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Abstract. The main result of the paper provides the existence of a solution to a
quasilinear inclusion problem with Dirichlet boundary condition which exhibits a
term with full dependence on the solution and its gradient (convection term) and
is driven by the degenerated p-Laplacian with weight. The multivalued term in the
differential inclusion is in form of the generalized gradient of a locally Lipschitz
function expressed through the primitive of a locally essentially bounded function,
which makes the problem to be of a hemivariational inequality type. The novelty
of our result is that we are able to simultaneously handle three major features:
degenerated leading operator, convection term and discontinuous nonlinearity.
Results of independent interest regard certain nonlinear operators associated to
the differential inclusion.
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1. Introduction

The aim of this paper is to study the quasilinear differential inclusion{
−∆a

pu ∈ f(x, u,∇u) + [g(u), g(u)] in Ω

u = 0 on ∂Ω
(1.1)

on a bounded domain Ω ⊂ RN , for N ≥ 1, with a Lipschitz boundary ∂Ω. Here −∆a
p

denotes the (negative) degenerated p-Laplacian with the positive weight a ∈ L1
loc(Ω)

(see Section 3 for the precise definition). In the right-hand side of equation (1.1) there
is the convection term f(x, u,∇u), i.e., it depends on the solution u and its gradient
∇u, which is described by a Carathéodory function f : Ω × R × RN → R, that is,
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f(·, s, ξ) is measurable on Ω for all (s, ξ) ∈ R×RN and f(x, ·, ·) is continuous for a.e.
x ∈ Ω. The multivalued term in (1.1) is expressed by means of a function g ∈ L∞loc(R)
for which we set

g(t) = lim
δ→0

essinf |τ−t|<δg(τ), ∀ t ∈ R, (1.2)

(i.e., the essential infimum of g at t) and

g(t) = lim
δ→0

esssup|τ−t|<δg(τ), ∀ t ∈ R (1.3)

(i.e., the essential supremum of g at t). Since g ∈ L∞loc(R), it is clear that the ex-
pressions in (1.2) and (1.3) are well defined. If the function g is continuous, then the
interval [g(u(x)), g(u(x))] collapses to the singleton g(u(x)). Consequently, in this case
(1.1) reduces to the quasilinear Dirichlet equation{

−∆a
pu = f(x, u,∇(u)) + g(u) in Ω,

u = 0 on ∂Ω.
(1.4)

The multivalued term [g(u), g(u)] in (1.1) is actually the generalized gradient of
a locally Lipschitz function that will be explicitly identified in Section 4. This fact
qualifies problem (1.1) as a hemivariational inequality, which is of a special type due to
the degenerated operator in the principal part and the presence of the convection term
inducing a full gradient dependence. Besides their substantial mathematical interest
in passing from convex nonsmooth potentials to nonconvex nonsmooth potentials, the
hemivariational inequalities represent a powerful tool to model phenomena with var-
ious contact laws in mechanics and engineering. For theoretical developments in the
study of hemivariational inequality based on nonsmooth variational methods, we refer
to [4, 6, 7, 11, 12, 14, 15]. Nonvariational techniques, such as theoretic operator meth-
ods and sub-supersolution, have also been implementing in the nonsmooth multivalued
setting of hemivariational inequalities, for instance, in [1, 8, 9, 10, 13, 16]. Problems
(1.1) and (1.4) do not have variational structure due to the presence of the convection
term, so the variational methods are not applicable. To overcome this difficulty we are
going to apply in Section 5 the main theorem for multivalued pseudomonotone oper-
ators. Notice that if f = 0, problem (1.1) becomes a nonsmooth variational problem
with discontinuous nonlinearities extending statements in [1, 2, 12]) to the case where
the driving operator is degenerated exhibiting weights. In the situation of (1.4) with
f = 0, we have a quasilinear elliptic equation that can be treated by using the smooth
critical point theory. If g = 0, problems (1.1) and (1.4) extend previous statements to
formulations involving degenerated operators with weights (see [10]).

The most significant contribution of the paper is to resolve problem (1.1) (and
implicitly (1.4)) that incorporates in the same statement three challenging aspects:
degenerated leading operator, convection term and discontinuous nonlinearity. This
main result is stated as Theorem 5.1. It is the first available result encompassing the
three relevant features mentioned before. The solutions to problems (1.1) and (1.4)

are sought in a suitable Sobolev space W 1,p
0 (a,Ω) that corresponds to the positive

weight a ∈ L1
loc(Ω) as discussed in Section 2. By a (weak) solution to problem (1.1)

we mean any u ∈W 1,p
0 (a,Ω) for which it holds f(x, u,∇u), g(u), g(u) ∈ Lp/(p−1)(Ω)
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and ∫
Ω

a(x)|∇u(x)|p−2∇u(x) · ∇v(x) dx−
∫

Ω

f(x, u,∇u)v dx

≥
∫

Ω

min{g(u(x))v(x), g(u(x))v(x)} dx for all v ∈W 1,p
0 (a,Ω).

