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Analysis of quasistatic viscoelastic viscoplastic
piezoelectric contact problem with friction and
adhesion
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Abstract. In this paper we study the process of bilateral contact with adhe-
sion and friction between a piezoelectric body and an insulator obstacle, the so-
called foundation. The material’s behavior is assumed to be electro-viscoelastic-
viscoplastic; the process is quasistatic, the contact is modeled by a general non-
local friction law with adhesion. The adhesion process is modeled by a bonding
field on the contact surface. We derive a variational formulation for the problem
and then, under a smallness assumption on the coefficient of friction, we prove
the existence of a unique weak solution to the model.The proofs are based on a
general results on elliptic variational inequalities and fixed point arguments.

Mathematics Subject Classification (2010): 74M10, 74M15, 74F05, 74R05, 74C10.
Keywords: Viscoelastic, viscoplastic, piezoelectric, bilateral contact, non local

Coulomb friction, adhesion, quasi-variational inequality, weak solution, fixed
point.

1. Introduction

A piezoelectric body is one that produces an electric charge when a mechanical
stress is applied (the body is squeezed or stretched). Conversely, a mechanical defor-
mation (the body shrinks or expands) is produced when an electric field is applied.
This kind of materials appears usually in the industry as switches in radiotronics,
electroacoustics or measuring equipments. Piezoelectric materials for which the me-
chanical properties are elastic are also called electro-elastic materials, those for which
the mechanical properties are viscoelastic are also called electro-viscoelastic mate-
rials and those for which the mechanical properties are viscoplastic are also called
electro-viscoplastic materials. Therfore, a viscoelastic-viscoplastic piezoelectric con-
tact problems are considered. Different models have been developed to describe the
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interaction between the electrical and mechanical fields (see, e.g. [2, 14, 18] and the
references therein). A static frictional contact problem for electric-elastic material
was considered in [3], under the assumption that the foundation is insulated. Electro-
elastic-visco-plastic and elastic-visco-plastic contact problems were recently studied
in [13, 15].

Adhesion may take place between parts of the contacting surfaces. It may be
intentional, when surfaces are bonded with glue, or unintentional, as a seizure between
very clean surfaces. The adhesive contact is modeled by a bonding field on the contact
surface, denoted in this paper by [; it describes the pointwise fractional density of
active bonds on the contact surface, and sometimes referred to as the intensity of
adhesion. Following [11], [12], the bonding field satisfies the restrictions 0 < g < 1;
when 8 = 1 at a point of the contact surface, the adhesion is complete and all the
bonds are active; when 5 = 0 all the bonds are inactive, severed, and there is no
adhesion; when 0 < 8 < 1 the adhesion is partial and only a fraction 8 of the bonds
is active. Basic modelling can be found in [11, 12]. Analysis of models for adhesive
contact can be found in [7, 4, 6].

In this work we continue in this line of research, where we extend the result
established in [8]. The novelty here lies in the fact that we consider a viscoelastic-
viscoplastic piezoelectric body, the contact is bilateral and the friction is described by
a nonlocal version of Coulomb’s law of dry friction with adhesion. A similar boundary
conditions are used in [20], where the constitutive law of the material is viscoelastic.

This paper is structured as follows. In Section 2 we present the viscoelastic-
viscoplaastic piezoelectric contact model with friction and adhesion and provide com-
ments on the contact boundary conditions. In Section 3 we list the assumptions on the
data and derive the variational formulation. In Section 4, we present our main exis-
tence and uniqueness result, Theorem (4.1), which states the unique weak solvability
of the contact problem under a smallness assumption on the coefficient of friction.

2. The model

We consider a body made of a piezoelectric material which occupies the domain
Q C R(d = 2,3) with a smooth boundary 99 = I' and a unit outward normal v. The
body is acted upon by body forces of density fy and has volume free electric charges
of density ¢q. It is also constrained mechanically and electrically on the boundary. To
describe these constraints we assume a partition of I' into three open disjoint parts
I'y, I's and I's, on the one hand, and a partition of I'yU I'y into two open parts I', and
I'y, on the other hand. We assume that meas I'y > 0 and meas I';, > 0. The body is
clamped on I'; and, therefore, the displacement field vanishes there. Surface tractions
of density fy act on I';. We also assume that the electrical potential vanishes on I',
and a surface electrical charge of density go is prescribed on I'y. On I'3 the body is in
adhesive and frictional contact with an insulator obstacle, the so-called foundation.

We are interested in the deformation of the body on the time interval [0,T].
The process is assumed to be quasistatic, i.e. the inertial effects in the equation of
motion are neglected. We denote by € QUT and ¢ € [0,T] the spatial and the time
variable, respectively, and, to simplify the notation, we do not indicate in what follows
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the dependence of various functions on x or ¢t. Here and everywhere in this paper, 1,
J, k, 1 =1,...,d, summation over two repeated indices is implied, and the index that
follows a comma represents the partial derivative with respect to the corresponding
component of x. The dot above variable represents the time derivatives.

We denote by S? the space of second-order symmetric tensors on R? (d = 2,3)
and by ”.”, ||.|| the inner product and the norm on S? and R? respectively, that
is wv = ww, v = (V)Y2 for u = (u;), v = (v;) € R and o7 = 047Tij,
|o|| = (0.0)}/2 for 0 = (04;), T = (1;5) € S?. We also use the usual notation for
the normal components and the tangential parts of vectors and tensors, respectively,
given by v, = v v, v; = v -V, 0, = 0415, and o, = ov — o,v. With these
assumptions, the classical model for the process is the following.

