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Abstract. We give a characterization of relatively compact sets F in Lp(Ω, B)
for p ∈ [1,∞), B a Banach-space, and Ω ⊂ Rn. This is a generalization of the
results obtained in [12] for the space Lp((0, T ), B) with T > 0, first to rectangles
Ω = (a, b) ⊂ Rn and, under additional conditions, to arbitrary open and bounded
subsets of Rn. An application of the main compactness result to a problem arising
in homogenization of processes on periodic surfaces is given.
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1. Introduction

In this paper, we prove a Kolmogorov-Riesz-type compactness result for the
space Lp(Ω, B) with p ∈ [1,∞), Ω ⊂ Rn open and bounded, and B a Banach space.
Such a result was proved in [12] for Ω = (0, T ) with T > 0. We generalize this result to
rectangles Ω in Rn, see Theorem 2.2, and under additional assumptions to arbitrary
open and bounded domains Ω ⊂ Rn, see Corollary 2.5.

Similar results in the framework of vector-valued Sobolev and Besov spaces can
also be found in [2], see Theorem 5.2 and the proof of Theorem 1.1. There, the
compactness result is obtained under the assumption that there exists θ > 0, such
that

sup
h∈Rn\{0}

‖f(·+ h)− f‖Lp(Ωh,B)

|h|θ
<∞.

However, our results are proven under the weaker assumption (ii) in Theorem 2.2.
In the homogenization theory, we are often concerned with sequences of functions

in the space Lp((0, T )× Ω, B), for which we have to show strong convergence. Here,
due to lack of regularity, classical results like e. g., the Aubin-Lions Lemma cannot be
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applied, and the compactness result derived in this paper is an appropriate alternative.
In Section 3, we give an application of our main compactness result for a problem
arising in homogenization of processes on periodic surfaces.

2. Main result

In this section, we prove our main compactness theorem and related results.
The proof is based on the Arzelà-Ascoli theorem, which for the sake of completness
is repeated below, and uses similar arguments as in [12].

Lemma 2.1 (Arzelà-Ascoli). Let T be a compact Hausdorff space and B be a Banach-
space. A subset F ⊂ C(T,B) is relatively compact in C(T,B) iff the following condi-
tions hold:

(i) For every x ∈ T , the set F (x) := {f(x) : f ∈ F} is relatively compact in B.
(ii) F is uniformly equicontinuous, i. e., for all ε > 0 there exists η > 0 such that

‖f(x2)− f(x1)‖B < ε for all f ∈ F, x1, x2 ∈ T with ‖x2 − x1‖ < η.

Proof. See e. g., [4, Theorem 0.4.11]. �

For an arbitrary set Ω ⊂ Rn and a vector ξ ∈ Rn, we define

Ωξ := Ω ∩ (Ω− ξ).

Further, for a, b ∈ Rn we define

(a, b) := (a1, b1)× . . .× (an, bn),

with (ai, bi) := (bi, ai) if bi < ai. For f : Ω→ B and h ∈ Rn we define

τhf : (Ω− h)→ B, τhf(x) = f(x+ h).

We now state our main theorem:

Theorem 2.2. Let p ∈ [1,∞), B be a Banach-space, Ω = (a, b) with a, b ∈ Rn (ai < bi),
and F ⊂ Lp(Ω, B). Then F is relatively compact in Lp(Ω, B) iff

(i) for every rectangle C ⊂ Ω the set
{∫
C
fdx : f ∈ F

}
is relatively compact in B,

(ii) for z ∈ Rn with 0 ≤ zi < bi − ai, i = 1, . . . , n it holds

sup
f∈F
‖τzf − f‖Lp(Ωz,B) → 0 for z → 0.

