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Local C'-semigroups and complete second order
abstract Cauchy problems

Chung-Cheng Kuo

Abstract. Let C' : X — X be an injective bounded linear operator on a Ba-
nach space X over the field F(=R or C) and 0 < Tp < oco. Under some suit-
able assumptions, we deduce some relationship between the generation of a lo-

g g, >-semigroup on X x X with sub-

0 I
B A
(i) the well-posedness of a complete second-order abstract Cauchy problem
ACP(A, B, f,z,y): w'(t) = Aw' (t)+Bw(t)+f(t) for a.e. t € (0,Tp) withw(0) = z
and w’(0) = y; (ii) a Miyadera-Feller-Phillips-Hille-Yosida type condition; (iii) B
is a subgenerator (resp., the generator) of a locally Lipschitz continuous local
C-cosine function on X for which A may not be bounded; (iv) A is a subgener-
ator (resp., the generator) of a local C-semigroup on X for which B may not be
bounded.
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cal (or an exponentially bounded) <

generator (resp., the generator) ( ) and one of the following cases:

1. Introduction

Let X be a Banach space over the field F(=R or C) with norm | - ||, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < Ty < oo, we consider the following two abstract Cauchy problems:

u'(t) = Au(t) + f(t) for a.e. t € (0,Tp)

ACP(A, f,x) { w(0) =

and

ACP(A, B, f,z,y) { w”(t) = Aw'(t) + Bu(t) + f(t)  for a.e. t € (0,Tp)
=,
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where z,y € X, A: D(A) C X - X and B : D(B) C X — X are closed linear
operators, and f € Li,.([0,Ty), X) (the family of all locally Bochner integrable func-
tions from [0, Tp) into X). A function w is called a (strong) solution of ACP(A, f, z) if
u € C([0,Tp), X) satisfies ACP(A, f,z) (that is u(0) = x and for a.e. t € (0,Tp), u(t)
is differentiable and u(t) € D(A), and u'(t)=Au(t)+ f(¢) for a.e. t € (0,Ty)). For each
a > 0 and each injection C' € L(X), a subfamily S(-)(= {S(¢)|0 <t < Tp}) of L(X)
is called a local a-times integrated C-semigroup on X if it is strongly continuous,
S()C = CS(+) and satisfies

(1.1) St)S(s)z = (7[ R fo} )18 (r) Cadr

forall z € X and 0 < ¢,s < t+ s < Ty (see [1-2,12-14,18-21,28,30,32,35]) or called
a local (0-times integrated) C-semigroup on X if it is strongly continuous, S(-)C' =
CS(-) and satisfies

(1.2) S(t)S(s)x = S(t+ s)Cx

forall z € X and 0 < t,s < t+ s < Tp (see [4,6,13,23,29]), where I'(-) denotes the
Gamma function. Moreover, we say that S(-) is

(1.3) locally Lipschitz continuous, if for each 0 < ¢ty < Ty there exists a Ky, > 0 such
that ||S(t + h) — S(t)|| < Kt h for all 0 < t, h,t + h < to;

(1.4) exponentially bounded, if Ty = oo and there exist K,w > 0 such that ||S(¢)| <
Ke*t for all t > 0;

(1.5) nondegenerate, if = 0 whenever S(t)z =0 for all 0 <t < Tp.

A nondegenerate local a-times integrated C-semigroup S(-) on X implies that
S(0) = C if @« = 0, and S(0) = 0 (zero operator on X) otherwise, and the (in-
tegral) generator A : D(A) € X — X of S(-) is a closed linear operator in X
defined by D(A) ={z € X|S()z — jo(-)Cz=S(-)y, on [0,Tp) for some y, € X}
and Az = y, for all z € D(A) (see [6,13-14,23]), which is also equal to the lin-
ear operator A in X defined by D(A) = {z € X | hlirgh(S(h):c —Cx)/h € R(C)}

and Az = C~! lim (S(h)x — Cx)/h for x € D(A) when o = 0 (see [4,23,27]). Here

Jjg(t) = 1“(;37111) and S fo s)zds. In general, a local C-semigroup is called
a C-semigroup if Ty = oo(see [2,4,14,26,32}) or a Cy-semigroup if C' = I (iden-
tity operator on X) (see [1,5]). It is known that the theory of local C-semigroup
is related to another family in L(X) which is called a local C-cosine function (see
[2,4,8-9,24,28-29,32]). Perturbation of local (integrated) C-semigroups has been ex-
tensively studied by many authors appearing in [1,6-7,10-12,15-16,22,30-32]. Some
interesting applications of this topic are also illustrated there. The well-posedness
of ACP(A, B, f,z,y) had been studied by many authors when f = 0 (see [3,6,9,17-
18,20,25,32-34]). Some relationship between the well-posedness of ACP(A, B,0,x,y),
a Miyadera-Feller-Phillips-Hille-Yosida type condition (see (1.6) below), and the gen-
eration of a Cy-semigroup on X x X with generator ( g 1{1 ) have been estab-
lished in [25] when A and B are commutable on D(B) N D(A), in [20] and [32]
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for A € L(X), in [32] for B € L(X), and in [17] for the general case. In partic-
ular, Xiao and Liang [32, Theorems 2.6.1, 2.5.2 and 2.5.1] show that g i )
generates a Cp-semigroup on X x X (if and) only if B € L(X) (and A generates
a Cp-semigroup on X), but the conclusion may not be true when Cp-semigroups
are replaced by local C-semigroups; and the well-posedness of ACP(A, B,0,xz,y) is
equivalent to A generates a Cp-semigroup on X if B € L(X), and equivalent to B
generates a cosine function on X if A € L(X). Unfortunately, a local C-semigroup
may not be exponentially bounded and is not necessarily extendable to the half line