Problem (P). Find a displacement field u : Q x [0,7] — R%, a stress field o : Q x
[0,T] — S%, an electric potential  : Q x [0,7] — R, an electric displacement field
D:Q x[0,T] — R? and a bonding field B : Q x [0,T] — R such that

o(x,t) = Ae(u(z,t)) + Fe(u(z,t))

+ gg(a(x,s),s(u(x,s))ds — E*E(p(z,1)) in 2% (0,T), (21)

D = BE(p) + Ee(u) in Qx (0,7), (2.2)

Divo + fo =0 in Qx (0,7), (2.3)
divD = qq in Qx(0,7), (2.4)
u=0 on T'1 x (0,T), (2.5)

ov = fo on T's x (0,T), (2.6)

u, =0, on T's x (0,T), (2.7)

o |lor + ’YTﬂzRT(UT) | < up(|Rovl),
¢ |lor + 7 8°R-(u,)|| < pp(|Ra|)
= u, =0,

o llos + B2 R ur) | = pp(|Ro ) on Es % (00, &
= 3 X\ > 0,such that:

or + 'YTﬂ?RT(UT) =—-A ’a‘rv
B(t) = = (Bl R (ur () ||* = €a) + on I's x (0,7), (2.9)
=0 on Ty % (0,T), (2.10)
Dv=gq on T'y x (0,7T), (2.11)
Dv=0 on T's x (0,7), (2.12)
u(0) = ug in Q, (2.13)
B(0) = Bo on I's. (2.14)

Equations (2.1) and (2.2) represent the electro-viscoelastic-viscoplastic constitutive
law of the material in which o = (0;;) is the stress tensor, e(u) = (¢;;(u)) denotes
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the linearized strain tensor, A and F are the elasticity and viscosity tensors, respec-
tivelly, G denotes a viscoplastic function, E(p) = —V is the electric field, £ = (e;;1)
represents the third-order piezoelectric tensor, £* = (e;‘jk) where e, = eg;; is its
transpose such that:

Eow=0 VYoe$ veR? (2.15)

D = (D, ..., Dg) is the electric displacement vector and B =(B;;) denotes the electric
permittivity tensor. Equations (2.3) and (2.4) are the equilibrium equations for the
stress and electric-displacement fields, respectively, in which “Div” and “div” denote
the divergence operators for tensor and vector valued functions, respectively. Condi-
tions (2.5) and (2.6) are the displacement and traction boundary conditions in which
ov represents the Cauchy stress vector, whereas (2.10) and (2.11) represent the elec-
tric boundary conditions. Note that we need to impose assumption (2.12) for physical
reasons. Indeed, this condition models the case when the obstacle is a perfect insula-
tor and was used in [3, 9]. Condition (2.7) represents the bilateral contact, where u,
represents the normal displacement. Conditions (2.8) is a non local Coulomb’s law of
friction coupled with adhesion in which g denotes the coefficient of friction and ~, is
a given adhesion coefficients, u, and o, are tangential components of vector u and
tensor o, respectively, o, represents the normal stress, ., is the tangential velocity
on the bondary, the operator R : H~% — L2(T') (see e.eg. [10]) is a linear continuous
operator used to regularize the normal trace of stress which is too rough on I, p is a
non-negative function, the so-called friction bound, and R, is the truncation operator
defined by

v if [lu]l < L,
L if|lv| > L.
[[v]]

R, (v) =

Here L > 0 is the characteristic length of the bond, beyond which it does not offer any
additional traction (see e.eg. [19]). The evolution of the bonding field is governed by
the differential equation (2.9) with given positive adhesion coefficients v, and e, where
r4 = max{0,r}. Finally, (2.13) and (2.14) represent the initial conditions in which ug
and [y are the prescribed initial displacement and bonding fields, respectively.

3. Preliminaries and variational formulation

In this section, we list the assumptions on the data and derive a variational
formulation for the contact problem. To this end we need to introduce some notation
and preliminaries. We use the notation H, Hy, H and H; for the following spaces

H={v=(v) |v; € L3(Q),i =1,d}, H;={v=(v)|elv) €H},
H= {T = (Tl‘j) |Tij =Tji € LQ(Q),i,j = 1,d}7 Hi = {T eEH |DZ"UT c H}
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The spaces H, Hy, H and H; are real Hilbert spaces endowed with the canonical inner
products given by

(u,v)g = / wivide, (u,v)mg, = (u,v)g + (e(u),e(v), .
Q

(o,7)y = / 0i;Tij dz,  (0,T)n, = (0,7)y + (Dive, DivT) g,
Q

such that € : Hy — H and Div : Hy — H are the deformation and divergence
operators, respectively defined by

e(v) = (e55(v)), eij(v) = 3(viy +vjs) Vv e Hy,
DZ'UT:(TijJ‘) VTGHL

and the associated norms are denoted by ||« ||z, || ||z, || - |2 and || - |3, , respectively.
We recall that for every element v € H; we denote by v the trace yv of v on I'. If
o € CHQ)NN then, the following Green’s formula holds

(0,e(v))u + (Divo,v)g = [ov-v da, Yv€ Hj. (3.1)
r

For every real Hilbert space X we employ the usual notation for the spaces L? (0, T; X)
and W*P(0,T; X), p€[0,00], k=1,2, ...
We now list the assumptions on the problem’s data.