Proposition 2.3. The condition (ii) in Theorem 2.2 is equivalent to the following one:

(ii)′ For i = 1, . . . , n and s > 0 it holds

sup
f∈F
‖τseif − f‖Lp(Ωsei ,B) → 0 for s→ 0,

where ei is the i-th unit normal vector.
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Proof of the Proposition 2.3. It is straightforward that (ii) implies (ii)′. For the other
implication, we choose z ∈ Rn with zi ≥ 0 small. Then we have z =

∑n
i=1 ziei and we

define z0 := 0 ∈ Rn and zj :=
∑j
i=1 ziei for j ∈ {1, . . . , n}. Of course zn = z. Now,

we use the triangle inequalitys to obtain

‖τzf − f‖Lp(Ωz,B) ≤
n−1∑
j=0

‖τzj+1f − τzjf‖Lp(Ωz,B)

≤
n∑
i=1

‖τzieif − f‖Lp(Ωziei ,B),

where for the last inequality we used for j = 0, . . . , n− 1

‖τzj+1f − τzjf‖pLp(Ωz,B) =

∫
Ωz

∥∥∥∥∥f
(
x+

j+1∑
i=1

ziei

)
− f

(
x+

j∑
i=1

ziei

)∥∥∥∥∥
p

B

dx

=

∫
Ωz+

∑j
i=1 ziei

∥∥f(x+ zj+1ej+1)− f(x)
∥∥p
B
dx

≤
∫

Ωzj+1ej+1

∥∥f(x+ zj+1ej+1)− f(x)
∥∥p
B
dx.

In the last inequality, we used the inclusion Ωz +
∑j
i=1 ziei ⊂ Ωzj+1ej+1

. In fact,

Ωzj+1ej+1
= {y ∈ Rn : yj+1 ∈ (aj+1, bj+1 − zj+1), yi ∈ (ai, bi) for i 6= j + 1}

and for y ∈ Ωz +
∑j
i=1 ziei = [a, b− z] +

∑j
i=1 ziei, we have

yi ∈ (ai + zi, bi), for i = 1, . . . , j

yi ∈ (ai, bi − zi), for i = j + 1, . . . , n.

The claim follows. �

Proof of Theorem 2.2. Assume first that F is relatively compact in Lp(Ω, B). Then,
we can use exactly the same arguments as in the proof of [12, Theorem 1]. In fact, (i)
follows from the continuity of the mapping f 7→

∫
C
fdx from Lp(Ω, B) into B, and

(ii) follows, since in metric spaces, relatively compact sets are totally bounded, and
the density of C0

(
Ω, B) in Lp(Ω, B).

Conversely, assume that (i) and (ii) hold. Let f ∈ F , and h ∈ Rn with hi > 0
for i = 1, . . . , n (for example choose h = s b−a2 with s > 0). Set

Vh := |(0, h)| > 0,

the measure of (0, h). For x ∈ Ωh, we have (x, x+ h) ⊂ Ω, and we define the function

(Mhf)(x) :=
1

Vh

∫
(x,x+h)

f(z)dz.

We first show that Mhf ∈ C
(
Ωh, B

)
, and the set

MhF := {Mhf : f ∈ F}
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is relatively compact in C(Ωh, B). Let ε > 0, and choose δ > 0 so small, that for
i = 1, . . . , n it holds

‖τδ̃eif − f‖L1(Ωδ̃ei
,B) <

Vhε

n
, for all δ̃ ≤ δ.

This is possible due to (ii) and the continuity of the embedding Lp(Ωδ̃ei , B) into

L1(Ωδ̃ei , B). Let x0 ∈ Ωh and x ∈ Bδ(x0)∩Ωh, where the ball is taken with respect to

the ‖ · ‖∞-norm on Rn. Then x = x0 +
∑n
i=1 δiei with δi ∈ (−δ, δ). For j = 1, . . . , n,

we define the vector

xj = x0 +

j∑
i=1

δiei.

Thus, we have xn = x. Now, as in the proof of Proposition 2, we obtain

‖Mhf(x)−Mhf(x0)‖B ≤
n−1∑
j=0

‖Mhf(xj+1)−Mhf(xj)‖B , (2.1)

and we have xj+1− xj = δj+1ej+1 for j = 0, . . . , n− 1. Without loss of generality, we
assume that δi > 0 for i = 1, . . . , n. Otherwise, i. e., for δi < 0, we change the role of
xj+1 and xj in the following argumentation and for δi = 0 it is trivial. It holds that

‖Mhf(xj+1)−Mhf(xj)‖B =
1

Vh

∥∥∥∥∥
∫

(xj ,xj+h)

(τxj+1−xjf − f) (z)dz

∥∥∥∥∥
B

≤ 1

Vh

∫
(xj ,xj+h)

