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On a subclass of convex functions

Olga Engel and Rébert Szasz

Abstract. In this paper we study a subclass of convex functions. Among others
we prove an interesting property regarding the composition of functions from this
class. The basic tool of the proof is the theory of differential subordination.
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1. Introduction

Let U = {z € C: |z| < 1} be the unit disk in the complex plane C. We denote
by A the class of the functions f of the form

f(z)=z+ Zanz",
n=2
defined in U. We say that f is starlike in U if f : U — C is univalent and f(U) is a

starlike domain in C with respect to 0.
It is well-known that f € A is starlike in U if and only if

!
Re(zf (Z)> >0, for all z € U.

f(2)

The function f € A is convex in U if and only if f : U — C is univalent and
f(U) is a convex domain in C. The function f € A is convex if and only if

L 2)
72)

The subclass of A which contain convex functions will be denoted by K.

We define the class S*** by the equality
5
< \/;, zEU}. (1.1)

R +1>0, zeU.

2f"(2)
F)

o frea
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We will prove in the followings that S*** C K, we will determine the order of star-
likeness of the class S*** and we will show that if

fig € 8", then fogis starlike in the disk U(rg),
where g = sup{r > 0|g(U(r)) C U}.

2. Preliminaries

In order to prove the Main Result, we need the following results. These lemmas
can be found in [1], p.24-25, and [2], p. 201-203.
Let @ be the class of analytic functions g in U which has the property that are analytic
and injective on U \ E(q), where

E(q) = {C €U : liglgq(Z) = OO},
and are such that ¢/(¢) # 0 for ¢ € U \ E(q).

Lemma 2.1. [Miller-Mocanu| Let ¢ € Q, with ¢(0) = a, and let p(z) = a + apz™ + ...
be analytic in U with p(z) #Z a and n > 1. If f £ q, then there are two points
20 = 1€ € U, and {, € OU \ E(q) and a real number m € [n,o0) for which
p(UT0> c q(U)a

(i) p(20) = q(Co)

(it)  zop'(z0) = mGoq'(Co)

(iii)  Re ozl 41 sze(%ﬂ).

The following result is a particular case of Lemma 2.1.

Lemma 2.2. [Miller-Mocanu] Let p(z) = 14+ an2™ +. .. be analytic in U with p(z) # 1
andn > 1.

If Rep(z) # 0, z € U, then there is a point zg € U, and there are two real numbers
z,y € R such that

(i) p(z0) =iz

(i) zop(20) =y < =",

(iii)  Rez3p”(z0) + zop'(20) < 0.

We also need the following result, which is a particular case of the Theorem 3.2d.
from [1]. The next result is Theorem 3.2i. from [1].

Lemma 2.3. Let h be convex in U, with h(0) = 1 and let n be a positive integer. If q
s the analytic solution of

(2 _ 0. _
a(2)+ = oy =M, a0 =1,

and if Req(z) > 0, z € U, then q is univalent. If p(2) = 1 + ap,2™ + api12" ™ + ...
is an analytic function in U, and

=< h(z),
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then p < q, and q is the best dominant.

We also need the following result, which is a particular case of the Theorem 3.2d.
from [1].

Lemma 2.4. Let 8,7 € C and let n be a positive integer. Let Rgaq~n be given by

(z 4+ b)(1 + b2) n
Ren(2) = 20, —2_ O, = eI+ 2R Imd.
n(e) =20, I 0 = (ol T 2Rl + i
Let h be analytic in U, with h(0) = a, and let Re[Ba +~] > 0. If

ﬁh(z) + Y < Rﬁa+’y,n(z)7

then the solution q of the equation

nzq'(z)
q(2) + m————— = h(%),
® Ba(z) + @
with ¢(0) = a is analytic in U and satisfies Re[Bq(z) +~] > 0, z € U.
If a # 0, then the solution is given by

2 -1
o) = P (3/0) [ TP ) s,
0
where
H(z) = zexp / [(h(¢) — a) /at]dt.
0
Lemma 2.5. If x > 0, and y € R, then
Re(z + iy)% > 4,
Proof. We have
. 2 2y1 1 Y
Re(z +iy)* = (z° +y°)*® cos 1 arctan >
and in order to prove the lemma we have to show that
2 ot gl Y
(x° + y*)2 cos (Z arctan 5) > . (2.1)
Since
1+ —=— ’
1 1 Nz
cost (arctan? ) == |1 + VI
4 x 4 2
the inequality (2.1) is equivalent to
- 2
1 1 £/ 2 +y? x
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Since \/;Tyz € [0,1] it follows that there is a real number o € [0, 7] such that

z = cos «, and the previous inequality can be rewritten as follows

e T
cos 1 >cosa, «€& [0,5}.

This inequality is equivalent to

-0 7) (Teos? T -1) 20, a € [0.3]
(1 cos 1 7 cos 1 1) >0, ae 0727

and the proof is done taking into account that 7 cos? % > 7 cos? % > 1. O

We need also the following lemma which can be found in [2], p.271.