(a) A= (air): QxS?— S such that

Az, ) = (aijkl(x)Tkl) V1= (Tij) € Sd, a.e. z € (.
(b) Aijkl = Qjikl = Qlij € LOO(Q), 1<4,5,k1<d. (3.2)
(c¢) there exists m4 > 0 such that:

QijraTijTrt > mallt||? V7 €S?, ae x € Q.

(a) F = (fijr):QxS?— S%such that:

F(z,7) = (fijr(@)ma) ¥V 7 = (13;) € S, ae. x € Q.
(b)  fijur = fiam = frag € L2(Q),1 <4, 5, k, 1 < d. (3.3)
(¢) there exists m 4 > 0 such that

fijuimijmie > mz||7]|? V7 €SY ae z e Q.

(a) &€:Q xS — R such that:
5(1‘,8) = (ei]’k(l‘)&‘jk) Ve = (61‘3') S Sd, a.e. r € Q, (34)
(b) €ijk = €ikj € LOO(Q)

(a) B:QxR?— R such that:

B(.T,E) = (B”(J?)E]) VE = (El) S Rd, a.e. x € (,
(C) Bz‘j = Bji S LOO(Q), (35)
(d) there exists mg > 0 such that B;;(z)E;E; > mg|E|?

VE = (E;) € R, ae. z €.
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(a) p:T3xR— R,
(b) there exists L, > 0 such that
p(z, 1) — p(2,72)| < Lplry — raf, (3.6)
Vri, ro € R, a.e. x € T's, ’
(¢) x> p(x,r) is Lebesgue measurable on I's,
(d) the mapping z — p(x,0) € L*(T3).
(a) G:QxSIxST — 87
(b) there exists Lg > 0 such that
1G(x, 01,€1) = G(2,09,82)|| < Lgllor — o2 (3.7)
Y 01,09,61,62 € S?, ae. x €9, '
(b) for any o, € S, x> G(x,0,¢) is measurable,
(¢) the mapping z — G(x,0,0) belongs to H.
The forces, tractions, volume and surface free charge densities satisfy

fo € WH2(0,T; H), fo € WH2(0,T; L*(I'y)?), (3.8)
qo € WH2(0,T; L*()), g2 € WH2(0,T; L*(Ty)). (3.9)
The adhesion coefficient 7, and the limit bound ¢, satisfy the conditions
v, € L®(T'3), €, € L*(T3), 7, €2 >0 ae. onls. (3.10)
Also, we assume that the initial bonding field satisfies the condition
Bo € L*(T3), 0< By <1 ae. onTs, (3.11)
Finally, the coefficient of friction p is assumed to satisfy
we L*Ts), wp(xz)>0 ae. onls. (3.12)
Let now consider the closed subspace of H; defined by
V={veH |v=0onTy, v,=0o0nT3}. (3.13)
Since meas (I'1) > 0, the following Korn’s inequality holds
le@)llx = Cxllvlla, Yo eV, (3.14)
where the proof my be found in [16] (p. 79). Equiping V' with the inner product
(u, v)v = (e(u), (V)2 (3.15)
and let || - || be the associated norm. We deduce from Korn’s inequality that ||| g,

and ||.||v are eauivalente norme on V. Then (V,|.||v) is a real Hilbert space. Next,
we assume that the initial displacement satisfies the condition

ug € V. (3.16)

We also introduce the following spaces
W={¢yecH(Q) |¢Yv=00nT, }, (3.17)
W={D=(D;)| D; € L*(Q), div D € L*(Q)}. (3.18)

Since meas (I'g) > 0 it is well known that W is a real Hilbert space endowed with the
inner product

(s V)w = (Vo, Vi) 12 (ye, (3.19)
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and the associated norm is || - ||w. Also we have the following Friedrichs-Poincaré
inequality

VYl z2)a > Cr |19l Y €W, (3.20)

where Cr > 0 is a constant which depends only on Q2 and T',. The space W is a real
Hilbert space endowed with the inner product

(D,E)yy = / D -Edz+ / divD - divE dz,
Q Q
and the associated norm is || - ||yy. Moreover, by the Sobolev trace theorem, there exist
two positive constants Cy and Cy depending only on Q,I'; and I's such that
ollz2ey)e < Collvlly Yo €V, Wz < Collllw Yo ew.  (3.21)

It follows from proprieties of R that there existe a constant Cr depending only on
Q,T's and R such that

1Ro || z2(rs) < Crllovla, Yo € Hi. (3.22)

Next, we define the two mappings f : [0,7] — V and ¢ : [0,T] — W, respectively,
by

(f(t),v)V:/Qfo(t)-vdx—&— [ 1) via (3.23)

(a(t), ¥)w = / Qo) dz — / ga(t) da, (3.24)

forallv e V, ¢ € W and t € [0, T]. We note that the definitions of f and ¢ are based
on the Riesz representation theorem. Moreover, it follows from assumptions (3.8)
and (3.9) that

fewht20,1;V), (3.25)
q € Wh2(0,T;W). (3.26)