(1.5)

Replacing v ∈W 1,p
0 (a,Ω) with −v it is seen that (1.5) is equivalent to∫

Ω

a(x)|∇u(x)|p−2∇u(x) · ∇v(x) dx−
∫

Ω

f(x, u,∇u)v dx

≤
∫

Ω

max{g(u(x))v(x), g(u(x))v(x)} dx for all v ∈W 1,p
0 (a,Ω).

(1.6)

As it is apparent from (1.5) (or (1.6)), (1.2) and (1.3), for the Dirichlet equation (1.4)
the usual notion of weak solution is retrieved. Indeed, if g : R→ R is continuous, then
the interval [g(u), g(u)] reduces to the singleton g(u), thus u ∈ W 1,p

0 (Ω) is a (weak)

solution to equation (1.4) provided f(x, u,∇u), g(u) ∈ Lp/(p−1)(Ω) and∫
Ω

a(x)|∇u(x)|p−2∇u(x) · ∇v(x) dx−
∫

Ω

f(x, u,∇u)v dx

=

∫
Ω

g(u(x))v(x) dx for all v ∈W 1,p
0 (a,Ω).

(1.7)

In addition to the existence result, the paper contains propositions of independent
interest establishing properties of certain nonlinear operators associated to problem
(1.1).

The rest of the paper is structured as follows. Section 2 collects needed pre-
liminaries regarding multivalued pseudomonotone operators and nonsmooth analysis.
Section 3 focuses on the degenerated p-Laplacian with weight driving (1.1). Section 4
investigates nonlinear operators related to problem (1.1). Section 5 presents our main
result and its proof.

2. Prerequisites on multivalued pseudomonotone operators and
nonsmooth analysis

This section provides necessary mathematical background for our results on
problem (1.1), in particular (1.4).

We start by briefly reviewing the multivalued pseudomonotone operators. More
details can be found in [1, 11, 17]. LetX be a reflexive Banach space with the norm ‖·‖,
its dual X∗ and the duality pairing 〈·, ·〉 between X and X∗. The norm convergence
in X and X∗ is denoted by→, while the weak convergence by ⇀. A multivalued map
A : X → 2X

∗
is called bounded if it maps bounded sets into bounded sets. It is said

to be coercive if there is a function ψ : R+ → R with ψ(t) → +∞ as t → +∞ such
that

〈u∗, u− u0〉 ≥ ψ(‖u‖)‖u‖
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for all u∗ ∈ A(u) and a fixed element u0 ∈ X. A multivalued map A : X → 2X
∗

is
called pseudomonotone if

(i) for each v ∈ X, the set Av ⊂ X∗ is nonempty, bounded, closed and convex;
(ii) A is upper semicontinuous from each finite dimensional subspace of X to X∗

endowed with the weak topology;
(iii) for any sequences {un} ⊂ X and {u∗n} ⊂ X∗ with

un ⇀ u in X, u∗n ∈ Aun for all n and lim sup
n→∞

〈u∗n, un − u〉 ≤ 0,

and for each v ∈ X, there exists u∗(v) ∈ Au such that

〈u∗(v), u− v〉 ≤ lim inf
n→∞

〈u∗n, un − v〉.

We recall the main theorem for pseudomonotone operators (see, e.g., [1, Theorem
2.125]).

Theorem 2.1. Let X be a reflexive Banach space, let A : X → 2X
∗

be a pseudomono-
tone, bounded and coercive operator, and let η ∈ X∗. Then there exists at least a
u ∈ X with η ∈ Au.

Next we outline some basic elements of nonsmooth analysis related to locally
Lipschitz functions. An extensive study of this topic is available in [2, 3]). A function
Φ : X → R on a Banach space X is called locally Lipschitz if for every u ∈ X there
is a neighborhood U of u in X and a constant Lu > 0 such that

|Φ(v)− Φ(w)| ≤ Lu‖v − w‖, ∀ v, w ∈ U.

The generalized directional derivative of a locally Lipschitz function Φ : X → R at
u ∈ X in the direction v ∈ X is defined as

Φ0(u; v) := lim sup
w→u, t→0+

1

t
(Φ(w + tv)− Φ(w))

and the generalized gradient of Φ at u ∈ X is the subset of the dual space X∗ given
by

∂Φ(u) :=
{
u∗ ∈ X∗ : 〈u∗, v〉 ≤ Φ0(u; v), ∀ v ∈ X

}
.

A continuous and convex function Φ : X → R is locally Lipschitz and its generalized
gradient ∂Φ : X → 2X

∗
coincides with the subdifferential of Φ in the sense of convex

analysis. As another important example, if Φ : X → R is continuously differentiable,
the generalized gradient of Φ is just the differential DΦ of Φ.

The preceding notions of subdifferentiability theory for locally Lipschitz func-
tions are needed to handle the multivalued term [g(u), g(u)] in problem (1.1). Given
g : R→ R satisfying g ∈ L∞loc(R), we introduce

G(t) =

∫ t

0

g(t) dt for all t ∈ R. (2.1)

The function G : R → R is locally Lipschitz and one can show that the generalized
gradient ∂G(t) of G at any t ∈ R is the compact interval

∂G(t) = [g(t), g(t)], (2.2)
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where g(t) and g(t) are the functions in (1.2) and (1.3), respectively (see, e.g., [3,
Example 2.2.5]).