‖τδj+1ej+1
f − f‖Bdz

(∗)
≤ 1

Vh
‖τδj+1ej+1f − f‖L1(Ωδj+1ej+1

,B) <
ε

n
,

(2.2)

where in (∗) we used (xj , xj + h) ⊂ Ωδj+1ej+1
. In fact, from x, x0 ∈ Ωh, it follows by

contradiction, that xi ∈ Ωh for i = 1, . . . , n. This implies that

aj+1 ≤ xjj+1 and xjj+1 + hj+1 = xj+1
j+1 − δj+1 + hj+1 ≤ bj+1 − δj+1,

for j = 1, . . . , n − 1 , and hence, the inclusion (xj , xj + h) ⊂ Ωδj+1ej+1
. From (2.1)

and (2.2), we obtain that Mhf ∈ C(Ωh, B), and especially the set MhF is uniformly
equicontinuous in C(Ωh, B).

For x ∈ Ωh we obtain from the assumption (i) that the set

(MhF )(x) :=

{
1

Vh

∫
(x,x+h)

fdy : f ∈ F

}
is relatively compact in B. From Lemma 2.1 it follows that MhF is relatively compact
in C(Ωh, B).

The next step in the proof is to show that F is the uniform limit of MhF in
Lp(Ωξ, B) for h → 0, see also [12, (2.2)]. We start from the following relation which



A characterization of relatively compact sets in Lp(Ω, B) 283

holds for x ∈ Ωh:

(Mhf − f) (x) =
1

Vh

∫
(x,x+h)

f(z)− f(x)dz =
1

Vh

∫
(0,h)

(τzf − f)(x)dz.

With the Jensen-inequality and the Fubini-Theorem we get

‖Mhf − f‖pLp(Ωh,B) =

∫
Ωh

∥∥∥∥∥ 1

Vh

∫
(0,h)

τzf(x)− f(x)dz

∥∥∥∥∥
p

B

dx

≤ 1

Vh

∫
Ωh

∫
(0,h)

‖τzf(x)− f(x)‖pB dzdx

≤ sup
z∈(0,h)

‖τzf − f‖pLp(Ωh,B),

and therefore

‖Mhf − f‖Lp(Ωh,B) ≤ sup
z∈(0,h)

‖τzf − f‖Lp(Ωh,B).

Due to assumption (ii), for every ε > 0 we can choose h so small that for every
z ∈ (0, h) and every f ∈ F we have

‖τzf − f‖Lp(Ωh,B) ≤ ‖τzf − f‖Lp(Ωz,B) < ε,

and we obtain

‖Mhf − f‖Lp(Ωh,B) < ε.

Hence, F is the uniform limit ofMhF in Lp(Ωξ, B) with ξ = b−a
2 for h→ 0. SinceMhF

is relatively compact in C(Ωξ, B), it is also relatively compact in Lp(Ωξ, B), because

the embedding C(Ωξ, B) ↪→ Lp(Ωξ, B) is continuous. From [12, (2.2)] it follows that
F is relatively compact in Lp(Ωξ, B).

Until now we have only established that F is relatively compact in Lp(Ωξ, B), but
we have to show the result for the whole domain Ω. Let Σ := {−1, 1}n and for z ∈ Rn
we define zσ := (σ1z1, . . . , σnzn). Of course, we have #Σ = 2n and Ω =

⋃
σ∈Σ Ωξσ . If

additionally zi ≥ 0 for i = 1, . . . , n, then we write z+
σ := zσ+z

2 (positive components

of zσ) and z−σ := zσ−z
2 (the negative components of zσ), such that zσ = z+

σ + z−σ . For
h ∈ Rn we write (x, x+ hσ) := (x+ h−σ , x+ h+

σ ).
We define the function Mhσf in the same way as Mhf , i. e.,

Mhσf(x) :=
1

Vh

∫
(x,x+hσ)

f(z)dz for x ∈ Ωhσ ,

and for all x ∈ Ωhσ we obtain with the transformation formula

(Mhσf − f)(x) =
1

Vh

∫
(x,x+hσ)

f(z)− f(x)dz =
1

Vh

∫
(0,hσ)

(τzf − f)(x)dz.
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With Fubini’s Theorem, the Jensen-inequality and again by integration by substitu-
tion, we get

‖Mhσf − f‖
p
Lp(Ωhσ ,B) ≤

1

Vh

∫
Ωhσ

∫
(0,hσ)