Also, we introduce the set
Q={BecL™0,T;L*(3)) /] 0<B(t) <1V tel0,T], ae. onTs}. (3.27)

Now, let us define the adhesion functional j,q : L?(I's) x V x V — R and the friction
functional jy, : H1 x V — R, respectivelly, by

Jad(B,u,v) = f 'YTBQRT(UT) - vrda, (3.28)
T's

Jrr(o,v) :Ff pp(|Ro) - [[vr|da. (3.29)

Using a standard procedure based on Green’s formulas (see (3.1)) we can derive the
following variational formulation of the problem (2.1)—(2.14).
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Problem (PV). Find a displacement field u : [0, 7] — V, a stress field o : Q x [0,T] —
H, an electric potential ¢ : [0,T] — W, and a bonding field 3 : [0,T] — L*(T's) such
that

o(t) = As(a(t)) + Fe(u / G(o(z, ), e(u(z, 5))ds — EB(p(t))  (3.30)

(o(t),e(w) —e(u ( N+ Jaa(B(E), u(t),w — u(t)) (3.31)
+irr(o(t),w) = jpr(o(t), a(t) = (f(t),w —a(t))v,
YoeV, Vtel0,T],
(BVp(t), Vi) r2(aya — (Ee(u(t), Vi) r = (¢(t), ¥)w, (3.32)
Yy € W, Vt € [0,T],

B(t) = —(3B(8) | Br (ur (D)) — €0+ » ave. £ € (0,7), (3.33)
u(0) = ug (3.34)
B(0) = Bo. (3.35)

4. Existence and uniqueness result

Theorem 4.1. Assume that (3.2)—(3.12) and (3.16) hold. Then, there exists a constant
po > 0 such that Problem PV has a unique solution (u,o, @, B) if ||l Lo (rs) < po-
Moreover, the solution satisfies

u € WH2(0,T; V), (4.1)
o € W30,T;H,), (4.2)
o € W0, T;W). (4.3)
B € Wh=(0,T; L*(I'3)) N Q. (4.4)

A quintuple of functions (u, o, ¢, D, B) which satisfies (2.1), (2.2) and (3.30),
(3.35) is called a weak solution of the contact Problem (P). We conclude by Theorem
(4.1) that, under the assumptions (3.2)—(3.12) and (3.16), there exists a unique weak
solution of Problem (P). To precise the regularity of the weak solution we note that the
constitutive relations (2.2), the assumptions (3.4)—(3.5) and the regularity (4.3) im-
plies that D € W12(0,T; L?(Q)9). Moreover, using again (2.2) combined with (3.32)
and the notation (3.24) and choosing ¢ € C5°(2) we find that div D(t) = qo(t) for all
t € [0,T). Tt follows now from the regularities (3.9) that divD € W12(0,T; L?()),
which shows that

~—

D e Wh2(0,T; W). (4.5)
We conclude that the weak solution (u, o, ¢, D, 8) of the piezoelectric contact problem
(P) has the regularity (4.1)—(4.5).

The proof of Theorem(4.1) will be carried out in several steps. We assume in
the following that the conditions, (3.2)-(3.12) and (3.16), of Theorem(4.1) hold and
below we denote by ”¢” a generic positive constant which is independent of time and
whose value may change from place to place. In the first step, let n € W12(0,T;V),
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k € L2(0,T;H) and A € W'2(0,T;H1) be a given functions. We introduce the
function 2, € W12(0,T;H) defined by
t
zi(t) = /H(S)ds vt € (0,717, (4.6)
0
and we consider the following intermediate problem.

Problem (P}). Find wupy : [0,7] = V and o, : [0, T) — H1 such that

Trna(t) = Ae(lna(t)) + Fe(wma(t)) + 24 (t) +£(n(t)). (4.7)
(Ae(tnpa(t)), e(w) — (tupa(t)) 2 + (Fe(umma(t)), e(w) — e(tunr(t)) 1 (4.8)
+(2x(t), e(w) — e(tenr ()2 + (e(n(t)), e(w) — (@ (t))

)
+jfr()‘(t)7 ) - ]fr()‘( )aunnA(t)) > (f(t)aw - um]A(t))V
VweV, Vtelo,T],
U (0) = uo. (4.9)
Lemma 4.1. Problem PY has a unique solution (ump\7 Tknr). Moreover, the solution
satisfies
a)u,\ € W22(0,T; V),
b)o,mr € WH2(0,T; 1), (4.10)
C)DiUUHn)\ + fo=0.
Proof. We denote by &,y and jy the elements given by
Grna(t) = Guna(t) — 2 (t) — (n(1)): (4.11)
aw) =jprAw) YweV. (4.12)
By (3.15) and Riesz’s representation theorem we deduce that there exists an element
fin € WH2(0,T; V) such that
(fan(t),v)v = (f(8) = n(t), v)v + (2x(t),€(V)) - (4.13)
Since f,n € W12(0,T;V) and 2, € W2(0,T; H) we deduce that f,, € W2(0,T;V).
Moreover, using (4.7), (4.8), (4.9), (4.11) and (4.12) leads us to consider the following
variational problem.