3. The degenerated p-Laplacian with weight

Here we provide basic facts on the underlying space and driving operator in
problem (1.1). An extensive related material can be found in [5]. The notation | · | will
stand for the absolute value and Euclidean norm.

We assume the following hypothesis formulated in [5, p. 26] on the weight a ∈ L1
loc(Ω):

(H1) a−s ∈ L1(Ω) for some s ∈
(
N

p
,+∞

)
∩
[

1

p− 1
,+∞

)
.

Given a real number p ∈ (1,+∞), a positive function a ∈ L1
loc(Ω) satisfying condition

(H1), and a bounded domain Ω ⊂ RN of Lebesgue measure |Ω|, with a Lipschitz
boundary ∂Ω, we introduce the weighted space

W 1,p(a,Ω) := {u ∈ Lp(Ω) :

∫
Ω

a(x)|∇u(x)|pdx <∞}, (3.1)

which is a Banach space endowed with the norm

‖u‖W 1,p(a,Ω) :=

(
‖u‖pLp(Ω) +

∫
Ω

a(x)|∇u(x)|pdx
) 1

p

, ∀ u ∈W 1,p(a,Ω).

Noticing that C∞c (Ω) ⊂W 1,p(a,Ω), the space W 1,p
0 (a,Ω) is defined to be the closure

of C∞c (Ω) in W 1,p(a,Ω) with respect to the norm ‖ · ‖W 1,p(a,Ω). Hence W 1,p
0 (a,Ω) is

a separable Banach space. The dual space of W 1,p
0 (a,Ω) is denoted W 1,p

0 (a,Ω)∗.

With the number s in hypothesis (H1) we set

ps =
ps

s+ 1
. (3.2)

By hypothesis (H1) it holds s ≥ 1/(p − 1). From (3.2) it follows that ps ≥ 1, ps < p
and ps/(p− ps) = s. Then Hölder’s inequality and hypothesis (H1) yield∫

Ω

|∇u(x)|psdx =

∫
Ω

(a(x)
ps
p |∇u(x)|ps)a(x)−

ps
p dx

≤ ‖a−s‖
1

s+1

L1(Ω)‖u‖
ps , ∀ u ∈W 1,p(a,Ω).

This implies that W 1,p
0 (a,Ω) is continuously embedded into the classical (unweighted)

Sobolev space W 1,ps
0 (Ω),

W 1,p
0 (a,Ω) ↪→W 1,ps

0 (Ω). (3.3)

In view of the Rellich-Kondrachov embedding theorem there is the compact embed-
ding

W 1,ps
0 (Ω) ↪→↪→ Lp(Ω).
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The preceding assertion is true because with the critical exponent p∗s (corresponding
to ps), that is,

p∗s :=


Nps
N−ps if N > ps,

+∞ if N ≤ ps,

the assumption s > N/p in (H1) implies p∗s > p. Consequently, due to (3.3), there is
the compact embedding

W 1,p
0 (a,Ω) ↪→↪→ Lp(Ω). (3.4)

Thanks to (3.4) we can conclude that

‖u‖ :=

(∫
Ω

a(x)|∇u(x)|pdx
) 1

p

, ∀ u ∈W 1,p
0 (a,Ω), (3.5)

is an equivalent norm on W 1,p
0 (a,Ω). The norm on W 1,p

0 (a,Ω) introduced in (3.5) will
be used throughout the rest of the paper.
By assumption (H1) it is known that a−s ∈ L1(Ω) when s ≥ 1/(p − 1). This gives

a−
1

p−1 ∈ L1(Ω) by noting that∫
Ω

a(x)−
1

p−1 dx =

∫
{a(x)<1}

a(x)−
1

p−1 dx+

∫
{a(x)≥1}

a(x)−
1

p−1 dx

≤
∫

Ω

a(x)−sdx+ |Ω| <∞.

Then [5, Theorem 1.3]) ensures that the space W 1,p
0 (a,Ω) is uniformly convex. In

particular, W 1,p
0 (a,Ω) is a reflexive space.

The (negative) degenerated p-Laplacian with the positive weight a ∈ L1
loc(Ω) is the

nonlinear operator −∆a
p : W 1,p

0 (a,Ω)→W 1,p
0 (a,Ω)∗ given by

〈−∆a
pu, v〉 :=

∫
Ω

a(x)|∇u|p−2∇u · ∇vdx, ∀ u, v ∈W 1,p
0 (a,Ω). (3.6)

The operator −∆a
p is well defined as seen through Hölder’s inequality that∣∣∣∣∫
Ω

a(x)|∇u(x)|p−2∇u(x)∇v(x)dx

∣∣∣∣ (3.7)

≤
(∫

Ω

a(x)|∇u(x)|pdx
) p−1

p
(∫

Ω

a(x)|∇v(x)|pdx
) 1

p

<∞

for all u, v ∈W 1,p
0 (a,Ω). The positive number

λ1 := inf
u∈W 1,p

0 (a,Ω), u 6=0

∫
Ω
a(x)|∇u|pdx∫

Ω
|u|pdx

(3.8)

is the first eigenvalue of −∆a
p (refer to [5, Lemma 3.1]). The following proposition

addresses essential properties of the operator −∆a
p introduced in (3.6).
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Proposition 3.1. Assume that condition (H1) for the weight a ∈ L1
loc(Ω) positive

almost everywhere is satisfied. Then the (negative) degenerated p-Laplacian −∆a
p :

W 1,p
0 (a,Ω)→W 1,p

0 (a,Ω)∗ has the properties:

(a) The operator −∆a
p is bounded.