‖(τzf − f)(x)‖pBdzdx

=
1

Vh

∫
Ωhσ

∫
(0,h)

‖f(x+ zσ)− f(x)‖pBdzdx

=
1

Vh

∫
(0,h)

∫
Ωhσ

‖f(x+ z+
σ + z−σ )− f(x)‖pBdxdz

=
1

Vh

∫
(0,h)

∫
Ωhσ+z−σ

‖f(x+ z+
σ )− f(x− z−σ )‖pBdxdz

≤ 1

Vh

∫
(0,h)

∫
Ωz

‖f(x+ z+
σ )− f(x− z−σ )‖pBdxdz,

where in the last inequality we used Ωhσ + z−σ ⊂ Ωz for z ∈ (0, h). To show this, we
consider for y ∈ Ωhσ + z−σ , and for i = 1, . . . , n the following two cases:

1) σi = 1: Then (hσ)i = hi and (z−σ )i = 0 and therefore
yi ∈ (ai, bi − hi) ⊂ (ai, bi − zi).

2) σi = −1: Then (hσ)i = −hi and (z−σ )i = −zi and therefore
yi ∈ (ai + hi − zi, bi − zi) ⊂ (ai, bi − zi).

Thus, yi ∈ (ai, bi − zi) for i = 1, . . . , n, i. e., y ∈ Ωz. Hence,

‖Mhσf − f‖Lp(Ωhσ ,B) ≤ sup
z∈(0,h)

‖τz+σ f − τ−z−σ f‖Lp(Ωz,B)

≤ sup
z∈(0,h)

‖τz+σ f − f‖Lp(Ωz,B) + sup
z∈(0,h)

‖τ−z−σ f − f‖Lp(Ωz,B)

≤ sup
z∈(0,h)

‖τz+σ f − f‖Lp(Ω
z
+
σ
,B) + sup

z∈(0,h)

‖τ−z−σ f − f‖Lp(Ω
−z−σ

,B).

With the same arguments as above we obtain that F is relatively compact in
Lp(Ωξσ , B) for all σ ∈ Σ. Hence, F is sequentially compact in Lp(Ω, B) and therefore
F is relatively compact in Lp(Ω, B). �

The next proposition gives us a further characterization of the condition (ii) in
Theorem 2.2, where we use a special decomposition of the domain Ω, and consider
the shifts on fixed domains. We use the same notation as in the proof of Theorem 2.2,
especially we have ξ = b−a

2 .

Proposition 2.4. The condition (ii) in Theorem 2.2 is equivalent to the following one:

(ii)′′ For z ∈ Rn and zi ≥ 0 it holds

sup
f∈F
‖τzσf − f‖Lp(Ωξσ ,B) → 0 for z → 0

for all σ ∈ Σ.
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Proof. Let (ii) from Theorem 2.2 be true. We use similar arguments as in the last
part of the proof of Theorem 2.2. Let ε > 0 and δ > 0 so small that for all h ∈ [0, δ]n

the following holds

‖τhf − f‖Lp(Ωh,B) <
ε

2
.

Now, for z ∈ [0, δ]n it follows by substitution and from

Ωξσ + z−σ ⊂ Ωz (2.3)

(which is proved below) that

‖τzσf − f‖
p
Lp(Ωξσ ,B) =

∫
Ωξσ

‖f(x+ zσ)− f(x)‖pBdx

=

∫
Ωξσ+z−σ

‖f(x+ z+
σ )− f(x− z−σ )‖pBdx

≤
∫

Ωz

‖f(x+ z+
σ )− f(x− z−σ )‖pBdx

= ‖τz+σ f − τ−z−σ f‖
p
Lp(Ωz,B).

Since z+
σ ,−z−σ ∈ [0, δ]n, it follows that

‖τzσf − f‖Lp(Ωξσ ,B) ≤ ‖τz+σ f − f‖Lp(Ωz,B) + ‖τ−z−σ f − f‖Lp(Ωz,B)

≤ ‖τz+σ f − f‖Lp(Ω
z
+
σ
,B) + ‖τ−z−σ f − f‖Lp(Ω

−z−σ
,B)

<
ε

2
+
ε

2
= ε.

