-514]). The investigation of convergence of operators (1.2)
for 0 < g < 1 fixed has resulted in the discovery of a Korovkin type theorem in C0, 1]
due to Wang [14]. Applying Wang’s result to (1.2), there exists a limit operator Bo 4
on C10, 1] such that (B, qf)n>1 converges to Bo o f uniformly on [0, 1] as n — oo. The
operator By 4 was introduced by II'inskii and Ostrovska [10], and it is called the limit
g-Bernstein operator. Furthermore, in [6] and [7], we established new Korovkin type
theorems for parameter depending sequences of operators defined on C]0,1]; these
results are different from Wang’s result.

On the other hand, in [8] and [9], Korovkin type theorems are studied in
weighted spaces, showing that the direct analogue of Korovkin’s theorem is not
valid in spaces of functions defined on the semi-axis [0,00) or on the whole real
line, but under additional conditions can be obtained analogous theorem to Ko-
rovkin’s theorem. Let ¢ be a strictly increasing continuous function on [0, 00) such
that lim, 00 () = 400 and p(z) = (1 + ¢*(x))~!, @ > 0. Further, let B,[0,00)
be the set of all functions f satisfying the condition p(x)|f(z)| < My for > 0,
where My is a positive constant depending only on f. We denote by C,[0,00) the
space C[0,00) N B,[0,00) with the norm || f|, = sup{p(z)|f(z)] : « > 0}, and
C[0,00) = {f € Cp[0,00) : limy—00 p(z)| f(7)| < 00}. Gadjiev was the first in notic-
ing the relevance of the spaces C' [0, 00) in proving Korovkin type theorems. We have
the following result [8]: let (A,)n>1 be a sequence of positive linear operators acting
from C,[0,00) to B,[0,00) satisfying the conditions lim,_ ||Ane® — @[, = 0 for
i €{0,1,2}. Then limy, e [[Anf — fll, =0 for any f € C;[0,00).
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In what follows, let C3[0, 00) be the space of all continuous and bounded functions
f on [0,00), equipped with the norm | f|| = sup{|f(z)| : > 0}. Further, we set
Cy[0,00) = {f € Cp[0,00) : f is uniformly continuous on [0,00)}. We consider the
function p € C4[0, 00) such that p(x) > 0 for all z > 0, and the space C,[0,00) = {f €
C0,00) : pf is bounded on [0,00)} equipped with the norm | f||, = sup{p(z)|f(z)| :
z > 0}. Obviously C,[0,00) is a Banach space, and for p(z) = 1, z > 0, we have
C,[0,00) = C[0,00). The goal of the paper is to establish a Korovkin type theorem
for a sequence of positive linear operators (Ly)n>1, where L, : C4[0,00) — C,[0,00)
and (Ly)n>1 converges to its limit operator Lo : Cy [0,00) = C,[0,00), which is not
necessarily the identity operator. The approximation error ||L,f — Loof|, will be
estimated with the aid of the usual modulus of continuity of f € é’b[O, 00) defined by

w(f;0) = sup{|f(z) — f(y)| : 2,y € [0,00), |z —y| <6}, 6 >0. (1.3)

As applications we obtain quantitative estimates for some g-Baskakov operators.

2. Main result

For W = {g € Cp[0,00) : ¢’ € Cp[0,00)}, f € Cp[0,00) and 6 > 0, the K-
functional defined by K(f;0) = inf{||f — g|l + J||¢'|| : ¢ € W} and the modulus of
continuity (1.3) are equivalent (see [5, p. 177, Theorem 2.4]), i.e. there exists C > 0
such that

Cw(f;) < K(f; ) < Cuw(f39). (2.1)
Throughout this paper C' denotes positive constant independent of n and z, but not

necessarily the same in different cases.
The next theorem is our Korovkin type theorem.