0 0 c 0 .
[0, 00), and ( B A > may not be the generator of a local ( 0 C )—semlgroup

0 I
on X x X whenever ( B A

(A2 = XA = B)~1C(X = Ap(Bynp(a)) and (A2 — XA — B)~1CBpp)np(a) are bounded
even though D(B) N D(A) is dense in X and C = I, and A € pe(T) implies that A €
pc(A,B), (A2 =AA— B)71C(A— Ap)np(a)) and (A\? —AA — B)~1CBp(p)np(a)
are bounded, but may not be bounded on X even though C' = I. In particular, they
are bounded on X when the assumption of D(B) N D(A) is dense in X is added (see
[17] for the case C = I). In this paper, we will extend the aforementioned results to
the case of local C-semigroup by different methods (see Theorems 2.2 and 2.3 below).
We show that for each (z,y) € D ACP(A, B,0,Cx,Cy) has a unique solution z which
depends continuously differentiable on (z,y) and satisfies Bz + Az’ € C([0,7p), X)
if and only if T is a subgenerator of a local C-semigroup on X x X if and only if
for each (z,y) € D ACP(A, B,CBz,0,Cy) has a unique solution w which depends
continuously differentiable on (x,y) and satisfies Bw + Aw’ € C([0,Tp), X) (see The-

orem 2.5 below). Here 7 = ( 01 ), C = ( ¢ 0 ), and D is a fixed subspace

) is. Moreover, A € pc(A, B) may not imply that

B A 0 C

of D(B) x D(A) that is dense in X x X. We then prove two important lemmas (see
Lemmas 2.7 and 2.8 below) which can be used to show that there exist M,w > 0 so
that for each pair z,y € D(B) ND(A) ACP(A, B,CBz,0,Cy) has a unique solution
w with |w(t)|], [|w’(#)]| < Me*t(||z]|+ ||y||) for all ¢ > 0 and Bw+ Aw’ € C(]0, c0), X)
if and only if 7 is a subgenerator of an exponentially bounded C-semigroup on X x X
if and only if there exist M,w > 0 so that A € pc(A, B) and

(1.6) M2 =24~ B) ' " | [F = A~ B) 0Bomrnm] I < otk

for all A > w and k£ € N U {0} if and only if there exist M,w > 0 so that for
each pair z,y € D(B) N D(A) ACP(A4, B,0,Cz,Cy) has a unique solution z with
@)l [|2"(®)]] < Me“ (||| + ||ly||) for all ¢ > 0 and satisfies Bz + Az’ € C(]0,0), X)
(see Corollary 2.6 and Theorem 2.9 below). Here pc(A, B)={\ € F|\? — A - B
is injective, R(C') C R(A\2 — AA — B), and (A\> — MA — B)™'C € L(X)}. When p(T)
(resolvent set of T') is nonempty, we can combine Lemma 2.4 with [23, Corollary 3.6]
to show that for each (z,y) € D(B) x D(4) ACP(A, B,CBz,0,Cy) has a unique
solution w such that Bw + Aw’ € C([0,7p),X) if and only if 7 is the generator of
a local C-semigroup S(-) on X x X if and only if for each (x,y) € D(B) x D(A)
ACP(A, B,0,Cz,Cy) has a unique solution z such that Bz + Az’ € C([0,Tp), X) (see
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Theorem 2.11 below). We then apply the modifications of [12, Theorem 2.12 and The-
orem 3.2] concerning the bounded and unbounded perturbations of a locally Lipschitz
continuous local once integrated C-semigroup on X (see Theorem 2.12 below) and a
basic property of local C-cosine function (see [6, Theorem 2.1.11]) to obtain two new
equivalence relations concerning the generations of a local C-semigroup on X x X
0 I
B A
continuous local C-cosine function on X with subgenerator (resp., the generator) B
for which A may not be bounded (see Theorem 2.13 below) or a local C-semigroup
on X with subgenerator (resp., the generator) A for which B may not be bounded
(see Theorem 2.16 below). Under some suitable assumptions, which can be used to
show those preceding equivalence conditions which are equivalent to B is the gener-
ator of a locally Lipschitz continuous local C-cosine function on X for which A may
not be bounded (see Corollaries 2.14 and 2.15 below), and are also equivalent to A
is the generator of a local C-semigroup on X for which B may not be bounded (see
Corollaries 2.17 and 2.18 below).

with subgenerator (resp., the generator) ( ) and either a locally Lipschitz

2. Abstract Cauchy problems

In this section, we consider the existence of solutions of the abstract
Cauchy problem ACP(A, B, f,x,y). A function u is called a (strong) solution of
ACP(A, B, f,z,y) if u € C([0,Ty), X) satisfies ACP(A, B, f,z,y) (that is u(0) = z,
u'(0) = y, and for a.e. t € (0,Tp), v/(¢t) is differentiable and w'(t) € D(A), and
u” (t)=Au'(t)+Bu(t)+ f(t) for a.e. t € (0,7p)). A linear operator A in X is called a
subgenerator of a local a-times integrated C-semigroup S() it S(t)x — jo(t)Cx =
ft S(r )Amdr for all x € D(A) and 0 < ¢ < Ty, and fo r)zdr € D(A) and