Let us now give the proof of (2.3): For x ∈ Ωξσ + z−σ exists x̄ ∈ Ωξσ with
x = x̄+ z−σ , i. e.,

x̄i ∈

{(
ai,

bi−ai
2

)
for σi = 1(

bi−ai
2 , bi

)
for σi = −1

, and (z−σ )i =

{
0 for σi = 1

−zi for σi = −1
,

for i = 1, . . . , n. Hence, we obtain

xi ∈

{(
ai,

bi−ai
2

)
for σi = 1(

bi−ai
2 − zi, bi − zi

)
for σi = −1.

Since Ωz =
∏n
i=1(ai, bi − zi), we obtain x ∈ Ωz.

Conversely, let (ii)′′ hold. For ε > 0 choose δ > 0 so small that for all σ ∈ Σ and
all h ∈ [0, δ]n, we have

‖τhσf − f‖Lp(Ωξσ ,B) <
ε

2 p
√

2n
.
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Let z ∈ [0, δ]n, then we obtain for σ ∈ Σ

‖τzf − f‖pLp(Ωξσ∩Ωz,B) =

∫
Ωξσ∩Ωz

‖f(x+ z)− f(x)‖pBdx

=

∫
Ωξσ∩Ωz

‖f(x+ z+
σ − z−σ )− f(x)‖pBdx

=

∫
(Ωξσ∩Ωz)−z−σ

‖f(x+ z+
σ )− f(x+ z−σ )‖pBdx

≤ ‖τz+σ f − τz−σ f‖
p
Lp(Ωξσ ,B).

Further, we have z+
σ ,−z−σ ∈ [0, δ]n and z+

σ = (z+
σ )σ and z−σ = (−z−σ )σ, what implies

‖τzf−f‖Lp(Ωξσ∩Ωh,B)

≤ ‖τz+σ f − f‖Lp(Ωξσ ,B) + ‖τz−σ f − f‖Lp(Ωξσ ,B) <
ε

p
√

2n
,

i. e.,

‖τzf − f‖pLp(Ωz,B) =
∑
σ∈Σ

‖τzf − f‖pLp(Ωξσ∩Ωz,B) < εp. �

Until now we have only considered rectangular domains in Rn. Now we extend
our result to more general domains. However, we need an additional assumption to
control the functions near the boundary. We use the same notation as above and
define for δ > 0 the set Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} and for z ∈ Rn the set

Ωzδ := {x ∈ Ωδ : x+ z ∈ Ωδ} = {x, x+ z ∈ Ωδ}.

Corollary 2.5. Let Ω ⊂ Rn be an open and bounded set. Let F ⊂ Lp(Ω, B) for a
Banach space B and p ∈ [1,∞). Then F is relatively compact in Lp(Ω, B) iff

(i) for every measurable set C ⊂ Ω the sequence
{∫
C
fdx : f ∈ F

}
is relatively com-

pact in B,
(ii) for all δ > 0 it holds that supf∈F ‖τzf − f‖Lp(Ωzδ ,B) → 0 for z → 0,

(iii) for δ > 0 it holds that supf∈F
∫

Ω\Ωδ |f(x)|pdx→ 0 for δ → 0.

Proof. For F relatively compact in Lp(Ω, B) the statements (i) - (iii) can be estab-
lished in a similar way as in Theorem 2.2.

Now assume, that (i) - (iii) hold. Since Ω is bounded, there exists a rectan-
gle W ⊂ Rn with Ω ⊂⊂ W . Extend every function f ∈ F by zero to a function
f̃ ∈ Lp(W,B) and obtain a set F̃ ⊂ Lp(W,B). Using the same arguments as in [1,
U2.21], we can show that the assumptions of Theorem 2.2 are fulfilled and the claim
follows. �

3. Application

We consider an application of the compactness criterion derived din Section 2 to
the homogenization of a nonlinear reaction-diffusion-problem on a rapidly oscillating
periodic surface. Such problems arise in the mathematical modelling of processes in
porous catalysts, see e.g. [7, 9], in biological structures, like e.g. biochemical processes
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in cells and tissue, see e.g. [6, 8, 11]. The periodically oscillating surface and the so
called microscopic or ε-problem are given in the following.