Theorem 2.1. Let (Lp)n>1, Ln : Cy[0,00) — C,[0,00) be a sequence of positive linear
operators, and let (c)n>1 be a positive sequence with o, — 0 as n — oo. If the
sequence (B )n>1 satisfies the conditions

(Z) Bn + ﬂn+1 +...+ ﬂn+p—1 <Cay, fO’I‘ all n,p > 1,
(1) |Lng — Ln+19ll, < CBulld || for all g € W and n > 1,

then there exists a positive linear operator La, : Cy[0,00) — C,[0,00) such that || Ly, f—
Lo fll, = 0 as n — oo, where f € Cy[0,00) is arbitrary. Moreover

[lnf = Loo fllp < cw(f; an) (22)
for all f € Cy[0,00) and n > 1; ¢ is a constant depending only on | Lieol|p-
Proof. By (i) and (ii), we have
1Lng = Lnipglly < [1Lng = Lnsagllp + 1 Lnt19 — Lnsagll, + - -
+ 1 Lnt+p—19 = Lupgllp

C(ﬁn + ﬂn-i—l +..o+ ﬂn-i—p—l)”g/H
Canld| (2.3)

IAIA
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for all g € W and n,p > 1. Because ey € W, we find, in view of (2.3), that L,eq =
Ly peo for n,p > 1. Hence

Lypeo = Lieg (2.4)
for all n > 1. Further, ey € C’b[O, oo) implies that Liey € C,[0,00), i.e.
”LleO”p < 00. (2.5)

Taking into account that L,, are positive linear operators and (2.4) is satisfied,
we obtain

p()|(Ln f) ()|

p(@)| L (f,2)| < p(x)La([f], 2) < p() L ([ f]l€0, 7)
p(@) || fllLn(eo, z) = p(2)[| fl|(Lneo)(x)

= p(@)|Ifl[(Lreo)(x),

where f € Cy[0,00) and = € [0,00). Hence, by (2.5),

[ Lnfllp < Il L1eollpll.f1] (2.6)
for every f € Cy[0,00). Using (2.3) and (2.6), we find for arbitrary g € W that
”Lnf - Ln-i-pf”p < ”Lnf - Lng”p + HLng - Ln+pg||p

+ 1 Lntpg — Lunapfllp
2[[Lreollollf = gll + Canlg'l
max{2||L1eo|lp, CHIIf — gl + anllg'[I}-
Taking the infimum on the right hand side over all g € W, we get

[Lnf = Lnipfllp < max{2|Lieol|p, C}K(f; on).

INIA

Hence, by (2.1),

||Lnf - Ln+pf||p < Cw(f§an)u (2-7)
where ¢ depends on ||Lyeg|,. Further, for f € Cy[0,00) and a,, — 0 as n — 0o, we
have w(f;ay) — 0 as n — oo. Thus, by (2.7), we obtain that (L, f),>1 is a Cauchy
sequence in the Banach space C,[0,00). Therefore there exists an operator Lo, on
Cy[0,00) such that |L,f — Leofll, — 0 for every f € Cy[0,00). This also implies
that Lo is a positive linear operator on Cy[0, 00), because Ly, : Cy[0,00) — C,[0,00)
are positive linear operators, n > 1. Now let p — oo in (2.7), then we obtain the
estimation (2.2), which completes the proof of the theorem. O

3. Applications

In what follows we shall use the following notation:
(5:0)n = (1 —2)(1 —gz)...(1 —¢""'2),

where z is a real number, 0 < ¢ <1 and n=1,2,... Then
da q) =(1- Cr (o) (o
1+ n 1+ 1+ 1+

(—q2; @ik = (1 +qz)(1+ ¢°z) ... (1+ ¢"TFa)

and
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forx >0and £=0,1,2,...
n [2], Aral and Gupta introduced the operators By, , : Cp[0,00) — C0,00),
where n =1,2,... and 0 < ¢ < 1, given by

1+x.> Zf( k+1 ){nJrllz_lL(lqixx)k' 31

™ k=0

(51010 = (

In [13], C. Radu defined the operators V,; , : Cp[0,00) — C0, o0),

(Vi @) = i [ n —H; -1 qu(kn/z (qx)F s <[n][k;,‘i_1> 7 (3.2)

k=0 (_qx§ Q)n-‘rk q

where n = 1,2,... and 0 < ¢ < 1 (see also [3, (2.1)]). When ¢ = 1, the operators B} |
and V| become the classical Baskakov operator [4].