(b) The operator −∆a
p is strictly monotone, that is,

〈−∆a
pu− (−∆a

pv), u− v〉 > 0 (3.9)

for all u, v ∈W 1,p
0 (a,Ω) with u 6= v. Moreover, it holds

〈−∆a
p(u)− (−∆a

pv), u− v〉 ≥ (‖u‖ − ‖v‖)(‖u‖p−1 − ‖v‖p−1) (3.10)

for all u, v ∈W 1,p
0 (a,Ω).

(c) The operator −∆a
p has the S+ property, that is, any sequence {un} ⊂W 1,p

0 (a,Ω)

with un ⇀ u in W 1,p
0 (a,Ω) and

lim sup
n→∞

〈−∆a
pun, un − u〉 ≤ 0 (3.11)

fulfills un → u in W 1,p
0 (a,Ω).

(d) The operator −∆a
p is continuous.

Proof. (a) It turns out from (3.7) that if ‖u‖ ≤M , then

‖ −∆a
pu‖W 1,p

0 (a,Ω)∗ ≤M
p−1,

so −∆a
p is a bounded operator.

(b) Let us first prove (3.10). Given u, v ∈W 1,p
0 (a,Ω), by Hölder’s inequality and

(3.5) we find that

〈−∆a
pu− (−∆a

pv), u− v〉

=

∫
Ω

a(x)(|∇u|p−2∇u− |∇v|p−2∇v)∇(u− v)dx

≥
∫

Ω

a(x)|∇u|pdx+

∫
Ω

a(x)|∇v|pdx

−
∫

Ω

(a(x)
p−1
p |∇u|

p−1
p )(a(x)

1
p |∇v|)dx−

∫
Ω

(a(x)
p−1
p |∇v|

p−1
p )(a(x)

1
p |∇u|)dx

≥ ‖u‖p + ‖v‖p −
(∫

Ω

a(x)|∇u|pdx
) p−1

p
(∫

Ω

a(x)|∇v|pdx
) 1

p

−
(∫

Ω

a(x)|∇v|pdx
) p−1

p
(∫

Ω

a(x)|∇u|pdx
) 1

p

= ‖u‖p + ‖v‖p − ‖u‖p−1‖v‖ − ‖v‖p−1‖u‖

= (‖u‖ − ‖v‖)(‖u‖p−1 − ‖v‖p−1).

Therefore (3.10) holds true.
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From (3.10) we note that 〈−∆a
pu − (−∆a

pv), u − v〉 ≥ 0 whenever u, v ∈ W 1,p
0 (a,Ω).

Suppose that

〈−∆a
pu− (−∆a

pv), u− v〉 = 0 (3.12)

for some u, v ∈ W 1,p
0 (a,Ω). By (3.10) we have ‖u‖ = ‖v‖. Furthermore, (3.10) and

(3.12) imply

0 = 〈−∆a
pu− (−∆a

p)(
1

2
(u+ v)),

1

2
(u− v)〉

+〈(−∆a
p)(

1

2
(u+ v))− (−∆a

pv),
1

2
(u− v)〉.

Again by (3.10), this leads to

‖u‖ = ‖v‖ = ‖1

2
(u+ v)‖.

The space W 1,p
0 (a,Ω) being uniformly convex, it is strictly convex. Consequently, the

equality above ensures that u = v, thus (3.9) is proven.

(c) Consider a sequence {un} in W 1,p
0 (a,Ω) complying with the conditions re-

quired in the statement. From un ⇀ u in W 1,p
0 (a,Ω) and (3.11), we derive

lim sup
n→∞

〈−∆a
pun − (−∆a

pu), un − u〉 ≤ 0. (3.13)

Then (3.9) and (3.13) yield

lim
n→∞

〈−∆a
pun − (−∆a

pu), un − u〉 = 0.

Since the right-hand side of inequality (3.10) is nonnegative, we infer from the pre-
ceding equality and (3.10) that limn→∞ ‖un‖ = ‖u‖. We deduce that un → u in

W 1,p
0 (a,Ω) because the space W 1,p

0 (a,Ω) is uniformly convex (see Section 2), thus
reaching the desired conclusion.

(d) We now check the continuity of the operator

−∆a
p : W 1,p

0 (a,Ω)→W 1,p
0 (a,Ω)∗.