Let Y = (0, 1)n with n ∈ N, n ≥ 3, and Ω = (a, b) ⊂ Rn with a, b ∈ Zn and
ai < bi for i = 1, . . . , n. We assume that the sequence ε fulfills ε−1 ∈ N. Further, let
Γ ⊂ Y be a C1,1-submanifold, such that

Γε :=
{
x ∈ Ω : x = ε(k + y) for some k ∈ Zn, y ∈ Γ

}
is connected and of class C1,1. Especially, we have ∂Γε ⊂ ∂Ω. On Γε we consider the
following problem:

∂tuε −∆Γεuε = f(uε) in (0, T )× Γε,

−∇Γεuε · νΓε = 0 on (0, T )× ∂Γε,

uε(0) = u0 in Γ.

(3.1)

Here, ∆Γε denotes the Laplace-Beltrami-operator, f ∈ C0,1(R), i. e., f is globally
Lipschitz-continuous, and u0 ∈ C1

(
Ω
)
. For the sake of simplicity the diffusion-

coefficient is equal to 1, the nonlinearity f does not depend on a macroscopic or
oscillating variable, and on the boundary ∂Γε, we consider a Neumann-zero condition.
However, the following method can easily be generalized to more general problems,
e. g., systems of equations and general diffusion-tensors. We are looking for a weak
solution of Problem (3.1), i. e., uε ∈ L2((0, T ), H1(Γε))∩H1((0, T ), L2(Γε)), such that
for all φ ∈ H1(Γε) we have∫

Γε

∂tuεφdσ +

∫
Γε

∇Γεuε · ∇Γεφdσ =

∫
Γε

f(uε)φdσ (3.2)

almost everywhere in (0, T ). With the Galerkin-method we obtain:

Proposition 3.1. There exists a unique weak solution uε of Problem (3.1), such that

‖uε‖L∞((0,T ),L2(Γε)) +
∥∥∇Γεuε

∥∥
L2((0,T ),L2(Γε))

+ ‖∂tuε‖L2((0,T )×Γε) ≤ Cε
− 1

2 .

This (microscopic) model describes the processes and the medium in a very
detailed way. However, due to its high complexity it is not appropriate for practical
applications, especially it is not amenable to numerical computations. Therefore, an
effective (macroscopic, homogenized) model is needed, which is an approximation of
the microscopic one, and consists of equations formulated on a macroscopic scale. The
effective model is derived by using methods of periodic homogenization. This consists
in showing that for ε→ 0, the sequence of solutions (uε) converges to a limit function
u0, and in the derivation of the limit problem satisfied by u0.

The appropriate techniques to be used for the derivation of the effective model
in our application are the method of two-scale convergence for functions on periodic
surfaces introduced in [9], and its equivalent characterisation with the help of the
unfolding operator, see e.g. [3, 6]. Based on the estimates (3.1), passing to the limit
in the linear terms in the equation (3.2) can be performed like in [5], where a linear
problem was considered. Taking the limit in the nonlinear term is however more
challenging. To achieve this, we make use of the unfolding operator

T bε : L2((0, T )× Γε)→ L2((0, T )× Ω× Γ),
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see [3, 6], defined via

T bε φ(t, x, y) := φ
(
t, ε
[x
ε

]
+ εy

)
.

Here [·] denotes the Gauß-bracket. Thus, from the theory developed in [5], we obtain
the existence of a limit function u0 ∈ L2((0, T ), H1(Ω)) ∩ H1((0, T ), L2(Ω)) with
u0(0) = u0, such that for all φ ∈ C∞0

(
(0, T )× Ω

)
it holds that

|Γ|
∫ T

0

∫
Ω

∂tu0φdxdt+

∫ T

0

∫
Ω

D∗∇u0 · ∇φdxdt =

lim
ε→0

∫ T

0

∫
Ω

∫
Γ

f
(
T bε uε

)
T bε φdσydxdt.

(3.3)

The homogenized diffusion-coefficient D∗ ∈ Rn×n is given by

D∗ij =

∫
Γ

(
∇Γwi +∇Γyi

)
· ∇Γyjdσ,

where wi for i ∈ {1, . . . , n} are the solutions of the following so called cell problems:

−∇Γ ·
(
∇Γwi +∇Γyi

)
= 0 in Γ,

−(∇Γwi +∇Γyi
)
· ν = 0 on ∂Γ,

wi is Y -periodic and

∫
Γ

widσ = 0.

