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Faber polynomial coefficient bounds
for a subclass of bi-univalent functions

Şahsene Altınkaya and Sibel Yalçın

Abstract. In this work, considering a general subclass of bi-univalent functions
and using the Faber polynomials, we obtain coefficient expansions for functions in
this class. In certain cases, our estimates improve some of those existing coefficient
bounds.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : |z| < 1} with in the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Let S be the subclass of A consisting of the form (1.1) which are also univalent

in U and let P be the class of functions ϕ(z) = 1 +
∞∑
n=1

ϕnz
n that are analytic in U

and satisfy the condition Re (ϕ(z)) > 0 in U . By the Caratheodory’s lemma (e.g., see
[11]) we have |ϕn| ≤ 2.

The Koebe one-quarter theorem [11] states that the image of U under every
function f from S contains a disk of radius 1

4 . Thus every such univalent function has

an inverse f−1 which satisfies

f−1 (f (z)) = z , (z ∈ U)

and

f
(
f−1 (w)

)
= w ,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,
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where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. For a brief history and interesting examples in the class Σ, see [27].

Lewin [20] studied the class of bi-univalent functions, obtaining the bound 1.51
for modulus of the second coefficient |a2| . Netanyahu [22] showed that max |a2| = 4

3

if f ∈ Σ. Subsequently, Brannan and Clunie [7] conjectured that |a2| ≤
√

2 for f ∈ Σ.
Brannan and Taha [8] introduced certain subclasses of the bi-univalent function class
Σ similar to the familiar subclasses. Recently, many authors investigated bounds for
various subclasses of bi-univalent functions ([5], [10], [13], [18], [19], [21], [24], [27],
[28], [29]).

The Faber polynomials introduced by Faber [12] play an important role in var-
ious areas of mathematical sciences, especially in geometric function theory. Grun-
sky [14] succeeded in establishing a set of conditions for a given function which are
necessary and in their totality sufficient for the univalency of this function, and in
these conditions the coefficients of the Faber polynomials play an important role.
Schiffer [25] gave a differential equations for univalent functions solving certain ex-
tremum problems with respect to coefficients of such functions; in this differential
equation appears again a polynomial which is just the derivative of a Faber polyno-
mial (Schaeffer-Spencer [26]).

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. In
the literature, there are only a few works determining the general coefficient bounds
|an| for the analytic bi-univalent functions ([6], [9], [15], [16], [17]). The coefficient
estimate problem for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open
problem.

For f (z) and F (z) analytic in U , we say that f subordinate to F, written f ≺ F ,

if there exists a Schwarz function u(z) =
∞∑
n=1

cnz
n with |u(z)| < 1 in U , such that

f (z) = F (u (z)) . For the Schwarz function u (z) we note that |cn| < 1. (e.g. see
Duren [11]).

A function f ∈ Σ is said to be BΣ (µ, λ, ϕ) , λ ≥ 1 and µ ≥ 0, if the following
subordination hold

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

≺ ϕ (z) (1.2)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

≺ ϕ (w) (1.3)

where g (w) = f−1 (w) .

In this paper, we use the Faber polynomial expansions to obtain bounds for the
general coefficients |an| of bi-univalent functions in BΣ (µ, λ, ϕ) as well as providing
estimates for the initial coefficients of these functions.
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2. Main results

Using the Faber polynomial expansion of functions f ∈ A of the form (1.1), the
coefficients of its inverse map g = f −1 may be expressed as, [3],

g (w) = f−1 (w) = w +

∞∑
n=2

1

n
K−nn−1 (a2, a3, ...)w

n,

where

K−nn−1 =
(−n)!

(−2n+ 1)! (n− 1)!
an−1

2 +
(−n)!

[2 (−n+ 1)]! (n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)! (n− 4)!
an−4

2 a4

+
(−n)!

[2 (−n+ 2)]! (n− 5)!
an−5

2

[
a5 + (−n+ 2) a2

3

]
(2.1)

+
(−n)!

(−2n+ 5)! (n− 6)!
an−6

2 [a6 + (−2n+ 5) a3a4]

+
∑
j≥7

an−j2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, ..., an
[4]. In particular, the first three terms of K−nn−1 are

1

2
K−2

1 = −a2,

1

3
K−3

2 = 2a2
2 − a3, (2.2)

1

4
K−4

3 = −
(
5a3

2 − 5a2a3 + a4

)
.

In general, for any p ∈ N, an expansion of Kp
n is as, [3],

Kp
n = pan +

p (p− 1)

2
E2
n +

p!

(p− 3)!3!
E3
n + ...+

p!

(p− n)!n!
Enn , (2.3)

where Epn = Epn (a2, a3, ...) and by [1],

Emn (a1, a2, ..., an) =

∞∑
m=1

m! (a1)
µ1 ... (an)

µn

µ1!...µn!
, (2.4)

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn = m, (2.5)

µ1 + 2µ2 + ... + nµn = n.