Problem (7). Find wupy : [0,7] = V and Gy : [0, T) — H1 such that
G (t) = Ae(Uuna(t)) + Fe(upr(t)). (4.14)
(Grna(t); e(w) = (tmnr ()3 + Ja(w) — Ja (lena(t))
2 (frn(t),w = dwnpr(t))vy VweV, viel0,T],
Ukna(0) = uo, (4.15)

Note that V is a closed subspace of H; and the fonctional jy is convex lower
semicontinuous on V such that j # 4o0o. By a classical results for elliptic varia-
tional inequalities (see e.g. [5], Theorem (4.1) page 348) there exists a unique solution
(Unyrs Trnr) for the variational problem Py stisfying the regularity condition

Unnx € W22(0,T; V), Grpy € WH2(0,T5Hy). (4.16)
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Next, kepping in mind (4.7) we put w = . (t) £ v where v € D(Q)? in (4.8) to
obtain Divo ., + fo = 0.

Finally, we deduce that (tunx,0kyr) is the unique solution of the variational
problem P} stisfying condition (4.10), which concludes the proof of Lemma (4.1). O

In the second step we use the displacement field w,, obtained in Lemma(4.1)
to obtain the following existence and uniqueness result for the electric potential field.

Lemma 4.2. There exists a unique function p.ny € WH2(0,T; W) such that
BV (0, V) 216yt = (€l (). V) aas = (@ 0dw 1o
VpeW, Yitel0T], ’
Moreover, if o1 and @2 are the solution of (4.17) for ui,us € W22(0,T;V), respec-

tivelly, then we have

lr () *\;Oi(é) |[|g,VT§], C”ij;“f)gﬁj(t)”vds’ (4.18)

Proof. Let ugn € W2(0,T;V)(0,T; V) be the function defined in Lemma (4.1). As
in [1], using Riesz’s representation theorem we may define the operator L.,y : W —
W by

(Lonr (2 (D) V)w = (BV (1), VO p2(s — (Ee(unr(t)), V¥)rzs (4 1)
Vip € W, Yt €[0,T). '

It follows from assumptions (3.4) and (3.5) that the operator L, is stongly monotone
Lipschitz continuous on W. Then, we deduce that there exists a unique element
©rna(t) € W satisfies,

Linx(@rna(t)) = q(t) Vvt €[0,T]. (4.20)
Thus, it follows from (4.19) and (4.20) that @.,a(t) € W is the unique solution of
equation (4.17). Let now t1,t2 € [0,7] and for the sake of simplicity we use the
notations ¢; = @rpr(t:i), wi = wenr(ts), ¢ = q(t;) for ¢ = 1,2. Using (4.17), (3.4) and
(3.5) we find that
le1 = pallw < c(lur —uzllv + llgr — g2llw),

the previous inequality yields
[ornr(t1) = @uga(t2)lw < cll[twnr(t) — wepa (t2)llv + llq(t1) — a(t2)llw).  (4.21)
Since ugyn € W22(0,T; V) and ¢ € Wh2(0,T; W), it follows that
Py € WH2(0,T; W).

Assume now that o7 and o are the solution of (4.17) for ui,us € W22(0,T;V),
respectively. Arguments similar to those used in proof of (4.21) leads to (4.18), which
concludes the proof of Lemma (4.2). O

In the third step, for ., obtained in Lemma (4.1), we solve equation (3.33) for
the adhesion field.
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Problem (PP+n*). Find a bonding field By, : [0,7] — L?(I's) such that

Brena(t) = = (v Bapn ()| R (tmpr (D)|1? =€)+ ace. t € (0,T),  (4.22)

Brnr(0) = Bo. (4.23)
Lemma 4.3. There exists a unique solution B,y to Problem PBenx satisfing Brnr €
Whee(0, T, L?(T'3)) N Q. Moreover, if 31 and P are the solution of (4.22)-(4.23) for
uy,us € W22(0,T; V), respectivelly, then we have

1818) = Ba(®)llz2(ry) < [ llua(s) = uals)llv s, (4.24)

Vtel0,T], a.e. onTs

Proof. The proof of Lemma 4.3 is based on a version of Cauchy-Lipschitz theorem
(see, e.g., [17], page 48), by arguments similar to those used in [7]. O

In the fourth step, for n € WH2(0,T; V), k € L?(0,T;H) and A € WH2(0,T; Hy)
we denote by ey, @rna and By the functions obtained in Lemmas (4.1), (4.2) and
(4.3), respectively. We now define the operator A, : L*(0,T;H1) — L*(0,T;H1)
by

AnX = Oppx. (4.25)
Lemma 4.4. For all A\ € L*(0,T;H1) the function Ay belongs to W12(0,T;H,).
Moreover, The operator Ay, has a unique fived point A.y € W1’2(0,T;"H1).