To this end, let un → u in W 1,p
0 (a,Ω). Using the Hölder’s inequality, we obtain∣∣〈−∆a

pun − (−∆a
p)u, v〉

∣∣
=

∣∣∣∣∫
Ω

(a(x)
p−1
p (|∇u|p−2∇u− |∇v|p−2∇v))(a(x)

1
p∇v)dx

∣∣∣∣
≤
(∫

Ω

a(x)
∣∣|∇un|p−2∇un − |∇u|p−2∇u

∣∣ p
p−1 dx

) p−1
p

‖v‖

for all v ∈W 1,p
0 (a,Ω). This amounts to saying that∥∥−∆a

pun − (−∆a
pu)
∥∥
W 1,p

0 (a,Ω)∗
(3.14)

≤
(∫

Ω

a(x)
∣∣|∇un|p−2∇un − |∇u|p−2∇u

∣∣ p
p−1 dx

) p−1
p

.
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The strong convergence un → u in W 1,p
0 (a,Ω), in conjunction with the compact

embedding (3.4), shows that un → u in Lp(Ω), so along a relabeled subsequence one
has un(x)→ u(x) almost everywhere in Ω. In addition, the strong convergence un → u

in W 1,p
0 (a,Ω) provides that a(x)

1
p |∇un| → a(x)

1
p |∇u| in Lp(Ω), which permits to find

an h ∈ Lp+(Ω) such that

a(x)
1
p |∇un(x)| ≤ h(x) for a.e. x ∈ Ω.

Through a well-known convexity inequality, this reflects in

a(x)
∣∣|∇un|p−2∇un − |∇u|p−2∇u

∣∣ p
p−1 ≤ 2

1
p−1 (h(x)p + a(x)|∇u(x)|p) =: q(x),

with q ∈ L1(Ω). We have checked that we are allowed to apply the Lebesgue’s domi-
nated convergence theorem to the integral in (3.14). We infer that −∆a

pun → −∆a
pu

in W 1,p
0 (a,Ω)∗, which completes the proof. �

4. Nemytskii type and multivalued operators associated
to problem (1.1)

In order to simplify the notation, we pose p′ := p/(p − 1). We assume that the
nonlinearity f(x, t, ξ) satisfies the growth condition:

(H2) There exist σ ∈ Lp′(Ω) and constants b1 ≥ 0 and b2 ≥ 0 such that

|f(x, t, ξ)| ≤ σ(x) + b1|t|p−1 + b2a(x)
1
p′ |ξ|p−1 for a.e. x ∈ Ω, ∀ t ∈ R, ∀ ξ ∈ RN.

Consider the weighted space

Lp(a,Ω,RN ) := {w : Ω→ RN measurable :

∫
Ω

a(x)|w(x)|pdx <∞}, (4.1)

which is a Banach space endowed with the norm

‖w‖Lp(a,Ω,RN ) :=

(∫
Ω

a(x)|w(x)|pdx
) 1

p

, ∀ w ∈ Lp(a,Ω,RN ).

The multiplication operator Ma : Lp(a,Ω,RN )→ Lp(Ω,RN ) defined by

Ma(w) := a
1
pw, ∀ w ∈ Lp(a,Ω,RN ), (4.2)

is an isometry, i.e.,

‖w‖Lp(a,Ω,RN ) = ‖Ma(w)‖Lp(Ω,RN ), ∀ w ∈ Lp(a,Ω,RN ).

Lemma 4.1. Assume that conditions (H1) and (H2) are satisfied. Then the Nemytskii

type operator Nf : Lp(Ω)× Lp(a,Ω,RN )→ Lp
′
(Ω) given by

Nf (u,w) := f(·, u, w), ∀ (u,w) ∈ Lp(Ω)× Lp(a,Ω,RN ), (4.3)

is well defined, bounded and continuous.
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Proof. Given (u,w) ∈ Lp(Ω)×Lp(a,Ω,RN ), we have from (4.3), hypothesis (H2) and
a well-known convexity inequality that∫

Ω

|Nf (u,w)|p
′
dx ≤

∫
Ω

(
σ(x) + b1|u|p−1 + b2a(x)

1
p′ |w|p−1

)p′
dx

≤ C
(
‖σ‖p

′

Lp′ (Ω)
+ ‖u‖p

Lp′ (Ω)
+ ‖w‖p

Lp(a,Ω,RN )

)
,

with a constant C > 0. It follows that the map Nf is well defined and bounded.
For proving the continuity of the mapping Nf , we introduce the Carathéodory func-
tion F : Ω× R× RN → R by

F (x, t, ξ) := f(x, t, a(x)−
1
p ξ), ∀ (x, t, ξ) ∈ Ω× R× RN .

Based on hypothesis (H2), we obtain the estimate

|F (x, t, ξ)| = |f(x, t, a(x)−
1
p ξ)|

≤ σ(x) + b1|t|p−1 + b2a(x)
1
p′ (a(x)−

1
p |ξ|)p−1

= σ(x) + b1|t|p−1 + b2|ξ|p−1 for a.e. x ∈ Ω, ∀ t ∈ R, ∀ ξ ∈ RN.