Afo rzdr=S(t)x — jo(t)Cz for all x € X and 0 < ¢t < Ty. Moreover, a sub-
generator A of S(-) is called the maximal subgenerator of S(-) if it is an extension
of each subgenerator of S(-) to D(A). We next note some basic properties of a local
C-semigroup, and then deduce some results about connections between the unique

existence of solutions of ACP(A, B,CBz,0,Cy), ACP (T, ( 8 ), ( C )) , and

Cy

ACP(A, B,0,Cz,Cy).
Proposition 2.1. (see [4,13,23]) Let A be the generator of a local C-semigroup S(-) on
X. Then

S()5(s) = S()S(t) for 0 < t,5,1+ 5 < To;
A is closed and C~1AC = A;
S(t)x € D(A) and S(t)Ax = AS( )z for x € D(A) and 0 <t < Tp;
fJS Jxdr € D(A) and Afo ryzdr = S(t)r — Cx forx € X and 0 <t < Tp;
R(()) D(A) for 0 <t < Tp;

is the maximal subgenerator of S(-);
7) C~YAoC is the generator of S(-) for each subgenerator Ag of S(-).

Theorem 2.2. (see [13,23]) Let A be a closed linear operator in X such that CA C AC.
Then A is a subgenerator of a local C-semigroup S(-) on X if and only if for each

(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
(2.6) A
(2.
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x € X ACP(A,Cx,0) has a unique (strong) solution u(-,z) in C1([0,Tp), X). In this
case, we have u(t,z) = jox S(¢ fo s)xds) for all z € X. By slightly modifying
the proof of [23, Corollary 3 5] the next theorem concerning the well-posedness of
ACP(A, f, z)is attained, and so its proof is omitted.

Theorem 2.3. Let A be a closed linear operator in X such that CA C AC and D dense
in X for some subspace D of D(A). Then the following are equivalent:

(i) A is a subgenerator of a nondegenerate local C-semigroup S(-) on X;
(ii) For each x € D ACP(A,0,Cz) has a unique solution u(-; Cz) in
C([0,T0), [D(A)]) which depends continuously on x. That is, if {x,}32, is a
Cauchy sequence in (D, | - ||), then {u(-; Cx,)}52, converges uniformly on com-
pact subsets of [0,Tp).
In this case, u(-,Cx) = S(-)x.
In the following, we always assume that A and B are biclosed linear operators
in X such that CA C AC and CB C BC.
Lemma 2.4. Assume that D is a subspace of D(B) x D(A). Then the following are
equivalent:

(i) For each (z,y) € D ACP(A, B,CBx,0,Cy) has a unique solution w such that
Bw + Aw’ € C([0,Tp), X);

(ii) For each (z,y) € D ACP <'T, ( 8 >, < gf; )> has a unique solution < Z >

in O([07T0)7 [T]))
(iii) For each (x,y) € D ACP(A,B,0,Cxz,Cy) has a unique solution z such that

Bz + Az € C([0,Tp), X).

In this case, w = jo *x v and z = u.

In particular, z,w € C*([0,Tp), [D(A)])NC([0, Ty), [D(B))) if either A or B is bounded.
0 I Cc 0

Here'T—(B A > andC-( 0 C

Proof. Since the biclosedness of A and B with CA C AC and CB C BC implies

that 7 is a closed linear operator in X x X so that CT < TC. Suppose that

(z,y) € D and ( 1; ) denotes the unique solution of ACP (’T, < 8 ), ( gz ))

in C([0,7),[(T]). Then v and Bu + Av are continuous on [0,7}), and ' = v and

v' = Bu + Av+ a.e. on [0,7)), so that u = jo * v + Cz on [0,Tp), jo * v(t) € D(B)

for all t € [0,Tp), and v' = Bjg * v + CBz a.e. on [0,Tp). Hence, w = jp * v is a

solution of ACP(A, B,CBuz,0,Cy) such that Bw + Aw’ € C([0,Tp), X). The unique-

ness of solutions of ACP(A, B,CBuz,0,Cy) follows from the fact that 8 is the

unique solution of ACP (T, ( 8 ), ( 8 )) in C([0,Tp),[T]). Conversely, suppose
that (x,y) € D and w denotes the unique solution of ACP(A, B,CBx,0,Cy) such

that Bw + Aw’ € C([0,Tp), X). We set u = w + Cz and v = w’ on [0,T). Then
( v(0) ) N ( Cy )’( v(t) > € D(B) xD(A) =D(T)
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u

forallt € [0,Tp) and T is continuous on [0, Tp), and for a.e. t € (0, Tp) ( z(t) )

1

is differentiable and

< Z:Eg ) - < ;1)}’/’((?) ) B ( Aw'(t) —i—gg()t) +CBx )
(ot ) =700 )

and so ( 5 > is a solution of ACP (T,( 8 ),( g; >) in C([0,Tp),[T])- The

uniqueness of solutions follows from the fact that 0 is the unique solution of
ACP(A, B,0,0,0). Similarly, we can show that (ii) and (iii) are equivalent. O