For (3.1) we compute the difference (B}, ,9)(z) — (B};1 ,9)(x), where g € W
and x > 0. We have

52010 sl k
) Do () [ ], ()
* ( el [
- () S ) [,
D () |
- () S i) [
o () [ ], ) (655 + (55),
: Z (- o () |
- ()Z{(W)[H}(“)

[ oG [ ]} (652)

>+
ol
—_
k)
—
7N
—
+|
&%%
N——
o
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(59 E{[ 1), () i)
o [, o) (i) ()
) <1+x7q)” 0{ Zi]f ::”/:;[:Hq g{u) du

gt k+1
n+k [nﬂ] ¢’

+q" { 3 } / g'(u) du . ,
¢ k+1]g/q"+2[n+1], +

where we have used

n+k g n+k | n+k+1
k+1 ], 9 kol Tl k41

Hence
[(Br,q9)(x) = (Bp11,49)(@)]

- (qzx_q> i{{rmk} k+1,  [k+1], |
1+2’ n i k+1 ] 1 ¢"2nly  ¢"2n+1],
cr [ 0] e - e ()
N F T, T F e, | [ \Tre
= 2191 (£500) fﬁ[”*k] T (q%)m
1+2'"), & n+1, 2 \1+a

2q”_1 ,
- e
q

Because (see [1, p. 420])

Z {n—&—llz—l ] == 1 —gx) . (=" )Y, 2 <1,
a

k=0
we have, by (3.3),

(By,49) () = (Bj41,49) (%))

29" 1 2 3 n+1

< L (1o L) (-
[n+1], +x 14z 1+
Oy . - |4 _1... e -
1+ 1+« 1+x 1+x

D ST e

k=0

- 2¢n1 I qr 1+
 n+1], 1+x142z(1-q)
2" g 2¢"
< = : 3.4
S MG et el O (3.4)
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We set 3, = q*/(1 —q" ™), n=1,2,... Then

qn qn+1 qn+p71

Bn+ Bnt1+ .o+ Buyp—1 1—q"+1+1—q"+2 ---+m
q" 1
< 1_761n+1(14rq+...Jrq” )

n

q
S T-9U—g¢

forallm,p=1,2,... Due to (3.4) and (3.5), we can apply Theorem 2.1 (case p(z) = 1,
x> 0) with a,, = ¢"/(1 — q)(1 —¢"*1), n=1,2,... Thus we obtain the following

(3.5)

Theorem 3.1. For the operators By, , defined by (3.1) and q € (0,1) given, there exists
a positive linear operator B, , : Cy[0,00) — Cy[0, 00) such that

1B} of = Bl ofIl < Cw(f5q" /(1= q)(1 "))
for all f € Cy[0,00) and n =1,2,...

Here C' is independent of || By ,eol|, because B}, je0 = eo (see [2, Lemma 2])
implies that || B} ,f|| < |[f]l, f € C4[0,00). This justifies that B} ,f € C}[0,00) for
f € Cyl0,00).

Now we shall study the sequence (V,*,)n>1 defined by (3.2). In the same way

as above, we obtain the following representation for (V,y g)(z) — (V71 ,9)(z), where
geWandx>0:

(Viq9) (@ )—(VJ+1,q9)( x)

B 1] et

o =4 @)tk [0+ 1gq*~
[”+k+ ]q [k + 1] [”}q [k +1]q
i, () w e (i)
(see also [3, Theorem 6]). Hence, by [n+ k + 1], = [n ] q"[k + 1], we get

(Vat)@) ~ (Vi11,00)2)
- e q(xq)f:m[" ) (=)
[k +

-g(Ml&)) v () o ()

[n)q
k+1 (Klg/[n+1]qq" "
— Z k(k+1)/2 ( ) |:n :l q / g’(u)du

—qT; Q) ntkt1 k41]g/[n+1]

[n]q [k+1]q/[n]qq /( )
+ / g (u)du p .
[k + g Sty /it 11,0-
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Then
(Vi g9)(@) = (Vi1 49) (@)
- k(k+1)/2 (qz)F+! n+k n [klq [k +1,
= 2 (—qm;qmﬂ{ k Hq [+ Ugd™T [+ 16"
g |ty [k+1,

}I g'll

qz)F Tt n+k
= ||g | Z g k= 1)/2 ! q- (3.6)

k+1]g | [nleg" [n+]

qx Q)n+k+1
Because of [137 Remark 4}, we have
* — [ n+k } kh—1y/2__ (qz)F
Vi eeo) (@) = g L
(Vis,400)(@) kzzo [ k q (=925 Ontrs1