Evidently, Enn (a1, a2, ..., an) = an1 , [2].
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Theorem 2.1. For λ ≥ 1 and µ ≥ 0, let f ∈ BΣ (µ, λ, ϕ) . If am = 0 ; 2 ≤ m ≤ n−1,
then

|an| ≤
2

µ+ (n− 1)λ
; n ≥ 4 (2.6)

Proof. Let functions f given by (1.1). We have

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

= 1 +
∞∑
n=2

Fn−1 (a2, a3, ..., an) anz
n−1, (2.7)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

= 1 +

∞∑
n=1

Fn−1 (A2, A3, ..., An) anw
n−1

where

F1 = (µ+ λ)a2, (2.8)

F2 = (µ+ 2λ)

[
µ− 1

2
a2

2 + a3

]
,

F3 = (µ+ 3λ)

[
(µ− 1) (µ− 2)

3!
a3

2 + (µ− 1) a2a3 + a4

]
,

In general, (see [9]).
On the other hand, the inequalities (1.2) and (1.3) imply the existence of two

positive real part functions u (z) = 1 +
∞∑
n=1

cnz
n and v (w) = 1 +

∞∑
n=1

dnw
n where

Reu (z) > 0 and Rev (w) > 0 in P so that

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

= ϕ(u(z)) (2.9)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

= ϕ(v(w)) (2.10)

where

ϕ(u(z)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (c1, c2, ..., cn) zn, (2.11)

and

ϕ(v(w)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (d1, d2, ..., dn)wn. (2.12)

Comparing the corresponding coefficients of (2.9) and (2.11) yields

[µ+ (n− 1)λ] an =

n−1∑
k=1

ϕkE
k
n−1 (c1, c2, ..., cn−1) , n ≥ 2 (2.13)
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and similarly, from (2.10) and (2.12) we obtain

[µ+ (n− 1)λ] bn =

n−1∑
k=1

ϕkE
k
n−1 (d1, d2, ..., dn−1) , n ≥ 2. (2.14)

Note that for am = 0 ; 2 ≤ m ≤ n− 1 we have bn = −an and so

[µ+ (n− 1)λ] an = ϕ1cn−1

− [µ+ (n− 1)λ] an = ϕ1dn−1

Now taking the absolute values of either of the above two equations and using the
facts that |ϕ1| ≤ 2, |cn−1| ≤ 1and |dn−1| ≤ 1, we obtain

|an| ≤
|ϕ1cn−1|

µ+ (n− 1)λ
=

|ϕ1dn−1|
µ+ (n− 1)λ

≤ 2

µ+ (n− 1)λ
. (2.15)

�

Theorem 2.2. Let f ∈ BΣ (µ, λ, ϕ) , λ ≥ 1 and µ ≥ 0. Then

(i) |a2| ≤ min

{
2

µ+ λ
,

√
8

(µ+ 2λ) (µ+ 1)

}
(ii) |a3| ≤ min

{
4

(µ+ λ)
2 +

2

µ+ 2λ
,

8

(µ+ 2λ) (µ+ 1)
+

2

µ+ 2λ

} (2.16)

Proof. Replacing n by 2 and 3 in (2.13) and (2.14), respectively, we find that

(µ+ λ)a2 = ϕ1c1, (2.17)

(µ+ 2λ)

[
µ− 1

2
a2

2 + a3

]
= ϕ1c2 + ϕ2c

2
1, (2.18)

−(µ+ +λ)a2 = ϕ1d1, (2.19)

(µ+ 2λ)

[
µ+ 3

2
a2

2 − a3

]
= ϕ1d2 + ϕ2d

2
1 (2.20)

From (2.17) or (2.19) we obtain

|a2| ≤
|ϕ1c1|
µ+ λ

=
|ϕ1d1|
µ+ λ

≤ 2

µ+ λ
. (2.21)

Adding (2.18) to (2.20) implies

(µ+ 2λ) (µ+ 1) a2
2 = ϕ1 (c2 + d2) + ϕ2

(
c21 + d2

1

)
or, equivalently,

|a2| ≤

√
8

(µ+ 2λ) (µ+ 1)
. (2.22)

Next, in order to find the bound on the coefficient |a3|, we subtract (2.20) from (2.18).
We thus get

2 (µ+ 2λ)
(
a3 − a2

2

)
= ϕ1 (c2 − d2) + ϕ2

(
c21 − d2

1

)
(2.23)

or

|a3| = |a2|2 +
|ϕ1 (c2 − d2)|

2 (µ+ 2λ)
≤ |a2|2 +

2

µ+ 2λ
(2.24)



42 Şahsene Altınkaya and Sibel Yalçın

Upon substituting the value of a2
2 from (2.21) and (2.22) into (2.24), it follows that

|a3| ≤
4

(µ+ λ)
2 +

2

µ+ 2λ

and

|a3| ≤
8

(µ+ 2λ) (µ+ 1)
+

2

µ+ 2λ
.

�

If we put λ = 1 in Theorem 2.2, we obtain the following consequence.

Corollary 2.3. Let f ∈ BΣ (µ, ϕ) , µ ≥ 0. Then

|a2| ≤
2

µ+ 1

and

|a3| ≤
4

(µ+ 1)
2 +

2

µ+ 2

Remark 2.4. The above estimates for |a2| and |a3| show that Corollary 2.3 is an
improvement of the estimates given in Prema and Keerthi ([23], Theorem 3.2) and
Bulut ([9], Corollary 3).

If we put µ = 1 in Theorem 2.2, we obtain the following consequence.

Corollary 2.5. Let f ∈ BΣ (λ, ϕ) , λ ≥ 1. Then

|a2| ≤
2

λ+ 1

and

|a3| ≤
4

(λ+ 1)
2 +

2

1 + 2λ

Remark 2.6. The above estimates for |a2| and |a3| show that Corollary 2.5 is an
improvement of the estimates given in Bulut ([9], Corollary 2).
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Şahsene Altınkaya
Department of Mathematics
Faculty of Arts and Science
Uludag University, Bursa, Turkey
e-mail: sahsene@uludag.edu.tr

Sibel Yalçın
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