This estimate guarantees that Krasnoselkii’s theorem can be applied to F ensuring
that the Nemytskii operator NF : Lp(Ω)× Lp(Ω,RN )→ Lp

′
(Ω) given by

NF (u,w) := F (·, u, w), ∀ (u,w) ∈ Lp(Ω)× Lp(Ω,RN ),

is continuous. From (4.2) and (4.3) we note

NF (u,Ma(w)) = Nf (u,w), ∀ (u,w) ∈ Lp(Ω)× Lp(Ω,RN ).

Hence Nf is a composition of continuous mappings, whence its continuity. �

Proposition 4.2. Assume that conditions (H1) and (H2) are satisfied. Then the Ne-

mytskii type operator Nf : W 1,p
0 (a,Ω)→ Lp

′
(Ω) given by

Nf (u) := Nf (u,∇u), ∀ u ∈W 1,p
0 (a,Ω), (4.4)

is well defined, bounded and continuous.

Proof. If u ∈ W 1,p
0 (a,Ω), by embedding (3.4) we have that u ∈ Lp(Ω) and by (3.1)

and (4.1) that ∇u ∈ Lp(a,Ω,RN ). Therefore the definition of Nf (u) in (4.4) makes

sense. The boundedness and continuity of the mapping u ∈ W 1,p
0 (a,Ω) 7→ (u,∇u) ∈

Lp(Ω)× Lp(a,Ω,RN ) follow directly from (3.4) and

‖u‖ = ‖∇u‖Lp(a,Ω,RN ), ∀ u ∈W 1,p
0 (a,Ω)

(refer to (3.5)). Taking into account (4.4) and Lemma 4.1, the desired conclusion is
achieved. �

Next we focus on the multivalued term in problem (1.1). To this end we formulate
the assumption:
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(H3) The function g : R → R satisfies g ∈ L∞loc(R) and there exists a constant c > 0
such that

max{|g(t)|, |g(t)})| ≤ c(1 + |t|p−1) for a.e. t ∈ R,
with g and g in (1.2) and (1.3), respectively. If g is continuous, the above condi-
tion reduces to

|g(t)| ≤ c(1 + |t|p−1) for all t ∈ R.
The functionG : R→ R in (2.1) corresponding to g ∈ L∞loc(R) is locally Lipschitz.

Then, by Lebourg’s mean value theorem (see [3, Theorem 2.3.7]) and hypothesis (H3),
the functional Φ : Lp(Ω)→ R given by

Φ(v) =

∫
Ω

G(v(x))dx for all v ∈ Lp(Ω) (4.5)

is Lipschitz continuous on the bounded subsets of Lp(Ω), thus locally Lipschitz. The

generalized gradient ∂Φ(u) is a nonempty, closed and convex subset of Lp
′
(Ω) for

every u ∈ Lp(Ω). Therefore the multivalued mapping ∂Φ : Lp(Ω) → 2L
p′ (Ω) is well

defined. Since W 1,p
0 (a,Ω) is continuously and densely embedded in Lp(Ω), it can be

regarded as a multivalued mapping ∂Φ : W 1,p
0 (a,Ω)→ 2L

p′ (Ω) (see [3, p. 47]).

Proposition 4.3. Assume that conditions (H1) and (H3) are satisfied. Then the mul-

tivalued mapping ∂Φ : W 1,p
0 (a,Ω) → 2L

p′ (Ω) is bounded. Moreover, it is sequen-
tially weakly upper semicontinuous in the following sense: if the sequences {un} ⊂
W 1,p

0 (a,Ω) and {ζn} ⊂ Lp
′
(Ω) satisfy un ⇀ u in W 1,p

0 (a,Ω) for some u ∈W 1,p
0 (a,Ω)

and ζn ∈ ∂Φ(un) for all n, then along a relabeled subsequence one has ζn ⇀ ζ in

Lp
′
(Ω) with some ζ ∈ ∂Φ(u).

Proof. Let u ∈ W 1,p
0 (a,Ω) and w ∈ ∂Φ(u). By applying the Aubin-Clarke theorem

(see [3, Theorem 2.7.5]), we derive from (4.5) and (2.2) that

w(x) ∈ ∂G(u(x)) = [g(u(x)), g(u(x))] for a.e. x ∈ Ω. (4.6)

Then (4.6), (3.8), and hypothesis (H3) yield

‖w‖p
′

Lp′ (Ω)
≤
∫

Ω

(max{|g(u(x))|, |g(u(x)|})p
′
dx

≤ cp
′
∫

Ω

(1 + |u(x)|p−1)p
′
dx

≤ 2
1

p−1 cp
′
(|Ω|+ ‖u‖pLp(Ω)) ≤ 2

1
p−1 cp

′
(|Ω|+ λ−1

1 ‖u‖p).