To show the convergence of the nonlinear term we use the fact that

T bε φ→ φ strongly in L2((0, T )× Ω× Γ),

due to the regularity of φ. Hence, to go to the limit on the right-hand side in (3.3),
it remains to show the weak convergence of f

(
T bε uε

)
to f(u0) in L2((0, T )× Ω× Γ).

Therefore, we show the strong convergence of T bε uε to u0 in L2((0, T )×Ω×Γ). Then,
due to the Lipschitz-regularity of f , we actually obtain the strong convergence of
f
(
T bε uε

)
to f(u0) in L2((0, T )× Ω× Γ). In [11] such a result was proved by showing

that T bε uε is a Cauchy-sequence. However, this result strongly relied on the fact, that
the diffusion coefficient in the microscopic problem was of order ε2, which led to an
equation for T bε uε where all coefficients were of order one. In our paper this is not
the case, and the argument with the Cauchy-sequence cannot be applied. Instead, we
use the compactness criterion from Section 2. A similar approach was used in [10],
where the classical compactness criterion by Kolmogorov, see e. g., [13], for the space
L2((0, T )×Ω×Z), with Z = (0, 1)n−1×(−1, 1), was employed. This is not appropriate
for the situation in our application since shifts with respect to the surface-variable y
make no sense.

In the following, we use the same notations as in Section 2, especially ξ = b−a
2 .

Lemma 3.2. Let l ∈ Nn0 . Then, for all ε > 0, such that |liε| <
∣∣ bi−ai

2

∣∣ the following
estimate holds for all σ ∈ Σ

‖τεlσuε − uε‖L2((0,T )×(Γε)ξσ ) ≤ C|l|
√
ε.
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Proof. We test the variational equation for τεlσuε − uε with η2(τεlσuε − uε), where
η ∈ C∞0 (Rn) is a cut-off function with 0 ≤ η ≤ 1, η = 1 in Ωξσ , and zero outside a
small neighbourhood of Ωξσ . Then, Gronwall’s inequality and the Lipschitz-continuity
of u0 give the desired result. �

Theorem 3.3. For ε→ 0, we have

T bε uε → u0 strongly in L2((0, T )× Ω× Γ).

Especially, we obtain

f
(
T bε uε

)
→ f(u0) strongly in L2((0, T )× Ω× Γ).

Proof. We consider T bε uε as a function from L2(Ω, L2((0, T ) × Γ)) and prove the
condition (i) in Theorem 2.2 and (ii)′′ in Proposition 2.4. Let A ⊂ Ω measurable,
and define vεA :=

∫
A
T bε uε(·t, x, ·y)dx. The a priori estimate in Proposition 3.1 imply

that vεA is bounded in L2((0, T ), H1(Γ)) ∩H1((0, T ), L2(Γ)), and due to the Aubin-
Lions Lemma the sequence is relatively compact in L2((0, T ), L2(Γ)). It remains to
check condition (ii)′′. For z ∈ Rn with zi ≥ 0 small, we obtain as in the proof of [10,
Theorem 2.3, page 700] for l(ε, z,m) := m+

[
z
ε

]
∥∥τzσT bε uε − T bε uε∥∥2

L2(Ωξσ ,L
2((0,T )×Γ))

≤ ε
∑

m∈{0,1}n

∥∥τεl(ε,z,m)σuε − uε
∥∥2

L2((0,T )×(Γε)ξσ )
≤ Cε2|l(ε, z,m)|2.

Since |l(ε, z,m)|ε→ 0 for ε→ 0 and z → 0, condition (ii)′′ is valid. Hence, Theorem
2.2 and Proposition 2.4 imply the desired result. �

Altogether, we immediately obtain that u0 fulfills the following variational equation:

|Γ|
∫

Ω

∂tu0φdx+

∫
Ω

D∗∇u0 · ∇φdx = |Γ|
∫

Ω

f(u0)φdx,

for all φ ∈ H1(Ω) and almost everywhere in (0, T ). The corresponding inital and
boundary value problem is

|Γ|∂tu0 −∇ · (D∗∇u0) = |Γ|f(u0) in (0, T )× Ω

−D∗∇u0 · ν = 0 on (0, T )× ∂Ω

u0(0) = u0 in Ω.
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