Lemma 2.6. Let g : [—7,7][0,1] — C a function such that g(e,.) is integrable on
[0,1], for each 0 € [—m,7]. If & : [0,1] — (0,00) ia also integrable and
1 1
—_—>—— e t 1
Reg(e‘g,t) Z 30 € [-m, 7], t €[0,1],
then ) )
Re — > — , 0 €[-m, 7]
/ o(c® 1)t / alt)dt
0 0
3. Main results
Theorem 3.1. If f € A and
21"(2)
1- <7, zel,
‘ f'(2)

then it follows that f € S*.

Proof. We will prove that p(z) = Z;ES) >0, zeU.
It is easily seen that

L)y )

f(2) p(z)
and consequently the following equivalence holds
zf"(2) zp/(2)
1— <AV, zeUs [2—p(z) - <7, zeU. 3.1
72 ® =500 (1)
iy 2f'(z) ,
If the condition p(z) = > 0, z € U, does not hold, then according to the

z
Miller-Mocanu lemma (Le];r(m)la 2.2) there is a point zp € U, and there are two real
numbers z,y € R such that
p(z0) = iz,
and

14 22
zop' (20) =y < — 5
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These equalities imply

/ 2 _ 2
2~ pleo) = 2Ly i (oY) = fag EE
p(20) x x
2
1
>\/4+<3x+) > V7.
2 2x
. . . zf'(2)
This inequality contradicts (3.1), and consequently p(z) = 75 > 0, z € U holds.

O

Remark 3.2. The result of Theorem 3.1 shows that the following inclusion holds
S*** C S*
We will determine the exact order of starlikeness of the class S*** in the followings.

Theorem 3.3. If f € S***, then

Re 21 L3 A .
f(2) /1 5y 4dt 4(\/%)4_( g_1)4
0 \/g—l

The result is sharp.

Proof. The inequality ‘1 — Z]J://ES) < \/g , z € U is equivalent to the subordination
1 z2f"(2) ~ MMz+ 1’
f'(z) M+ =z

where M = \/g. Denoting p(z) = Z}CES) the subordination can be rewritten in the

following form

/
zp'(2) B MMz+ 1’
p(z) M+ =z

and this is equivalent to

zp'(2) e Mzl
p(z) + 202 < h(z) =2 MMJrz'

If we denote by ¢ the solution of the equation
2q'(2) Mz+1
z) + =2-M = h(z
o)+ 2 e = h)

then Req(z) > 0, z € U. Indeed if the inequality Reg(z) > 0, z € U does not holds,
then there is a point zg € U, and there are two real numbers x,y € R such that

q(z0) = iz,

and
1+ 22

20¢'(20) =y < — 5
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These equalities imply

204’ (20)
q(zo0)

A
47

which is a contradiction. Thus Regq(z) > 0, z € U, and h is a convex function,
consequently Lemma 2.3 is applicable and we get p(z) < ¢(z).
According to Lemma 2.4 we have

2) = L
/H(t)t’ldt
0

h(t)—1 z \M*-1
whereH(z)z/ ———dt=2z(1+ — .
A O 1)

The subordination p < ¢ implies that

2<‘2—i$—_y‘:‘2—q(zo)—
i

. MZO+1
- M+ZO

H H 6
Rep(z) > ‘i‘nflq(z) = ‘iflfl # =, [inf | # (3.3)
z|< z|< — el—m,m €
/ H(t)t™ dt / H(s)s 'ds
0 0
On the other hand we have
H(e? 1
Bl ]w(e>:9 nf | — —— (3.4)
el—m,m e el—m,m 160 -
/ H(s)s_lds / (M> dt
0 0o \ M +ei?
A simple calculation leads to
1 M+e?  M-—1
— = — > t 1], @ — .
ReM—l—te“g U Tt 2 M —p €[0,1], 6 € [-m, 7]

M + et
This inequality implies

1
1 M—-1\*
Re —— | > . tel0,1], 6 € [-m, 7).
CM 1 te? _(M—t) [0.1] [=m, 7]
M + et
Putting x + iy = m in Lemma 2.5, we infer
M + et
1
1
1 1 M—-1\*
Re—— > | Re—— >(M—t) , t€0,1], 6 € [-m, 7.

T = € -
M+tei9 1 M‘f’t@ze
<M+€i0 ) M+ei0
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Since M? —1 = i, we get

1 M—1 M?-1
> — .
Re Y M21_<M—t> , t€[0,1], 6 € [—m, 7]
< M + et >
Now we can apply Lemma 2.6 and it follows that
1 1
Re > , 0€[—m, . (3.5)

/1 M + te® M?—ldt_/1<Mt>M2_1dt
0 M"‘Gie 0 M-—-1

Finally (3.3), (3.4) and (3.5) imply

Rep(z) > ! _

5
/1 M—t M2—1dt 4

Theorem 3.4. We have S** C K.

Proof. Let f be a function from the class S***.