Hence the multivalued mapping ∂Φ is bounded.
For the second part of the statement, let {un} ⊂ W 1,p

0 (a,Ω) and {ζn} ⊂ Lp
′
(Ω) be

sequences satisfying un ⇀ u in W 1,p
0 (a,Ω) with a u ∈ W 1,p

0 (a,Ω) and ζn ∈ ∂Φ(un)
for all n. The compact embedding (3.4) renders un → u in Lp(Ω). As known from

the first part, the sequence {ζn} is bounded in Lp
′
(Ω), whence due to the reflexivity

we have along a relabeled subsequence ζn ⇀ ζ in Lp
′
(Ω) with some ζ ∈ Lp′(Ω). The

fact that the multifunction ∂Φ is weak*-closed (see [3, Proposition 2.1.5]) implies that
ζ ∈ ∂Φ(u), which completes the proof. �
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5. Existence of solutions to problem (1.1)

In order to prove the solvability of problem (1.1), a new hypothesis linking (H2)
and (H3) is needed:

(H4) There holds

b1λ
−1
1 + (b2 + c)λ

− 1
p

1 < 1,

where the constants b1 and b2 enter (H2), and c is the constant in (H3).

Our existence result on problems (1.1) and (1.4) is as follows.

Theorem 5.1. Assume that conditions (H1)-(H4) hold. Then problem (1.1) admits at
least one solution. In particular, if the function g is continuous, then a solution to
problem (1.4) exists.

Proof. The proof is conducted by applying Theorem 2.1. Towards this, we introduce

the multivalued operator A : W 1,p
0 (a,Ω)→ 2W

1,p
0 (a,Ω)∗ by

Au := −∆a
pu−Nf (u)− ∂Φ(u) for all u ∈W 1,p

0 (a,Ω). (5.1)

Since one has Lp
′
(Ω) ⊂ W 1,p

0 (a,Ω)∗, the multifunction A in (5.1) is well defined. We
verify that all the hypotheses of Theorem 2.1 are fulfilled.

Proposition 3.1 (a) ensures that −∆a
p : W 1,p

0 (a,Ω) → W 1,p
0 (a,Ω)∗ is a bounded

operator. By Proposition 4.2 we get that Nf : W 1,p
0 (a,Ω)→ Lp

′
(Ω) ⊂W 1,p

0 (a,Ω)∗ is
bounded, while by virtue of Proposition 4.3 we know that the multivalued mapping

∂Φ : W 1,p
0 (a,Ω)→ 2L

p′ (Ω) is bounded. In view of (5.1), we infer that the multivalued

operator A : W 1,p
0 (Ω)→ 2W

−1,p′ (Ω) is bounded.

The next step in the proof is to show that the multivalued operator

A : W 1,p
0 (a,Ω)→ 2W

1,p
0 (a,Ω)∗

is pseudomonotone. In line with this, let sequences

{un} ⊂W 1,p
0 (a,Ω) and {u∗n} ⊂W

1,p
0 (a,Ω)∗

satisfy un ⇀ u in W 1,p
0 (a,Ω), u∗n ∈ Aun for all n, and

lim sup
n→∞

〈u∗n, un − u〉 ≤ 0. (5.2)

Take an arbitrary subsequence of {un} still denoted {un} and the corresponding
subsequence of {ζn}. According to (5.1) it holds

ζn ∈ ∂Φ(un), ∀ n, (5.3)

with

u∗n = −∆a
pun −Nf (un)− ζn. (5.4)

Exploiting the fact that the values of Nf belong to Lp
′
(Ω), we have

|〈Nf (un), un − u〉| ≤ ‖Nf (un)‖Lp′ (Ω)‖un − u‖Lp(Ω).
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Due to the compact embeddings of W 1,p
0 (a,Ω) into Lp(Ω) and the boundedness of

{Nf (un)} in Lp
′
(Ω), the above estimate entails

lim
n→∞

〈Nf (un), un − u〉 = 0. (5.5)

Then it stems from (5.2), (5.4) and (5.5) that

lim sup
n→∞

〈−∆a
pun − ζn, un − u〉 ≤ 0. (5.6)

Based on hypothesis (H3) we can invoke Proposition 4.3 that provides a subsequence

of {ζn} (so, a fortiori, a subsequence of {un}) along which ζn ⇀ ζ in Lp
′
(Ω), with

some ζ ∈ ∂Φ(u), whereas un → u in Lp(Ω). Using that the values of the multifunction

∂Φ are in Lp
′
(Ω), along the relabeled subsequence we obtain

lim
n→∞

〈ζn, un − u〉 = 0. (5.7)

Combining (5.6) and (5.7) results in (3.11). This enables us to apply Proposition 3.1

(c). Hence, up to a subsequence, un → u in W 1,p
0 (Ω). Actually, the preceding reasoning

shows that every subsequence of {un} contains a subsequence strongly converging to

u in W 1,p
0 (Ω), which ensures for the entire sequence that un → u in W 1,p

0 (Ω). By the
continuity of the mappings

−∆a
p : W 1,p

0 (a,Ω)→W 1,p
0 (a,Ω)∗ and Nf : W 1,p

0 (a,Ω)→ Lp
′
(Ω) ⊂W 1,p

0 (a,Ω)∗

(see Proposition 3.1 (d) and Proposition 4.2) we have −∆a
pun → −∆a

pu in W 1,p
0 (a,Ω)∗

and Nf (un)→ Nf (u) in W 1,p
0 (a,Ω)∗.