Just as an application of Theorem 2.3, the next theorem concerning the well-
posedness of ACP(A, B, f,x,y) is also attained.
Theorem 2.5. Assume that D is dense in X x X for some subspace D of D(B) x D(A).
Then the following are equivalent:

(i) For each (z,y) € D ACP(A, B,CBx,0,Cy) has a unique solution w which de-
pends continuously differentiable on (z,y) (that is, if {x,}22, is a Cauchy se-
quence in (D(B), | - |I) and {yn}22, a Cauchy sequence in (D(A), |- |), and w,
denotes the unique solution of ACP(A, B,CBxy,,0,Cyy,), then {w,(-)}5, and
{w!, ()}, both converge uniformly on compact subsets of [0,Ty)) and satisfies
Bw + Aw’ € C([0,Ty), X);

(ii) T is a subgenerator of a local C-semigroup S(-) on X x X;

(iii) For each (z,y) € D ACP(A, B,0,Cz,Cy) has a unique solution z which depends
continuously differentiable on (z,y) and satisfies Bz + Az" € C([0,Tp), X).

0 I C 0
HereTz(B A)andC:(O C>'

Proof. Since for each (z,y) € D ( z ) is the unique solution of

0 Cx
ser(r(0)(&))
in C([0,T0),[T]) if and only if for each (z,y) € D u = w+ Cz and v = w’ on
[0,T}), and w is the unique solution of ACP(A, B,CBx,0,Cy) such that Bw+ Aw’ €

C([0,Tp), X). By Theorem 2.3, we also have < z > = S()< :; ) Consequently, T

is a subgenerator of a local C-semigroup on X x X if and only if for each (z,y) € D
ACP(A, B,CBz,0,Cy) has a unique solution w which depends continuously differ-
entiable on (z,y). Similarly, we can show that (ii) and (iii) are equivalent. O

Corollary 2.6. Assume that D is dense in X x X for some subspace D of D(B) x D(A).
Then the following are equivalent:
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(i) There exist M,w > 0 such that for each (x,y) € D ACP(A, B,CBuz,0,Cy) has
a unique solution w with ||w(t)]||, ||w' ()| < Me“t(||x]| + ||y||) for all t > 0 and
Bw + Aw' € C([0,00), X);

(ii) T is a subgenerator of an exponentially bounded C-semigroup on X X X;

(iii) There exist M,w > 0 such that for each (x,y) € D ACP(A,B,0,Cx,Cy) has
a unique solution z with ||z(t)||, |2’ (®)]| < Me“t(||lz|| + |ly||) for all t > 0 and
satisfies Bz + Az € (([0,Tp), X).

Lemma 2.7. Assume that X € pc(T) (C-resolvent set of T ). Then

(i) X € pc(A, B);

(ii) (>\2 — M — B)_lc()\ — AD(B)QD(A)) and (/\2 — M — B)_chD(B)ﬁD(A) are
closable, and their closures are bounded and have the same domain;

(lll) ()\ o T)flc — < ()‘2 — M- B)ilc()‘ — AD(B)HD(A)) ()‘2 — A - B)ijc >

(AQ—AA—B)_chD(B)mD(A) )\(/\2—)\14—3) c

on D((A2 = XA — B)~1C(A = Ap)np(a))) X X, and on X x X if D(B)N D(A)

is dense in X.

Proof. To show that A> — AA — B is closed. Suppose that {z,,}5°, is a sequence in
D(B) N D(A) which converges to z in X and {(\2 — A4 — B)z,,}3%, converges to y

in X. Then ( A“;n ) € D(T), ( ;;n ) — ( Axx ) and
()‘T)</\x;n>((AQ—)\X—B)%)H(S)'

A‘Tx ) € D(T) and

(eniome )=0-n( 5 )=(y):

and so (A2 — AA — B)z = y. Hence, \2 — AA — B is closed. To show that A2 — \A — B
is injective. Suppose that (A2 — AA — B)x = 0. Then

a5 (e thom )= (1)

and so ( )\ch ) = < 8 > Hence, x = 0, which implies that A2 — AA — B is injective.

To show that R(C) C R(A\2 — AA — B). Suppose that z € X is given. Then

an()-(2)

for some (z,y) € D(T) = D(B) x D(A), so that \x —y = 0 and —Bz+(A— A)y = C=z.
Hence, € D(B)ND(A)(= D(A2 = XA - B)) and (\?> — M\A — B)x = Cz, which implies
that R(C) € R(A\? — A — B). Consequently, A € pc (A4, B).