Proof. Let t1,ts € [0,T). Keeping in mind (3.2), (3.3), (3.15) and using (4.7) written
for t = t; and t = t5 we find that
lokna(t1) = Tunr(t2)ln < elllinna(tr) = drnr(t2) v + [lunyr(t1) — umnr (t2)llv
+ |z (te) = ze(t2)lle + In(t1) — nt2)llv)- (4.26)
On the other hand, we have
lowna(t1) = orna(t2) 1, < llowna(te) — owna(t2) |l
+ ||D7;'U0’m7)\(t1) — DiUGHnA(t2)|‘H,
using (4.10)(c), (4.26) and the previous inequality we obtain
lokna(t1) = Tunr(t2) 2, < clltnna(tr) = dmnr(t2) v + [[unga(t1) = umna(t2) v
+ [z (t1) — 2 (t2) [l + [In(t1) — n(t2)]lv)
+ [ fo(t1) = fo(t2)l[a- (4.27)
Now, we get from (4.25) that
[ArnA(tr) = ArnA(t2) 1, < clldmna(tr) = tena(t2)[[v + [[trna (t1) — umna(t2) lv
+ |2 (te) = ze(t2)lln + In(tr) — n(t2)llv)
+ [ fotr) = fo(t2)lla- (4.28)
Since

gy € WE2(0, T3 V), wepn € W32(0,T5V), 2, € WH2(0,T;H), n € WH2(0,T;V)
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and fo € WH2(0,T; H), it follows that

Apph € WH2(0,T5Hy) (4.29)
Let now A, Ao € L?(0,T;H;) and let ¢t € [0,7]. We use the notation u; = )y, ,
Oi = Ounx; Ui = Uy, for i = 1,2, In (4.8) written for A = X\, we take w = 1o,
and also written for A = Ao, we take w = ;. After adding the resulting inequalities

and using (3.2), (3.3), (3.6), (3.12), (3.15), (3.21), (3.22), (3.29) with some elementary
calculus we find that

< Ly,CoCRrl|ptllpoe( 1y

HIA () = Aa(8) e,
ma

[[1 () — 2 () [

Cr / . .
—|—WO/||u1(s)—uQ(s)||Vds, (4.30)

and, after a Gronwall argument, we obtain

L,CoC o0
iy (£) — iz (1) [y < =22 f;'li”L T A1 () = Aa() ]34, (4.31)

Next, from (4.10)(c) we have Divoy(t) = Divos(t). Moreover, using (4.7), (3.2), (3.3),
(3.15) and (3.21) we obtain

lo1(t) = o2 ()[lmy = llon(t) = o2 ()1 < (|l () — a2 (t]lv

s (6) — uat) ) (432)
Now, using using (4.32) and Young’s inequality we obtain
o1 (t) = o2(®)13, < e(llan(t) — a2 (BT + [lua () —u2($)]17),
where, we deduce by using (4.25) that
[Akp A (8) = Ay o ()13, < e(llin (t) — a2(B)]7 (4.33)

+ / lir () — ()13 ds).
0

We combine now (4.31) and (4.33) to obtain

1A rn A (8) = Ay Ao ()17, < e(lIM () = A2 (B3, + / IX1(5) = Aa(8)l3, ds),
0

and, reiterating this inequality m times, yields
cm(m+T)™
m!
which implies that for m sufficiently large, A} is contraction on the Banach space
L?(0,T;H1). Therefore, there exists a unique A, € L*(0,T;H1) such that AL Ay =
Ay where we deduce that Ay, is the unique fixed point of A,,. Moreover, equality

(4.25) implies that A\, € W12(0,T;H1), which concludes the proof of Lemma (4.4).
O

IAZ AL = A a3 20770, <

A — >\2||2L2(0,T;H1)’
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Now, let ., the fixed point of the operator A.,. We use Riesz’s representation
theorem to define the operator A, : L2(0,T;V) — L?(0,T;V) by

(Aen(t),v)v = j(ﬂfmkm (t), UknXen (t),v) + (E*E(‘Pmkm (t),e(v)), (4.34)
for all v € V and ¢ € [0, T]. We have the following result.

Lemma 4.5. For alln € L?(0,T;V) the function A,n belongs to WH2(0,T; V). More-
over, there exists a constant g > 0 such that the operator A, has a unique fized point
Mk € Wl,Q(OaT; V) Zf ||:u’||L°°( I's) < Ho-

Proof. Let n € L*(0,T;V) and let t1,ts € [0,T]. Using (4.34), (3.28), (3.21) and
keeping in mind the inequality 0 < B,y (t) < 1 and the properies of the operators
R,, R, and £&* we find that

[Axn(t1) — Aun(t2)llv < e(lltnpa., (1) = ana,., (t2)[lv
F 11Brnnen (t1) = Brnnw, (E2)122(1s)
F [ @rnrny (t1) = Crnrn, (t2) lw)- (4.35)

Since
UpnA e, € W272(07T§ V)7 ﬂnn)\,w € WI’OO(OvT7 L2(F3)) neo

and @uya,., € WH2(0,T; W) we deduce that A.n € WH2(0,T5V).

Let now n1,m2 € L?(0,T;V) and let u; = WUk An, > Wi = Urinid e, 5 Bi = 5“”1‘%171-’
i = Prniden, s Ti = Ok, for i = 1,2. Arguments similar to those used in the proof
of (4.35) lead to

[Asm () = Asmz(D)]lv < e([lua(t) — uz(t)]lv
+ [|B1(t = Ba(t)[|L2(rs) + 1 (t) — w2(t) lw)- (4.36)

We combine now (4.18), (4.24) and (4.36) to obtain

[Awm (8) = Asna(B)[lv < e([|ua (t) — ua(B)llv

+/||u1(5) —uz(s)||vds). (4.37)
0

Moreover, since u;(0) = u2(0) = ug we have
t

l[ua () = uz(t)[lv < C/ ([t (s) =tz (s)]|vds. (4.38)
0
From (4.37) and (4.38) we find