Therefore, by (3.6), we obtain

n+1

2q T
[(Virg9) (@) = (Vi1 g9)(@)] < 'l
»q +1,q [n—|— l]q
or )
* . * < / )
o Va)E) = (Vi @) € =]
With the notation p(x) =1/(1 + gzx), > 0, we have
2q™
Vi Vis1,q9llp < WHQIH- (3.7)
q

Now we set 8, = ¢"/[n+1],, n=1,2,... Then

n

Bn+ﬁn+1+-~-+ﬁn+p—1 S (1+Q++qp_1)

[n+1]q
qn
T gt (3.8)
for all n,p=1,2,... Due to (3.7) and (3.8), we can apply Theorem 2.1 with
an, =¢q"/(1—¢""1), n=1,2,... In conclusion we obtain the following
Theorem 3.2. For the operators V,', defined by (3.2), ¢ € (0,1) given and p(x) =
1/(1 4 gx), = > 0, there exists a posztwe linear operator V3, , C’b[O,oo) — C,[0,00)

such that
Vgl = Vi aflle < Cwlfiq" /(1= g™ )
for all f € Cyl0,00) and n =1,2,...
The constant C' is independent of [[Vi* eol|,, because
WVaafllo = sup{p(@)|(Vy f)(@)] : x> 0} <sup{|(V,,f)(z)] : 2 > 0}
< [ llsup{(Viy ge0)(2) - © = 0} = || f[[ sup{eo(x) : = = 0} = || £],
where f € Cy[0,00) (see [13, Remark 4]).

N



Korovkin type theorem in the space Cy[0, c0) 329

References

[1] Andrews, G.E., Askey, R., Roy, R., Special Functions, Cambridge Univ. Press, Cam-
bridge, 1999.

[2] Aral, A., Gupta, V., On g-Baskakov type operators, Demonstratio Math., 42(2009), no.
1, 107-120.

[3] Aral, A., Gupta, V., Generalized q-Baskakov operators, Math. Slovaca, 61(2011), no. 4,
619-634.

[4] Baskakov, V.A., An ezample of a sequence of linear positive operators in the space of
continuous functions, Dokl. Akad. Nauk SSSR, 113(1957), 249-251 (in Russian).

[5] DeVore, R.A., Lorentz, G.G., Constructive Approzimation, Springer, Berlin, 1993.

[6] Finta, Z., Note on a Korovkin-type theorem, J. Math. Anal. Appl., 415(2014), 750-759.

[7] Finta, Z., Korovkin type theorem for sequences of operators depending on a parameter,
Demonstratio Math., 48(2015), no. 3, 381-403.

[8] Gadjiev, A.D., A problem on the convergence of a sequence of positive linear operators
on unbounded sets, and theorems that are analogous to P.P. Korovkin’s theorem, Dokl.
Akad. Nauk SSSR, 218(1974), 1001-1004 (in Russian); English translation: Soviet Math.
Dokl., 15(1974), no. 5, 1433-1436.

[9] Gadjiev, A.D., Theorems of the type of P.P. Korovkin’s theorems, Mat. Zametki,
20(1976), no. 5, 781-786 (in Russian); English translation: Soviet Math. Dokl., 20(1976),
no. 5-6, 995-998.

[10] IVinskii, A., Ostrovska, S., Convergence of generalized Bernstein polynomsals, J. Approx.
Theory, 116(2002), 100-112.

[11] Kac, V., Cheung, P., Quantum Calculus, Springer, New York, 2002.

[12] Phillips, G.M., Bernstein polynomials based on the g-integers, Ann. Numer. Math.,
4(1997), 511-518.

[13] Radu, C., On statistical approzimation of a general class of positive linear operators
extended in q-calculus, Appl. Math. Comput., 215(2009), 2317-2325.

[14] Wang, H., Korovkin-type theorem and application, J. Approx. Theory, 132(2005), 258-
264.

Zoltan Finta

Babes-Bolyai University

Faculty of Mathematics and Computer Sciences
1, Kogalniceanu Street

400084 Cluj-Napoca, Romania

e-mail: fzoltan@math.ubbcluj.ro