To show that (/\2 — A — B)ilc(/\ — AD(B)QD(A)) and (/\2 — A — B)ichD(B)mD(A)
are closable, we need only to show that (A> — XA — B)"'C(XA — Ap(p)np(a)) or
(A2 -4 — B)_lCBD(B)mD(A) is closable. We will show that

By the closedness of A — T, we have (



228 Chung-Cheng Kuo

(2.8) (A—T)"'C = ( (A=A -B)"'C(A-4) (M- -B)~'C )

(A2 —XA-B)"'CB A(A2—=)MA - B)"C
on D(B) N D(A) first or equivalently,

- R e i) () =(6)

“(3)
)
for all z,y € D(B) N D(A). Suppose that z,y € D(B) N D(A) are given. Then by the
fact B(A\2 — XA — B)"tC(\ — A)z=(\ — A)(\2 — AA — B)~'CBx that we have
(A_T)( (A2 M- B)"'C(A—A4) (A2 —\A—B)"'C )( x )
(N2 —M-B)lcB AN -xa-B)'c )\ y

() ) ()

P (A2 = XA —B)"'1C(A— A)z+ (A2 — MA— B)~'Cy
B A-A (A2 = AA — B)"'CBz + A(A\> — A\A — B)~'Cy

([ Cxzx
=l ey )
Suppose that z,, € D(B)ND(A), z, — 0in X, and (A2 = XA - B)"!C(A— A)z,, >y
in X. Then
(N2 = XA —B)'CB)z, = (N2 = AA - B)"'C(B+ XA — \?))x,
+ (A= XA - B)'C(\? = \)z,
=Crp+ (A = AA—B)'C(\? = M)z,
— Ay,

and so
- ) = (R e e ) ()

[ (A2=XA-B)'C(\ - Az,
—< (A2 — \A — B)~'CBuz, )

o ( v ) :(A—T)lc( 8 )

Hence, y = 0, which implies that (\> — A4 — B)"1C(\ — Ap(B)nD(a)) is closable.

To show that (A2 — AA — B)~1CBp(p)np(a) is bounded.

Let € D((A? — A — B)~'CBp(p)np(4)) be given.

Then (2, (A*> = AA — B)"'CBux,) — (z,(\> = AA — B)~'CBp(p)np(4)®) for some
xz, € D(B)ND(A), and so

()\—T)_l(Z( " ) - ( (AZ(;QA_A A_AB_);)Q%_BQ% ) - (A_T)_IC< 0 >
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Hence, {(\> — M — B)7'(A — A)x,}2, and {(\®> — M — B)"'Bz,}>2,
both converge. By the closedness of (A2 —XA— B)~1C(\ — Ap(p)np(a)) and
(/\2 — A — B)_chD(B)ﬁD(A)v we have x € D((/\2 — M - B)—lC(/\ — AD(B)QD(A)))

and
(A — T)1C( x ) _ < (A2 = AA — B)"'C(A — Ap(p)np(4))® >,
0 (A2 = A — B)"'CBp(B)np(4)T

which implies that (A\? — AA — B)~'CBp)np(a) is bounded and

D((A2 = M — B)~1CBp()np(4)) € D(A2 = M — B)~"1C(A — Ap(p)np(a)))-
Similarly, we can show that (A2 — AA — B)~1C(X — Ap()np(4)) is bounded and

D((A2 = XA — B)~1C(A — Ap(s)np(4))) € D((A?2 = XA — B)~'CBp()np(a)),
which implies that

(A—T)_lc( Y ) =(A—T)‘1C( o ) +()\—7’)‘1C< 2 )

N (/\2 f)\AfB)*lC()\—AD(B)mD(A)) ()\27/\A7B)710 X
N ()\Q—AA—B)_chD(B)mD(A) /\()\2 —/\A—B)‘lC Yy
for all (z,y) € D((A\? = AA — B)7'C(\ — Ap(s)np(4))) X X. Combining this with the
closedness of (A2 — AA — B)~1CBp(p)np(a) and the denseness of D(B)ND(A) in X,
we have

(A2 = A = B)~1CBps)np(a) € L(X). O
Lemma 2.8. Assume that A € pc(A, B). Then
(i) A =T is injective;
(i) (A2=AA=B)'C(A—=Ap)npa)) and (A2 —AA—B)"*CBpp)np(a) are closable
and their closures have the same domain, and
()\—T) ()\2—)\A—B)*lC()\—AD(B)ﬂD(A)) ()\2—>\A—B)710 —C
()\2 _AA_B)_chD(B)ﬂD(A) )\(/\2 —)\A—B)710
on D(()\2 — M — B)*lC(/\ — AD(B)HD(A))) X X,‘
(iii) A € pe(T) and
()\—T)_l(Z: ()\2_AA_B)_lo(A_AD(B)ﬂD(A)) (/\22— )\A—B)_jlc 7
()\2—>\A—B)7ICBD(B)QD(A) )\()\ —)\A—B) C
’Lf ()\2 — AN — B)_lC()\ — AD(B)OD(A)) S L(X)
In particular, the conclusion of (iii) holds when A or B in L(X), or D(B) N D(A) is
dense in X with AB = BA on D(B) N D(A).

Proof. To show that A — T is injective. Suppose that (A — T)( 5 ) = ( 8 ) Then

Ar —y =0 and —Bz + (A — A)y = 0, so that Az = y and —Bx + (A2 — AA)z = 0.
Hence, x = 0 = y, which implies that A\ — T is injective. Just as in the proof of
Lemma 2.7, we will apply (2.8) to show that (\2 = \A — B)"1C(\ — Ap(BynD(4)) and
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(A = XA — B)"'CBp(p)np(a) are closable. Suppose that {z,}52, is a sequence in
D(B) ND(A) which converges to 0 in X and {(\? = AA — B)(\ — A)x,,}5°; converges
to y in X. Then

(A —=XA - B) 'CBz, = —Cx, + (V2 = XA - B)"'C(\ — A)z,, — \y,

A= XA -B)tC(\— Az, Yy
and so ( (A2 — A\ — B)~'CBuz, — R Hence,

- A ) - (%) - (0)

Y _ y \_ (0
By the closedness of T, we have ( Ay ) € D(T) and (A T)< Ay > = ( 0 ),

which together with the injectivity of A — T implies that y = 0.