[Arm(t) = Axnz(t)[lv < C/ [ua(s) = ta(s)|lvds  Vte[0T]. (4.39)
0
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On the other hand, keeping in mind that A.,, = o0;, using (4.8) and by arguments

similar to those used in (4.30) we find that

mallin (t) = da(t)llv < LpCoCrllullzoe( rayllon(t) — o2(®)ll2 + [m (8) = na2(O)]lv

t
L Cr / lia (s) — ta(s) -,
0

and, after a Gronwall argument, we obtain
mallt(t) — 2 (t)]lv < LpCoCrllpll Lo ro)llon(t) — o2(t) 2,
() = n2()lv-

(4.40)

Now, by (4.10)(c) it follows that Divoy(t) = Divoa(t). Then, from (4.7), (3.2), (3.3)

and (3.15) we find that
lo1(t) — o230, = llo1(t) — o2(t)[lae < Callia(t) — d2(t)|v
+ Crllur(t) —ua(®)llv + [l () — n2(t)llv,

where we deduce that

lo1(8) = o2(®) 13 = llo1(8) — o2(8)l3¢ < Callia(t) — i (B)]]v
() —m(@®)lv + Cr / lin (5) — tea(s) | v ds,
0

We combine now (4.40) and (4.42) to obtain
mallin (t) = da(t)llv < CaLpCoCRrl|pll Lo (rg)llin () — a2 () [|v
+ (LpCoCrllullLoe( ryy + Dlim (@) = n2(@)lv

t
L, CoCrllull s ( 10)Cr / lin (s) — dea(s) v ds.
0

Now, we take ||p| oo ry) < po such that
— mA
~ CuL,CoCr’
Using (4.43) and after a Gronwall argument we find that
(ma = CalpCoCrllpl Lo ( 1))l (8) — ta(t)llv
< (LpCoCrllpllLoe( rg) + Dlim (t) = n2(t)]lv,
where, we deduce that for ||u| p( r,) < o we have
[an (t) = a2(B)[lv < clln(t) = n2(t)llv-
We combine now (4.45) and (4.39) to see that

Ho

1A () — At (®)lly < ¢ / Im(s) —m(s)lvds Vi o,T]
0

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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and by Cauchy-Schwartz inequality we deduce that

[Awm (8) = Aema ()T < c/ I (s) = n2(s)I%ds Yt e[0,T) (4.47)

Reiterating this inequality m times yields

cmm

AT — ATl 220,10y < THW — 2llZ2 0,71y

which implies that, for ||u||ze( ry) < po and m sufficiently large, a power A7 of A,
is a contraction in the Banach space L2(0,T;V). Thus, there exists a unique element
n. € L%(0,T;V) such that A™n, = 1, and 7, is also the unique fixed point of A,
i.e Auny = 1. The regularity n, € W12(0,T;V) follows from the regularity A7, €
Wh2(0,T;V), which concludes the proof of Lemma (4.5). O

Next, let ||p|lpe( ry) < po and Axy, 1, the fixed points of operators Ay,, A
respectivelly. We put ug = Unn, Avy> Ok = Trnudny Pk = Prnpre, a0d B = By, A, for
the solutions obtened in lemmas (4.1), (4.2), (4.3). Moreover, we define the operator
A L2(0,T;H) — L?(0,T;H) by

Ak =G0k, e(uk)), (4.48)
such that
0k (t) = Ae(tg (b)) + Fe(uw(t)) + 2:(t) + EXE(pi(t)). (4.49)
(0x(t),e(w) — et (t)) 2 + Jaa(Br(t), un(t), w — e (t)) (4.50)
+ipr(0k(t),w) — Jpr(0k(t), 0 (t) = (fi(t), w — ws(t))v
VweV, Vtelo,T).
(fu(®);v)v = (f),0)v + (2x(t), (V)2 (4.51)

Lemma 4.6. The function Ax belongs to W12(0,T;H) and the operator A has a unique
fived point k* € L*(0,T;H).

Proof. Let k € L?(0,T;H) and let t1,t € [0,T)]. Using (4.48), (3.7) and (3.15) we
find that

[Ak(t1) = Ar(t2)lln < Lo([low(ty) — onlt)lln + lux(tr) — ux(t2)]v)

Since u,, € W22(0,T;V), o, € WH2(0,T;H,) we deduce that Ax € WH2(0,T; H).

Next, let ky,ky € L2(0,T;H). For the sake of simplicity, we put u; = u,,,
0; = Ok, Bi = Bryy i = ©x, and z; = z,,. Usin again (4.48), (3.7) and (3.15) we
obtain

[Ak1(t) = Ara(t)ll < Lg(llon(t) — o2(B)lla + lua (t) — ua()][v)- (4.52)
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On the other hand, by arguments similar to those used in (4.30) the inequality (4.50)

leads to

(o1(t) — 02(t), (i) — e(tiz)n <

+jaa(B1, ur, 2 — 1) + Jaa(B1, u1, te — 1)
(E*E(p1(t)) — E*E(pa(t)), e(tr) — (i)
+ipr(o1(t), 42(t)) — jyr(oi(t), w1 (t))
+ifr(o2(t), 41(t)) — jpr(o2(t), 2(t)).