Let v ∈W 1,p
0 (a,Ω). From (5.3) and (5.4), in conjunction with the preceding comments,

we note

lim inf
n→∞

〈u∗n, un − v〉 (5.8)

= lim inf
n→∞

〈−∆a
pun −Nf (un)− ζn, un − v〉

= 〈−∆a
pu−Nf (u), u− v〉+ lim inf

n→∞
〈−ζn, un − v〉

= 〈−∆a
pu−Nf (u), u− v〉 − lim sup

n→∞
〈ζn, un − v〉.

≥ 〈−∆a
pu−Nf (u), u− v〉 − max

ζ∈∂Φ(u)
〈ζ, u− v〉.

Recall that the set ∂Φ(u) in weak*-compact in W 1,p
0 (a,Ω)∗ (refer to [3, Proposition

2.1.2]), so there exists ζ(v) ∈ ∂Φ(u) for which it holds

max
ζ∈∂Φ(u)

〈ζ, u− v〉 = 〈ζ(v), u− v〉.

On the basis of (5.8), this confirms that the multivalued operator

A : W 1,p
0 (a,Ω)→ 2W

1,p
0 (a,Ω)∗

is pseudomonotone.
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We now turn to show that A : W 1,p
0 (a,Ω) → 2W

1,p
0 (a,Ω)∗ defined in (5.1) is coercive.

From (4.6) and by applying the Aubin-Clarke theorem (see [3, Theorem 2.7.5]) to
(4.5), which is possible thanks to hypothesis (H3), we find that

〈ζ, v〉 =

∫
Ω

ζ(x)v(x) dx ≤
∫

Ω

|ζ(x)||v(x)| dx (5.9)

≤
∫

Ω

c(1 + |v(x)|p−1)|v(x)| dx

≤ cλ−
1
p

1 ‖v‖p + c0‖v‖

whenever v ∈W 1,p
0 (a,Ω) and ζ ∈ ∂Φ(v), with a positive constant c0.

Let v ∈W 1,p
0 (a,Ω) and v∗ ∈ Av. Due to (5.1), we can write

v∗ = −∆a
pv −Nf (v)− ζ,

with ζ ∈ ∂Φ(v). Then, by (3.4), hypothesis (H2), Hölder’s inequality, (5.9), and (3.8),
it turns out

〈v∗, v〉 = 〈−∆a
pv −Nf (v)− ζ, v〉

≥ ‖v‖p − ‖σ‖Lp′ (Ω)‖v‖Lp(Ω) − b1‖v‖pLp(Ω) − b2‖v‖
p−1‖v‖Lp(Ω)

− cλ−
1
p

1 ‖v‖p − c0‖v‖

≥ (1− b1λ−1
1 − (b2 + c)λ

− 1
p

1 )‖v‖p − (‖σ‖Lp′ (Ω)λ
−1
1 + c0)‖v‖.

Hypothesis (H4) postulates that 1 − b1λ−1
1 − (b2 + c)λ

− 1
p

1 > 0. Therefore, owing to
p > 1, the function ψ : R+ → R given by

ψ(t) = (1− b1λ−1
1 − (b2 + c)λ

− 1
p

1 )tp−1 − ‖σ‖Lp′ (Ω)λ
−1
1 − c0, ∀ t ∈ R+,

satisfies ψ(t) → +∞ as t → +∞. Furthermore, it holds 〈v∗, v〉 ≥ ψ(‖v‖)‖v‖ for all

v ∈W 1,p
0 (a,Ω) and v∗ ∈ Av. This means that the multivalued operator

A : W 1,p
0 (a,Ω)→ 2W

1,p
0 (a,Ω)∗

is coercive (with u0 = 0 in the definition of coerciveness in Section 2).

Since the multivalued operator A : W 1,p
0 (a,Ω)→ 2W

1,p
0 (a,Ω)∗ defined in (5.1) is pseu-

domonotone, bounded and coercive, Theorem 2.1 is applicable, which provides (choos-

ing η = 0 in the statement of Theorem 2.1) the existence of a u ∈W 1,p
0 (a,Ω) solving

the equation Au = 0, or equivalently

〈−∆a
pu−Nf (u)− ζ, v〉 = 0, ∀ v ∈W 1,p

0 (a,Ω),

with some ζ ∈ ∂Φ(u). Inserting the expressions of the operators −∆a
p and Nf , and

for ∂Φ refering to (4.6) with w = ζ, we get (1.5) (equivalently, (1.6)). The fact that

g(u), g(u) ∈ Lp′(Ω) follows from hypothesis (H3) and u ∈ Lp(Ω). We conclude that

u ∈W 1,p
0 (a,Ω) is a solution of problem (1.1). If the function g ∈ L∞loc(R) is continuous,

we have that g(u(x)) = g(u(x)) almost everywhere in Ω, so (1.5) (equivalently, (1.6))
becomes (1.7). The proof is thus complete. �
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