Consequently, (A2 — XA — B)"1C(\ — Ap(B)nD(4)) is closable. Similarly, we can show
that (A2 — XA — B)_lC’BD(B)mD(A) is closable. Just as in the proof of Lemma 2.7, we
will show that

D((A\? = AA = B)"'C(A — Ap(p)np(4))) = D((A\? = AA — B)~'CBp(B)np(4)):

and for each € D((A2 — XA — B)~1C(A — Ap(s)np(4)))

( (A2 = AA — B)~1C(X — Ap(p)np(4))T
(A2 = AA = B)~'CBp(p)np(4)T

>ED(T).

Suppose that 2 € D((A? = AA — B)"1C(\ — Ap(p)np(a))) is given. Then z, — x
and (A2 = XA — B)"'C(\ — A)z, — (A2 — MA — B)~'C(\ — Ap(p)np(a))z for some
sequence {x,}22, in D(B) N D(A), and so

(A2 = XA — B)"'CBz, = —Ca + A\(X2 — M — B)~'C(\ — Ap(m)np(a))2-

Hence, 2 € D((A? = AA — B)~1CBp(p)np(4))), which implies that
D(()\2 — M — B)_IC()\ — AD(B)ﬂD(A))) C D((>\2 — A — B)_chD(B)ﬁD(A))'

Similarly, we can show that

D((/\2 — A\ — B)_chD(B)ﬁD(A)) C D(()\2 — M — B)_lc()\ — AD(B)QD(A)))~

Since

(W =M =B)'CA = Az, |, (=AM - B)TC(A ~ Ap(p)rp(a))
(A2 — XA - B)"'CBu, (A2 = AA - B)~1CBp()np(a)®

and
- (s e ) = (5 ) - (V)

By the closedness of A — 7T, we have

O=T) ( (X —M - B)" 100 — Apmnn(a) (A2 — A - B)~'C >(x> :C<x)
()\2 _/\A_B)_chD(B)ﬂD(A) /\()\2 —/\A—B)‘lC 0 0)
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Consequently,

()\_7.) ()\2—)\A—B)_lc()\—AD(B)mD(A)) ()\Q—AA—B)‘lC —c
()\2 — M - B)ichD(B)mD(A) )\()\2 — M — B)*lC

on D(()\Q—/\A—B)*lC()\—AD(B)mD(A))) x X. 0

Since ()\2 — M - B)—l(l(/\ - AD(B)QD(A)) = [()\2 — A — B)_chD(B)mD(A)]%“‘%C
and (A2 — MA — B)"'C=[A\(A\* — A — B)"!C]5, we can combine Lemma 2.7 with
Lemma 2.8 and [1, Theorem 2.4.1] or [32, Theorem 1.2.1] to obtain the next new
Miyadera-Feller-Phillips-Hille-Yosida type theorem concerning the generation of an
exponentially bounded C-semigroup on X x X.
Theorem 2.9. Assume that D(B) N D(A) is dense in X. Then T is a subgenerator of
an exponentially bounded C-semigroup on X X X if and only if there exist M,w > 0
such that X\ € pc(A, B) and (1.6) holds for all A > w and k € NU {0}.

Just as a result in [17, Theorem 2] for the case of Cyp-semigroup, we can combine
Corollary 2.6 with Theorem 2.9 to obtain the next corollary.
Corollary 2.10. Assume that D(B)ND(A) is dense in X. Then the following statements
are equivalent:

(i) There exist M,w > 0 such that for each pair z,y € D(B) N D(A),
ACP(A,B,CBx,0,Cy) has a unique solution w with |w(t)|,||w' )] <
Me“t(||z|| + l|lyll) for allt >0 and Bw + Aw' € C([0,00), X);

(ii) T is a subgenerator of an exponentially bounded C-semigroup on X X X;

(iii) There exist M,w > 0 such that A € pc(A, B) and (1.6) holds for all A > w and
ke NU{0};

(iv) There exist M,w > 0 such that for each pair z,y € D(B) N D(A),
ACP(A, B,0,Cz,Cy) has a unique solution z with ||z(¢)]], ||2'(t)|| < Me*t(||z| +
lyll) for allt > 0 and satisfies Bz + Az' € C([0,Tp), X).

Combining Lemma 2.4 with [23, Corollary 3.6], the next theorem is also attained.
Theorem 2.11. Assume that p(T) (resolvent set of T ) is nonempty. Then the following
are equivalent:

(i) For each (z,y) € D(B) x D(A) ACP(A, B,CBz,0,Cy) has a unique solution w
such that Bw + Aw' € C([0,Tp), X);
(ii) T is the generator of a local C-semigroup S(-) on X x X;
(iii) For each (x,y) € D(B) x D(A) ACP(A,B,0,Cz,Cy) has a unique solution z
such that Bz + Az' € C([0,Tp), X).