(4.53)

Using (4.49), (3.2), (3.3), (3.6), (3.21), (3.22), (3.12), (3.28), (3.29) and the previous

inequality and after some algebric manipulation we find that

malla (t) — ax ()]} < (cllui(t) —uz(®)llv + [|21(t) — z2(t)]lv
+cller(t) — 2(B)llw + cllB1(t) = B2(t)l L2 (ry)

+ LyCoCrllpll oo vayllon(t) — o2(t) [l () — d2(t)[]v,

where we deduce that

mallin(t) = da(t)||v < cllur(t) —ua(t)lv + [|20(t) — 2z2(t)]l2
+cllpi(t) = w2 ()lw + cllBr(t) — Ba(t) || L2(rs)
+ LpyCoCrllpll Lo rsyllor(t) — o2(t)|[#-

We combine now (4.18), (4.24) and the previous inequality to obtain

mal[in () — wa(t)lv < LyCoCRrllpllLoe( ra)llor(t) — o2(t) |l
+ (21 () = 22 ()12 + clluar(t) — u2()llv

+/||u1(s) —ug(s)|lvds.

Moreover, since u;(0) = u2(0) = ug we have

Jua(®) = wa®)lly < [ fia(s) = das) .

From (4.54) and (4.55) we find

mal[in (t) — d2(t)|lv < LpyCoCrllpllLes( rayllor(t) — o2(t) |«

+ () — ()19 + c/ itr () — tia(s)|[ v ds,

and after a Gronwall argument we find that

mal[in(t) —az(t)lv < [lz1(t) = z2(8) [l n
+ LpCoCrllull Lo s llon(t) = o2(8) |-

(4.54)

(4.55)

(4.56)
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On the other hand, using (4.49), (3.2), (3.3) we find that
o1(t) = o2(t) [ < Callia(t) — d2t)llv + Crllui(t) — ua(t)[lv
+ [[21(t) = z2()|lv + cllor(t) — 2(b)[lw,
where, we deduce from (4.18) that
lo1(t) — o2(t)ll2 < [l21(2) — 22(t) |2
+Callt1(t) — u2(t)[|v + Crllua(t) — uz(t)llv
Combining (4.56) and (4.58) we obtain
mallia () = d2(t)[lv < [lz1(t) — 22() |2
+LpCoCrl|pll oo (rg) Callin () — 2 ()]lv
+LpCoCrllpll Lo (rg) 121 (t) — 22(t)]1 2
+LpCoCrllpl| oo (ry) Crllua (t) — ua(t)v-
It follows now from the previous inequality that
mallia () — iz (t)lv < (14 LpCoChrllpll Lo rg)) 121 () — 22()]12
+ CaLyCoCrllpl Lo rg) 01 (1) — d2(t)[lv

t
+ LyCoCl il C [ lins) = ia(s) s,
0

and after a Gronwall argument we find that

mallin (t) = da(t)[lv < (14 LpCoCRrllpll o ry))ll21(8) — 22(8) |
+ CaLypCoChllpll oe rg) e (£) — 2 (t) v

Since, [|p|| Lo ( 1) < po the previous inequality leads to
[0 () — 2 (t) lv < cflz1(t) — 22(8) [

Moreover, since u;(0) = uz(0) = up we have
¢ ¢
[ur (t) = ua()]|v < / i1 (s) — ta(s)|lvds < C/ Iz1(8) = 22(s) I3 ds.
0 0
Combining, (4.58), (4.59) and (4.60) we find
¢
[4016) = Ara®l < el () = 22Ol + [ 11(5) = 22(6) .
0
Now, from (4.6) we have z1(0) = 22(0) = 0. Then,

) = 220l < [ ea(s) = 2a(s) s
0

887

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
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Therefore, combining (4.61) and (4.62) we obtain
¢
4010) = Ara®lse < ¢ [ ea(s) — 2a(s) s, (4.63)
0

Finally, using (4.6) and Cauchy-Schwartz inequality we find

1Ak () = Ara ()17, < C/ k1 (s) = ra(s)l[3,ds.
0

Reiterating this inequality m times yields
2 T 2
1A Ry = A" Rallz2 0,00 < — =181 = K2llz2(0 7320
which implies that, for m sufficiently large, a power A™ of A is a contraction in the
Banach space L?(0,T;H). Thus, there exists a unique element x* € L?(0,T; H) such
that A™k* = k* and k* is also the unique fixed point of A, i.e Ak* = k*, which
concludes the proof of Lemma (4.6). O

Now, we have all the ingredients necessary to prove Theorem 4.1.

Existence: Let ™, 1, Ay be the fixed points of operators A, Ay, Ay, respectively, and
(u,0) = (Wunx, Tryx) the solution of the variational problem P} with k = k*, n = 1,
A = Aey- We also denote by ¢ = ¢\ and 8 = Biya the solution of problems (4.17)
and PP | respectively, with kK = k*, 1 = 1., A = Akn- Clearly, it follows from (4.6),
(4.25), (4.34) and (4.48) that (3.30)-(3.35) holds. We conclude that (u, o, ¢, D, B) is
a solution of Problem PV and it satisfies (4.1)-(4.5).

Uniqueness: The uniqueness of the solution follows from the uniqueness of the fixed
points of A, Ak, A,y and from the uniqueness part of Lemmas (4.1), (4.2) and (4.3).
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