We will prove that p(z) =1+ z]{ ((j) >0, zeU.

AR
702 =2—p(z),

and consequently the following equivalence holds

z2f"(z) 5 5
‘1— ) <\/;,z€U<:>|2—p(z)|<\/;,z€U. (3.6)

If the condition p(z) =1+ z}c ((j) > 0, z € U, does not hold, then according to the

Miller-Mocanu lemma (Lemma 2.2) there is a point zy € U, and there are two real
numbers x,y € R such that

It is easily seen that

p(20) = iz,
and
1+ a2
5

z0p'(20) =y < —
These equalities imply

. 5
12— p(z0)| = |2 —iz| = V4 + 22 > \/;
This inequality contradicts (3.6), and consequently

Re p(z) = Re (1 + Z]]:;S)

holds. O

)>07 zeU



144 Olga Engel and Rébert Szdsz

z

Theorem 3.5. If f € S***, then }CES) <Z zel.

4

arg

z

f'(2)
f(2)

~zf'(2) 1+2
p(z) = 5 <\/1_Z—q(z), zeU. (3.7)

We will prove the subordination (3.7) using again the Miller-Mocanu lemma.
If the subordination (3.7) does not hold, then according to Lemma 2.1 there are two
points zg € U and (y = €’ € 9U, and a real number m € [1, 00), such that

) 1 10
p@@—q@»—q@”V‘V:va‘(mszi”mZ)%

where = /| cot 4, and

20p'(20) mCoq/(Co) B e’

s
<7

z € U is equivalent to

Proof. The inequality ‘arg

=m .
p(z0) q(Co) 1— e
According to (3.6) the function f belongs to the class S*** if and only if

< \/E, zeU. (3.8)

2 p(z) — 21

p(2)
On the other hand we have
20p' (20) ¢4’ (Co) 1+ e et?
2 — — = |2 — — — |2 _ 4
2= p(a0) - 22 s i) - 2L e

, 0 €[—m, .

1+ et i .0 i
=12 - — — M — =12 —14/icot = — m—
1—e 2sin 0 2 2sin 6

Denoting x = 1/|cotg , it follows that x € (0, 00), and in case 6 € [—m, 0], we have

0P’ (20) ( L 77) Catrl
9 _ZPR2)N 9 (cos T — isin &
’ p(20) (o) ’ cos o —isin |z +im e
2 4 2
T T zt+1
— 2— — ) +—=+m— . 3.9
¢< a) () )
If 6 € [0, 7], then
zo0p'(%0) ( T 7r) AR
92— PR g (cos T Ve —imZ =
‘ p(20) (o) ‘ cos o + isin 1) i

:\/<2—j§)2+<%+mxz;l>2- (3.10)
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Thus we get

) _ ZOp/(ZO)

2= plz0 p(20)

) (i)

- \/<2_f§)2+(f§+wf$1)2~ (3.11)

The inequality between the arithmetic and geometric means implies

z 2t +1 z x x? 1 1 5
— = — =t — > — > 2. 3.12
\/§+ 42 2\/§+2\/§+4+8x2+8z2—2% (312)
Finally (3.11) and (3.12) imply that
zop' (20) 5
2 —p(z0) — -.
’ plan) p(20) 4
This inequality contradicts (3.8) and consequently
zf'(z)|
arg < —, zeU. 0
flz) | 4

Theorem 3.6. If f € S***, then |arg f'(2)| < , z € U.
Proof. The inequality |arg f'(z)| < %, z € U is equivalent to

142z
T, =q(z), z€U. (3.13)

f'(z) <

If the subordination (3.13_) does not hold, then according to Lemma 2.1 there are two
points zg € U and (y = €? € 9U, and a real number m € [1,00), such that

i i0
/(o) = a(Go) = a(e”) = | T

20f"(20)  Coq'(Co) m e’  im
f'(z0) q(¢) 1 —e2¢  2sinf’
Thus we get
_ 20f"(=) \/7 \[
‘1 f'(20) ‘ 251n9‘ 2sm9 \/T

This inequality contradicts f € S***. The contradiction implies that the subordination
(3.13) holds, and the proof is done. O

Now we are able to prove the result proposed in the Introduction regarding the
composition of functions.

Theorem 3.7. If f,g € S***, and ro = sup{r € (0,1] |f (r)) C U}, then fog will be
starlike in U(rg).
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Proof. We have
2(fog)(z) _ 2f'(9(2)) .
= . 3.14
(o) ~ T | 314

If f,g € S***, then Theorem 3.5 and Theorem 3.6 imply the inequalities
2f'(2)
f(z)

™
< -, z€eUl,

arg 1

and -
larg f'(2)] < T 7€ U.

The equality (3.14) implies that

o) e
Y Foge) M floe) TS
Thus we get
z(fe9)'(2) 2f'(9(2)) / ™
s S| < e | s @ < 52U
This inequality means that
2(f09)(2)
Rem > O, A Uv(’l"0>7
and consequently f o g is starlike in U(rp). O
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