By modifying slightly the proofs of [12, Theorem 2.12 and Theorem 3.2], the
next theorem is also attained, and so its proof is omitted.
Theorem 2.12. Let B be a subgenerator (resp., the generator) of a locally Lipschitz
continuous local once integrated C-semigroup on X . Assume that A is a bounded linear
operator from D(B) into R(C) or a bounded linear operator from [D(B)] into R(C') so
that R(C~1A) C D(B) and A+ B is closed. Then A+ B is a subgenerator (resp., the
generator) of a locally Lipschitz continuous local once integrated C-semigroup on X .
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Since B is a subgenerator (resp., the generator) of a locally Lipschitz continuous

0 IY.
B o )2 subgenerator (resp., the
generator) of a locally Lipschitz continuous local once integrated C-semigroup on
X X X (see [6, Theorem 2.1.11]); and A is a bounded linear operator from [D(B)]

into R(C) so that R(C~1A) C D(B) implies that

w(er(5 ) (8 %)) en(( L 1)) - pmow

we can apply Theorem 2.12 to obtain the next new result concerning the generations of
a locally Lipschitz continuous local C-cosine function on X with subgenerator (resp.,
the generator) B and a local C-semigroup on X X X with subgenerator (resp., the

local C-cosine function on X if and only if (

generator) ( g i ) for which A may not be bounded.

Theorem 2.13.Assume that A is a bounded linear operator from D(B) into R(C) or
a bounded linear operator from [D(B)] into R(C) so that R(C~YA) C D(B). Then T
is a subgenerator (resp., the generator) of a local C-semigroup on X x X only if B is
a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine
function on X. The 7if part” is also true when the assumption of D(B) is dense in
X is added.

0 I
B A
semigroup on X x X. Then it is also a subgenerator (resp., the generator) of a locally

Proof. Suppose that < is a subgenerator (resp., the generator) of a local C-

Lipschitz continuous local once integrated C-semigroup on X x X, and so ( g é )

is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once
integrated C-semigroup on X x X. Hence, B is a subgenerator (resp., the generator) of
a locally Lipschitz continuous local C-cosine function on X. Conversely, suppose that
D(B) is dense in X and B is a subgenerator (resp., the generator) of a locally Lipschitz
0

B 0
the generator) of a locally Lipschitz continuous local once integrated C-semigroup

continuous local C-cosine function on X. Then ( ) is a subgenerator (resp.,

on X x X, and so < g 1{1 is a subgenerator (resp., the generator) of a locally
Lipschitz continuous local once integrated C-semigroup on X x X. Hence, it is also a
subgenerator (resp., the generator) of a local C-semigroup on X x X. O

Combining Theorem 2.11 with Theorem 2.13, we can obtain the next two corollaries.
Corollary 2.14. Assume that p(A, B) is nonempty and A € L(X). Then the following
are equivalent:
(i) For each (z,y) € D(B) x D(A) ACP(A, B,CBz,0,Cy) has a unique solution w
in C((0,T0), [D(B)));
(ii) T is the generator of a local C-semigroup on X x X;
(iii) For each (z,y) € D(B) x D(A) ACP(A, B,0,Cx,Cy) has a unique solution z in
C([07 T0)7 [D<B)])
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Moreover, (i)-(iii) imply
(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if R(A) C R(C), and (i)-(iv) are equivalent if the assumption of D(B) is dense in X
is also added. Here [D(B)] denotes the Banach space D(B) with norm |- | defined by
2] = |lall + | Bz| for z € D(B).

Corollary 2.15. Assume that D(B) N D(A) is dense in X, p(A, B) nonempty, and
AB = BA on D(B)N D(A). Then the following are equivalent:

(i) For each (z,y) € D(B) x D(A) ACP(A, B,CBz,0,Cy) has a unique solution w
such that Bw + Aw’ € C([0,Tp), X);
(ii) T is the generator of a local C-semigroup on X X X;
(iii) For each (z,y) € D(B) x D(A) ACP(A, B,0,Cz,Cy) has a unique solution z
such that Bz + Az’ € C(]0,Tp), X).

Moreover, (i)-(iii) are equivalent to
(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if A is a bounded linear operator from [D(B)] into R(C) so that R(C~1A) C D(B).
Since B is a bounded linear operator from [D(A)] into R(C) so that R(C~!B) C
D(A) implies that

w(er( 8 0 n(( 0 0))en(( 1)) -pw e

we can combine Theorem 2.11 with Theorem 2.13 to obtain the next new result
concerning the generations of a local C-semigroup on X with subgenerator (resp.,
the generator) A and a local C-semigroup on X x X with subgenerator (resp., the

generator) ( g 1{1 > for which B may not be bounded.

Theorem 2.16. Assume that B is a bounded linear operator from D(A) into R(C') or
a bounded linear operator from [D(A)] into R(C) so that R(C~'B) C D(A). Then T
is a subgenerator (resp., the generator) of a local C-semigroup on X x X if and only
if A is a subgenerator (resp., the generator) of a local C-semigroup on X.

0 I 0 I
Proof. Clearly,C( 0 A ):( 0 A )C on X x D(A)

(resp., Cl( 8 i >C< 8 1{1 )) is equivalent to CA = AC on D(A) (resp.,

C~1AC = A). Suppose that ( 0 is a subgenerator (resp., the generator) of a

1
B A
0
0 A
of a local C-semigroup S(-) on X x X. For each pair z,y € X, we set

(0 ) =0eso( )

local C-semigroup on X x X. Then ) is a subgenerator (resp., the generator)
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for all 0 <t < Ty. Then

( ?; ) € CY([0,Tp), X x X)ﬂC([OaTo)vm)’< 583 ) N ( 8 )

W) (0 I u(t) Cz\ [ vt) Cx

(v )= (0 )00 ) (&) - (a6 )+ (&)
for all 0 < ¢t < Tp, so that u(0) = 0 = v(0), v/(t) = v(t) + Cz and V'(t) = Av(t) +
Cy for all 0 < t < Tp. Hence, v is a solution of ACP(A,Cy,0) in C'([0,Ty), X) N
C([0,Tv), [D(A)]), u(0) = 0, and v’ = v on [0,Tp). To show that A is a subgenerator
(resp., the generator) of a local C-semigroup on X, we remain only to show that 0 is
the unique solution of ACP(A,0,0) in C*([0, Tp), X)NC([0, Ty), [D(A)]) (see Theorem
2.2). To this end. Suppose that v is a solution of ACP(A4,0,0) in C'([0,T), X) N
C([0,Tv), [D(A)]). We set u = jo * v, then u(0) = 0 = v(0) and

w(t) N\ [ wvt) (0 I u(t)

() ) \Au(t) )\ 0 A v(t)
for all 0 <t < Tp. The uniqueness of solutions of ACP(A, 0, 0) follows from the unique-
ness of solutions of ACP (( 8 1{1 >7 ( 8 ), < 8 )) . Conversely, suppose that A is

a subgenerator (resp., the generator) of a local C-semigroup S(-) on X. To show that

and

0 A

. 0 I Czr 0
need only to show that for each pair z,y € X, ACP(( 0 A >,< Cy ),( 0 )>

has a unique solution in C*([0,7,), X x X)NC ([O,TO), [( 8 1{1 )}) To do this.

( 0 I ) is a subgenerator (resp., the generator) of a local C-semigroup on X x X, we

For each pair x,y € X, we set v(t) = jo * S(t)y and u(t) = jo * v(t) + tCx for all
0 <t < Tp. Then u(0) = 0 = v(0), and v'(t)=S(t)y=Av(t) + Cy and v/(t) = v(t) + Cx
for all 0 <t < Tp, so that

(v )= Caos@ )= (o ) (00 ) (&)

u o\ . . 0 I Cr 0
fora110<t<T0.Hence7(U)lsasolutlonofACP<(O A)’(C’y ),(0)>

in C([0,Tp), X x X) N C ([07To), K 8 A

aee (9 1) (0)(8)) merwmxxne (mm (5 1))

follows from the uniqueness of solutions of ACP(A4,0,0). Consequently, 0 1 > is

. The uniqueness of solutions of

0 A
a subgenerator (resp., the generator) of a local C-semigroup on X x X, which implies
that 7 is a subgenerator (resp., the generator) of a local C-semigroup on X x X. O
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Corollary 2.17. Assume that p(A, B) is nonempty and B € L(X). Then the following
are equivalent:
(i) For each (z,y) € D(B) x D(A) ACP(A, B,CBz,0,Cy) has a unique solution w
in C1([0,Ty), [D(A)));
(ii) T is the generator of a local C-semigroup on X x X;
(iii) For each (z,y) € D(B) x D(A) ACP(A, B,0,Cx,Cy) has a unique solution z in
C1([0,Ty), [D(A)).
Moreover, (i)-(iii) are equivalent to
(vi) A is the generator of a local C-semigroup on X,
if R(B) C R(C).
Corollary 2.18. Assume that D(B) N D(A) is dense in X, p(A, B) nonempty, and
AB = BA on D(B)N D(A). Then the following are equivalent:
(i) For each (z,y) € D(B) x D(A) ACP(A, B,CBz,0,Cy) has a unique solution w
such that Bw + Aw’ € C([0,Tp), X);
(ii) T is the generator of a local C-semigroup on X X X;
(iii) For each (z,y) € D(B) x D(A) ACP(A,B,0,Cz,Cy) has a unique solution z
such that Bz + Az € C(]0,Tp), X).
Moreover, (i)-(iii) are equivalent to
(iv) A is the generator of a local C-semigroup on X,
if B is a bounded linear operator from [D(A)] into R(C) so that R(C~1B) C D(A).
We end this paper with a simple illustrative example. Let S(-)(= {S(¢)[0 <t < 1})
be a family of bounded linear operators on c¢y(, family of all convergent sequences in
F with limit 0,) defined by S(t)z = {e""e"x,}°,, then S(-) is a local C-semigroup
on ¢y with generator A defined by Az = {nz,}>2, for all z = {x,}°2,; € ¢y with
{nz, 152, € ¢g. Here C' = S(0). Let {p,}52, € 1> with {€"p,}2; €1, and B be a
bounded linear operator from [D(A)] into R(C) defined by Bz = {nz,p,}5>, for all
x={2,}22, € D(A), then R(C~'B) C D(A), CB = BC on D(A), and B : D(A) C
co — ¢o can be extended to a bounded linear operator on D(A) = ¢y. Applying

Corollary 2.17, we get that ( g i ) is the generator of a local C-semigroup on
Co X Cp.
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